Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(zone plate optics). Showing records 1 – 2 of 2 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Manitoba

1. Glowacki, Pawel. An infrared spectrometer based on a MEMS fresnel zone plate for measuring dissolved gases in high voltage equipment.

Degree: Electrical and Computer Engineering, 2017, University of Manitoba

This thesis presents a unique design for an infrared spectrometer based on a MEMS Binary Fresnel Zone Plate for the purpose of assessing the health of oil-impregnated high voltage (HV) equipment. It does so by measuring dissolved gases within it. These gases include carbon monoxide, carbon dioxide, methane, ethane, ethylene, and acetylene. These gases are currently measured using numerous technologies such as gas combustion, gas chromatography, photoacoustic spectroscopy, and FTIR spectroscopy. Each of these technologies have their advantages and disadvantages. The design presented in this thesis consists of an analysis of how the various Binary Zone Plate parameters affect its spectral resolution and transmission efficiency. Simulations show that increasing the number of zones and the focal length, as well as decreasing the aperture diameter, increases the spectral resolution of the spectrometer. Simulations also show that transmission efficiency is proportional to the number of zones and the aperture diameter. This thesis presents a theoretical argument for how one zone plate lens can be used to measure all dissolved gases present in HV equipment. Lenses for the visible and infrared ranges were fabricated in the University of Manitoba NSFL Cleanroom. The lenses were then tested in an optical setup. The results show that the visible light experiments were successful in achieving appropriate spectral discrimination by changing the distance between the aperture and the lens. The results from the infrared experiment show that a detector was able to discriminate between full and no incident radiation. Advisors/Committee Members: Shafai, Cyrus (Electrical and Computer Engineering) (supervisor), Sherif, Sherif (Electrical and Computer Engineering) Paliwal, Jitendra (Biosystems Engineering) (examiningcommittee).

Subjects/Keywords: MEMS; MOEMS; Optics; Infrared spectroscopy; Dissolved gas analysis; High voltage; Insulation; Binary zone plate; Diffractive optics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Glowacki, P. (2017). An infrared spectrometer based on a MEMS fresnel zone plate for measuring dissolved gases in high voltage equipment. (Masters Thesis). University of Manitoba. Retrieved from http://hdl.handle.net/1993/32165

Chicago Manual of Style (16th Edition):

Glowacki, Pawel. “An infrared spectrometer based on a MEMS fresnel zone plate for measuring dissolved gases in high voltage equipment.” 2017. Masters Thesis, University of Manitoba. Accessed January 22, 2020. http://hdl.handle.net/1993/32165.

MLA Handbook (7th Edition):

Glowacki, Pawel. “An infrared spectrometer based on a MEMS fresnel zone plate for measuring dissolved gases in high voltage equipment.” 2017. Web. 22 Jan 2020.

Vancouver:

Glowacki P. An infrared spectrometer based on a MEMS fresnel zone plate for measuring dissolved gases in high voltage equipment. [Internet] [Masters thesis]. University of Manitoba; 2017. [cited 2020 Jan 22]. Available from: http://hdl.handle.net/1993/32165.

Council of Science Editors:

Glowacki P. An infrared spectrometer based on a MEMS fresnel zone plate for measuring dissolved gases in high voltage equipment. [Masters Thesis]. University of Manitoba; 2017. Available from: http://hdl.handle.net/1993/32165

2. Mashrafi, Sheikh. X-ray microscope performance enhancement through control architecture change.

Degree: MS, 0133, 2014, University of Illinois – Urbana-Champaign

The goal of this thesis is to apply control algorithms to improve the performance of nanopositioning devices used on the beamline in Advanced Photon Source (APS) at Argonne National Laboratory (ANL). A prototype device, better known as the Early User Instrument (EUI) was the subject of this work. It consists of X-ray optics stage group that focuses the X-ray beam as a source-size-limited spot onto a sample held on the sample stage group. The controller algorithms that are used should provide the closed-loop with robust stability, large bandwidth, high resolution, disturbance rejection and noise attenuation. Conveniently, the field of scanning probe microscopes (SPMs) have already flourished on this aspect of controller algorithms proven to give desired closed-loop properties. Controller algorithms such as Proportional Integral Derivative (PID), Glover-McFarlane H-infinty algorithm, and 1DOF H-infinty controller were designed and implemented on the EUI system. The controller hardware used for implementation is National Instruments (NI) CompactRIO hardware that consists of a real-time controller, a FPGA built into the hardware chassis, analog I/O modules, and digital I/O modules. NI LabVIEW, the dedicated software to the NI hardware, was used to represent the discrete controllers as biquads structures that ran in the FPGA as a part of the closed-loop . The largest closed-loop bandwidth achieved is of 65 Hz through the 1DOF H-infinty controller and is a 171% improvement over the traditional PID controller. Highest closed- loop resolution achieved by the EUI with a 50 Hz bandwidth 1DOF H-infinty controller is 1.4 nanometers, which is a 180% improvement over the open loop resolution of 7 nanometers. Advisors/Committee Members: Salapaka, Srinivasa M. (advisor), Preissner, Curt (advisor).

