Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(zeta function). Showing records 1 – 30 of 87 total matches.

[1] [2] [3]

Search Limiters

Last 2 Years | English Only

Levels

Languages

Country

▼ Search Limiters


San Jose State University

1. Brown, Alfred James. Knight's Tours and Zeta Functions.

Degree: MS, Mathematics, 2017, San Jose State University

  Given an m × n chessboard, we get an associated graph by letting each square represent a vertex and by joining two vertices if… (more)

Subjects/Keywords: Chess; Knight's Tours; Zeta Function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brown, A. J. (2017). Knight's Tours and Zeta Functions. (Masters Thesis). San Jose State University. Retrieved from https://doi.org/10.31979/etd.e7ra-46ny ; https://scholarworks.sjsu.edu/etd_theses/4836

Chicago Manual of Style (16th Edition):

Brown, Alfred James. “Knight's Tours and Zeta Functions.” 2017. Masters Thesis, San Jose State University. Accessed July 10, 2020. https://doi.org/10.31979/etd.e7ra-46ny ; https://scholarworks.sjsu.edu/etd_theses/4836.

MLA Handbook (7th Edition):

Brown, Alfred James. “Knight's Tours and Zeta Functions.” 2017. Web. 10 Jul 2020.

Vancouver:

Brown AJ. Knight's Tours and Zeta Functions. [Internet] [Masters thesis]. San Jose State University; 2017. [cited 2020 Jul 10]. Available from: https://doi.org/10.31979/etd.e7ra-46ny ; https://scholarworks.sjsu.edu/etd_theses/4836.

Council of Science Editors:

Brown AJ. Knight's Tours and Zeta Functions. [Masters Thesis]. San Jose State University; 2017. Available from: https://doi.org/10.31979/etd.e7ra-46ny ; https://scholarworks.sjsu.edu/etd_theses/4836


University of Illinois – Urbana-Champaign

2. Phaovibul, Mtip Easter. Extensions of Selberg-Delange method.

Degree: PhD, Mathematics, 2015, University of Illinois – Urbana-Champaign

 This dissertation involves two topics in analytic number theory. The first topic focuses on extensions of the Selberg-Delange Method, which are discussed in Chapters 2… (more)

Subjects/Keywords: Multiple Zeta function; Selberg-Delange Method; Asymptotic; Riemann Zeta function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Phaovibul, M. E. (2015). Extensions of Selberg-Delange method. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/78348

Chicago Manual of Style (16th Edition):

Phaovibul, Mtip Easter. “Extensions of Selberg-Delange method.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 10, 2020. http://hdl.handle.net/2142/78348.

MLA Handbook (7th Edition):

Phaovibul, Mtip Easter. “Extensions of Selberg-Delange method.” 2015. Web. 10 Jul 2020.

Vancouver:

Phaovibul ME. Extensions of Selberg-Delange method. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2142/78348.

Council of Science Editors:

Phaovibul ME. Extensions of Selberg-Delange method. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/78348


University of St Andrews

3. Mijović, Vuksan. Multifractal zeta functions.

Degree: PhD, 2017, University of St Andrews

 Multifractals have during the past 20 − 25 years been the focus of enormous attention in the mathematical literature. Loosely speaking there are two main… (more)

Subjects/Keywords: 515; Multifractal zeta functions; Fine multifractal spectra; Coarse multifractal spectra; Renyi dimension; Geometric zeta function; Dynamical zeta function; Multifractal pressure; QA614.86M5; Multifractals; Functions, Zeta

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mijović, V. (2017). Multifractal zeta functions. (Doctoral Dissertation). University of St Andrews. Retrieved from http://hdl.handle.net/10023/10637

Chicago Manual of Style (16th Edition):

Mijović, Vuksan. “Multifractal zeta functions.” 2017. Doctoral Dissertation, University of St Andrews. Accessed July 10, 2020. http://hdl.handle.net/10023/10637.

MLA Handbook (7th Edition):

Mijović, Vuksan. “Multifractal zeta functions.” 2017. Web. 10 Jul 2020.

Vancouver:

Mijović V. Multifractal zeta functions. [Internet] [Doctoral dissertation]. University of St Andrews; 2017. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10023/10637.

Council of Science Editors:

Mijović V. Multifractal zeta functions. [Doctoral Dissertation]. University of St Andrews; 2017. Available from: http://hdl.handle.net/10023/10637


University of Rochester

4. Kotok, Malcolm. Computing zeta functions of nondegenerate hypersurfaces over finite fields.

Degree: PhD, 2016, University of Rochester

Zeta functions of varieties over finite fields are generating functions that capture the number of vanishing points of a finite set of polynomial equations. They… (more)

Subjects/Keywords: Algorithm; Finite field; L-function; Nondegenerate; Number theory; Zeta function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kotok, M. (2016). Computing zeta functions of nondegenerate hypersurfaces over finite fields. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/30832

Chicago Manual of Style (16th Edition):

Kotok, Malcolm. “Computing zeta functions of nondegenerate hypersurfaces over finite fields.” 2016. Doctoral Dissertation, University of Rochester. Accessed July 10, 2020. http://hdl.handle.net/1802/30832.

MLA Handbook (7th Edition):

Kotok, Malcolm. “Computing zeta functions of nondegenerate hypersurfaces over finite fields.” 2016. Web. 10 Jul 2020.

Vancouver:

Kotok M. Computing zeta functions of nondegenerate hypersurfaces over finite fields. [Internet] [Doctoral dissertation]. University of Rochester; 2016. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1802/30832.

Council of Science Editors:

Kotok M. Computing zeta functions of nondegenerate hypersurfaces over finite fields. [Doctoral Dissertation]. University of Rochester; 2016. Available from: http://hdl.handle.net/1802/30832


University of Manchester

5. Mcmonagle, Aoife. Meromorphic extensions of dynamical generating functions and applications to Schottky groups.

Degree: PhD, 2013, University of Manchester

 This thesis is concerned with finding meromorphic extensions to a half-plane containing zero for certain generating functions. In particular, we generalise a result due to… (more)

Subjects/Keywords: 515; zeta function; Schottky; L-function; Poincaré series

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mcmonagle, A. (2013). Meromorphic extensions of dynamical generating functions and applications to Schottky groups. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/meromorphic-extensions-of-dynamical-generating-functions-and-applications-to-schottky-groups(af657d7b-3b8a-4d14-8cff-c5258af3260c).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.568661

Chicago Manual of Style (16th Edition):

Mcmonagle, Aoife. “Meromorphic extensions of dynamical generating functions and applications to Schottky groups.” 2013. Doctoral Dissertation, University of Manchester. Accessed July 10, 2020. https://www.research.manchester.ac.uk/portal/en/theses/meromorphic-extensions-of-dynamical-generating-functions-and-applications-to-schottky-groups(af657d7b-3b8a-4d14-8cff-c5258af3260c).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.568661.

MLA Handbook (7th Edition):

Mcmonagle, Aoife. “Meromorphic extensions of dynamical generating functions and applications to Schottky groups.” 2013. Web. 10 Jul 2020.

Vancouver:

Mcmonagle A. Meromorphic extensions of dynamical generating functions and applications to Schottky groups. [Internet] [Doctoral dissertation]. University of Manchester; 2013. [cited 2020 Jul 10]. Available from: https://www.research.manchester.ac.uk/portal/en/theses/meromorphic-extensions-of-dynamical-generating-functions-and-applications-to-schottky-groups(af657d7b-3b8a-4d14-8cff-c5258af3260c).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.568661.

Council of Science Editors:

Mcmonagle A. Meromorphic extensions of dynamical generating functions and applications to Schottky groups. [Doctoral Dissertation]. University of Manchester; 2013. Available from: https://www.research.manchester.ac.uk/portal/en/theses/meromorphic-extensions-of-dynamical-generating-functions-and-applications-to-schottky-groups(af657d7b-3b8a-4d14-8cff-c5258af3260c).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.568661


University of Lethbridge

6. University of Lethbridge. Faculty of Arts and Science. Topics in analytic number theory .

Degree: 2016, University of Lethbridge

 In this thesis, we investigate three topics belonging to the probabilistic, classical and modern branches of analytic number theory. Our first result concerns the probabilistic… (more)

Subjects/Keywords: analytic number theory; divisor function; gaps between zeros; squares; zeta function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Science, U. o. L. F. o. A. a. (2016). Topics in analytic number theory . (Thesis). University of Lethbridge. Retrieved from http://hdl.handle.net/10133/4809

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Science, University of Lethbridge. Faculty of Arts and. “Topics in analytic number theory .” 2016. Thesis, University of Lethbridge. Accessed July 10, 2020. http://hdl.handle.net/10133/4809.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Science, University of Lethbridge. Faculty of Arts and. “Topics in analytic number theory .” 2016. Web. 10 Jul 2020.