Subjects/Keywords: control; Control Architecture; Advanced Photon Source (APS); Argonne National Laboratory (ANL); control algorithms; nanopositioning; nanopositioning devices; Early User Instrument (EUI); X-ray; optics; robust stability; bandwidth; resolution; disturbance rejection; noise attenuation; scanning probe microscope (SPM); closed-loop properties; Proportional Integral Derivative (PID); Glover-McFarlane h-infinity algorithm; 1DOF h-infinity controller; h-infinity; Glover-McFarlane controller; Keith Glover; Duncan McFarlane; controller; controller implementation; National Instruments (NI); CompactRIO; real-time controller; Field-Programmable Gate Array (FPGA); LabVIEW; biquads structures; closed-loop bandwidth; U.S. Department of Energy (DOE); Office of Science; DE-AC02-06CH11357; DE-SC0004283; Cross Power Spectral Density (CPSD); Power Spectral Density (PSD); Degree Of Freedom (DOF); Discrete-Time Fourier Transform (DTFT); Hardware Description language (HDL); High-Level Synthesis (HLS); Hard X-ray Nanoprobe (HXN); In Situ Nanoprobe (ISN); Laser Doppler Displacement Meter (LDDM); Physik Instrumente (PI); Reconfigurable Input/Output (RIO); Advanced Photon Source (APS) beamline; full-field imaging microscopy; fluorescence mapping; nanodiffraction; transmission imaging; reliability and repeatability of positioning systems; modeling uncertainties; insensitive modeling uncertainties; quantifying trade-offs; trade-offs; design flexibility; design methodology; feedforward; feedback; performance objectives; robustness; Advanced Photon Source (APS) user; beamline scientist; imaging resolution and bandwidth; imaging resolution; nanoprobe; model fitting; curve fitting; model reduction; feedback controllers; X-ray nanoprobe instrument; third-generation synchrotron radiation source; zone plate optics; zone plate; flexure stages; piezoelectric actuators stacks; flexure; Piezoelectric; high-stiffness stages; high-resolution weak-link stages; piezoelectric-transducer; sub-nanometer resolution; subnanometer; optical heterodyning; heterodyning; Optodyne; frequency-shifted laser beam; PID controller; digital to analog converter (DAC); analog input modules; digital input modules; analog output modules; cRIO-9118; Virtex-5; Virtex-5 LX110 FPGA chassis; NI-9223; NI-9402; NI-9263; System Identification; Identification; black-box identification; parametric model; non-parametric model; welch; pwelch; tfestimate; invfreqs; time domain data; band-limited uniform Gaussian white noise; band-limited; white noise; resonant peak; Balance Realization; minimal realization; controllability; observability; Experimental Frequency response; transfer function; Hankel singular values; Hankel norm; balanced truncation; noise histogram; Open Loop Resolution; closed Loop Resolution; Simulink simulation; LabVIEW simulation; discrete controller; continuous controllers; discrete; Tustin; tustins method; discretization; complementary sensitivity transfer function; sensitivity transfer function; robust stabilization; coprime factorization; Bezout identity; Bezout; stability margin; algebraic Riccati equation; Riccati equation; sub-optimal; suboptimal; sub-optimal controller; optimal controller; mixed-sensitivity optimization; sensitivity optimization; generalized framework; generalized controller framework; stabilizing controller; closed-loop objectives; generalized plant; nominal plant; linear fractional transformation; weighting transfer functions; weighted sensitivity; hinfsyn; bode integral law; waterbed effect; second waterbed formula; Skogestad; Poslethwaite; sensitivity weighting; sensitivity weighting transfer function; nanopositioner; nanopositioning device; nanopositioning system; second order sections; ASPE 28th Annual Meeting; American Society for Precision Engineering (ASPE); Synchrotron Radiation Instrumentation; Synchrotron; Nanoprobe Instrument

…of zone plate optics and sample is maintained. In earlier experiments on an APS beamline… …supporting base, a X-ray zone plate optics stage group, and a specimen or sample holders stage… …group, as shown in Figure 2.1. The zone plate optics stage group consists of custom flexure… …positioning the stages - two encoders for the zone-plate optics 5 stage and two for the sample… …Zone plate stage group consists of 3 coarse stages: Z-coarse stage, Y-coarse stage, X-coarse… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mashrafi, S. (2014). X-ray microscope performance enhancement through control architecture change. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/46671

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mashrafi, Sheikh. “X-ray microscope performance enhancement through control architecture change.” 2014. Thesis, University of Illinois – Urbana-Champaign. Accessed January 22, 2020. http://hdl.handle.net/2142/46671.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mashrafi, Sheikh. “X-ray microscope performance enhancement through control architecture change.” 2014. Web. 22 Jan 2020.

Vancouver:

Mashrafi S. X-ray microscope performance enhancement through control architecture change. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2014. [cited 2020 Jan 22]. Available from: http://hdl.handle.net/2142/46671.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mashrafi S. X-ray microscope performance enhancement through control architecture change. [Thesis]. University of Illinois – Urbana-Champaign; 2014. Available from: http://hdl.handle.net/2142/46671

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.