Vancouver:

Science UoLFoAa. Topics in analytic number theory . [Internet] [Thesis]. University of Lethbridge; 2016. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10133/4809.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Science UoLFoAa. Topics in analytic number theory . [Thesis]. University of Lethbridge; 2016. Available from: http://hdl.handle.net/10133/4809

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

7. Fernandes, Jonathan. Fourier Analysis On Number Fields And The Global Zeta Functions.

Degree: 2011, Indian Institute of Science

 The study of zeta functions is one of the primary aspects of modern number theory. Hecke was the first to prove that the Dedekind zeta(more)

Subjects/Keywords: Zeta Function; Number Theory; Fourier Analysis; Local Zeta Functions; Global Zeta Functions; Local Theory; Mathematical Analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fernandes, J. (2011). Fourier Analysis On Number Fields And The Global Zeta Functions. (Thesis). Indian Institute of Science. Retrieved from http://hdl.handle.net/2005/2355

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Fernandes, Jonathan. “Fourier Analysis On Number Fields And The Global Zeta Functions.” 2011. Thesis, Indian Institute of Science. Accessed July 10, 2020. http://hdl.handle.net/2005/2355.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Fernandes, Jonathan. “Fourier Analysis On Number Fields And The Global Zeta Functions.” 2011. Web. 10 Jul 2020.

Vancouver:

Fernandes J. Fourier Analysis On Number Fields And The Global Zeta Functions. [Internet] [Thesis]. Indian Institute of Science; 2011. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2005/2355.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fernandes J. Fourier Analysis On Number Fields And The Global Zeta Functions. [Thesis]. Indian Institute of Science; 2011. Available from: http://hdl.handle.net/2005/2355

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

8. Fernandes, Jonathan. Fourier Analysis On Number Fields And The Global Zeta Functions.

Degree: 2011, Indian Institute of Science

 The study of zeta functions is one of the primary aspects of modern number theory. Hecke was the first to prove that the Dedekind zeta(more)

Subjects/Keywords: Zeta Function; Number Theory; Fourier Analysis; Local Zeta Functions; Global Zeta Functions; Local Theory; Mathematical Analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fernandes, J. (2011). Fourier Analysis On Number Fields And The Global Zeta Functions. (Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ernet.in/handle/2005/2355 ; http://etd.ncsi.iisc.ernet.in/abstracts/3028/G24777-Abs.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Fernandes, Jonathan. “Fourier Analysis On Number Fields And The Global Zeta Functions.” 2011. Thesis, Indian Institute of Science. Accessed July 10, 2020. http://etd.iisc.ernet.in/handle/2005/2355 ; http://etd.ncsi.iisc.ernet.in/abstracts/3028/G24777-Abs.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Fernandes, Jonathan. “Fourier Analysis On Number Fields And The Global Zeta Functions.” 2011. Web. 10 Jul 2020.

Vancouver:

Fernandes J. Fourier Analysis On Number Fields And The Global Zeta Functions. [Internet] [Thesis]. Indian Institute of Science; 2011. [cited 2020 Jul 10]. Available from: http://etd.iisc.ernet.in/handle/2005/2355 ; http://etd.ncsi.iisc.ernet.in/abstracts/3028/G24777-Abs.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fernandes J. Fourier Analysis On Number Fields And The Global Zeta Functions. [Thesis]. Indian Institute of Science; 2011. Available from: http://etd.iisc.ernet.in/handle/2005/2355 ; http://etd.ncsi.iisc.ernet.in/abstracts/3028/G24777-Abs.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Central Florida

9. Awan, Almuatazbellah. On the Theory of Zeta-functions and L-functions.

Degree: 2015, University of Central Florida

 In this thesis we provide a body of knowledge that concerns Riemann zeta-function and its generalizations in a cohesive manner. In particular, we have studied… (more)

Subjects/Keywords: Riemann zeta function; hurwtiz zeta function; l functions; dedekind zeta function; universality; prime number theorem; riemann hypothesis; generalized riemann hypothesis; analytic number theory; special functions; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Awan, A. (2015). On the Theory of Zeta-functions and L-functions. (Masters Thesis). University of Central Florida. Retrieved from https://stars.library.ucf.edu/etd/53

Chicago Manual of Style (16th Edition):

Awan, Almuatazbellah. “On the Theory of Zeta-functions and L-functions.” 2015. Masters Thesis, University of Central Florida. Accessed July 10, 2020. https://stars.library.ucf.edu/etd/53.

MLA Handbook (7th Edition):

Awan, Almuatazbellah. “On the Theory of Zeta-functions and L-functions.” 2015. Web. 10 Jul 2020.

Vancouver:

Awan A. On the Theory of Zeta-functions and L-functions. [Internet] [Masters thesis]. University of Central Florida; 2015. [cited 2020 Jul 10]. Available from: https://stars.library.ucf.edu/etd/53.

Council of Science Editors:

Awan A. On the Theory of Zeta-functions and L-functions. [Masters Thesis]. University of Central Florida; 2015. Available from: https://stars.library.ucf.edu/etd/53


Vilnius University

10. Černigova, Sondra. Moment problem for the periodic zeta-function.

Degree: Dissertation, Mathematics, 2014, Vilnius University

In the thesis, problems related to the moments of the periodic zeta-function are considered. The aim of the thesis is to obtain asymptotic formulae for… (more)

Subjects/Keywords: Periodic zeta-function; Riemann zeta-function; The Atkinson formula; Atkinsono formulė; Periodinė dzeta funkcija; Rymano dzeta funkcija

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Černigova, S. (2014). Moment problem for the periodic zeta-function. (Doctoral Dissertation). Vilnius University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20141111_114553-36360 ;

Chicago Manual of Style (16th Edition):

Černigova, Sondra. “Moment problem for the periodic zeta-function.” 2014. Doctoral Dissertation, Vilnius University. Accessed July 10, 2020. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20141111_114553-36360 ;.

MLA Handbook (7th Edition):

Černigova, Sondra. “Moment problem for the periodic zeta-function.” 2014. Web. 10 Jul 2020.

Vancouver:

Černigova S. Moment problem for the periodic zeta-function. [Internet] [Doctoral dissertation]. Vilnius University; 2014. [cited 2020 Jul 10]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20141111_114553-36360 ;.

Council of Science Editors:

Černigova S. Moment problem for the periodic zeta-function. [Doctoral Dissertation]. Vilnius University; 2014. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20141111_114553-36360 ;


Vilnius University

11. Černigova, Sondra. Momentų problema periodinei dzeta funkcijai.

Degree: PhD, Mathematics, 2014, Vilnius University

Disertacijos tyrimo objektas yra periodinė dzeta funkcija. Mokslinė problema - šios funkcijos momentų problema. Darbo tikslas - įrodyti asimptotines formules periodinės funkcijos momentams bei kai… (more)

Subjects/Keywords: Atkinsono formulė; Periodinė dzeta funkcija; Rymano dzeta funkcija; Periodic zeta-function; Riemann zeta-function; The Atkinson formula

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Černigova, S. (2014). Momentų problema periodinei dzeta funkcijai. (Doctoral Dissertation). Vilnius University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20141111_114605-33009 ;

Chicago Manual of Style (16th Edition):

Černigova, Sondra. “Momentų problema periodinei dzeta funkcijai.” 2014. Doctoral Dissertation, Vilnius University. Accessed July 10, 2020. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20141111_114605-33009 ;.

MLA Handbook (7th Edition):

Černigova, Sondra. “Momentų problema periodinei dzeta funkcijai.” 2014. Web. 10 Jul 2020.

Vancouver:

Černigova S. Momentų problema periodinei dzeta funkcijai. [Internet] [Doctoral dissertation]. Vilnius University; 2014. [cited 2020 Jul 10]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20141111_114605-33009 ;.

Council of Science Editors:

Černigova S. Momentų problema periodinei dzeta funkcijai. [Doctoral Dissertation]. Vilnius University; 2014. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2014~D_20141111_114605-33009 ;


Vilnius University

12. Grigutis, Andrius. Value distribution of Lerch and Selberg zeta-functions.

Degree: Dissertation, Mathematics, 2012, Vilnius University

The doctoral dissertation contains the material of scientific investigations done in 2008-2012 in the Faculty of Mathematics and Informatics at Vilnius University. The dissertation includes… (more)

Subjects/Keywords: Lerch zeta-function; Selberg zeta-function; Value distribution; Monotonicity; Lercho dzeta funkcija; Selbergo dzeta funkcija; Reikšmių pasiskirstymas; Monotoniškumas

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grigutis, A. (2012). Value distribution of Lerch and Selberg zeta-functions. (Doctoral Dissertation). Vilnius University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121227_085912-23915 ;

Chicago Manual of Style (16th Edition):

Grigutis, Andrius. “Value distribution of Lerch and Selberg zeta-functions.” 2012. Doctoral Dissertation, Vilnius University. Accessed July 10, 2020. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121227_085912-23915 ;.

MLA Handbook (7th Edition):

Grigutis, Andrius. “Value distribution of Lerch and Selberg zeta-functions.” 2012. Web. 10 Jul 2020.

Vancouver:

Grigutis A. Value distribution of Lerch and Selberg zeta-functions. [Internet] [Doctoral dissertation]. Vilnius University; 2012. [cited 2020 Jul 10]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121227_085912-23915 ;.

Council of Science Editors:

Grigutis A. Value distribution of Lerch and Selberg zeta-functions. [Doctoral Dissertation]. Vilnius University; 2012. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121227_085912-23915 ;


Vilnius University

13. Grigutis, Andrius. Lercho ir Selbergo dzeta funkcijų reikšmių pasiskirstymai.

Degree: PhD, Mathematics, 2012, Vilnius University

Disertaciją sudaro mokslinių tyrimų medžiaga, kurie atlikti 2008 -2012 metais Vilniaus universitete Matematikos ir informatikos fakultete. Disertacijoje įrodomos naujos teoremos apie Lercho ir Selbergo dzeta… (more)

Subjects/Keywords: Lercho dzeta funkcija; Selbergo dzeta funkcija; Reikšmių pasiskirstymas; Monotoniškumas; Lerch zeta-function; Selberg zeta-function; Value distribution; Monotonicity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grigutis, A. (2012). Lercho ir Selbergo dzeta funkcijų reikšmių pasiskirstymai. (Doctoral Dissertation). Vilnius University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121227_085932-21654 ;

Chicago Manual of Style (16th Edition):

Grigutis, Andrius. “Lercho ir Selbergo dzeta funkcijų reikšmių pasiskirstymai.” 2012. Doctoral Dissertation, Vilnius University. Accessed July 10, 2020. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121227_085932-21654 ;.

MLA Handbook (7th Edition):

Grigutis, Andrius. “Lercho ir Selbergo dzeta funkcijų reikšmių pasiskirstymai.” 2012. Web. 10 Jul 2020.

Vancouver:

Grigutis A. Lercho ir Selbergo dzeta funkcijų reikšmių pasiskirstymai. [Internet] [Doctoral dissertation]. Vilnius University; 2012. [cited 2020 Jul 10]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121227_085932-21654 ;.

Council of Science Editors:

Grigutis A. Lercho ir Selbergo dzeta funkcijų reikšmių pasiskirstymai. [Doctoral Dissertation]. Vilnius University; 2012. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121227_085932-21654 ;

14. Satou, Nobuo. AN ENHANCEMENT OF THE ZAGIER CONJECTURE : Zagier予想の精密化について.

Degree: 博士(理学), 2017, Kyoto University / 京都大学

新制・課程博士

甲第20155号

理博第4240号

Subjects/Keywords: Polylogarithm; Zagier conjecture; Enhanced zeta value; Shintani zeta function; Partial zeta function

Page 1 Page 2 Page 3

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Satou, N. (2017). AN ENHANCEMENT OF THE ZAGIER CONJECTURE : Zagier予想の精密化について. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/225380 ; http://dx.doi.org/10.14989/doctor.k20155

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Satou, Nobuo. “AN ENHANCEMENT OF THE ZAGIER CONJECTURE : Zagier予想の精密化について.” 2017. Thesis, Kyoto University / 京都大学. Accessed July 10, 2020. http://hdl.handle.net/2433/225380 ; http://dx.doi.org/10.14989/doctor.k20155.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Satou, Nobuo. “AN ENHANCEMENT OF THE ZAGIER CONJECTURE : Zagier予想の精密化について.” 2017. Web. 10 Jul 2020.

Vancouver:

Satou N. AN ENHANCEMENT OF THE ZAGIER CONJECTURE : Zagier予想の精密化について. [Internet] [Thesis]. Kyoto University / 京都大学; 2017. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2433/225380 ; http://dx.doi.org/10.14989/doctor.k20155.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Satou N. AN ENHANCEMENT OF THE ZAGIER CONJECTURE : Zagier予想の精密化について. [Thesis]. Kyoto University / 京都大学; 2017. Available from: http://hdl.handle.net/2433/225380 ; http://dx.doi.org/10.14989/doctor.k20155

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

15. Satou, Nobuo. AN ENHANCEMENT OF THE ZAGIER CONJECTURE .

Degree: 2017, Kyoto University

Subjects/Keywords: Polylogarithm; Zagier conjecture; Enhanced zeta value; Shintani zeta function; Partial zeta function

Page 1 Page 2 Page 3

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Satou, N. (2017). AN ENHANCEMENT OF THE ZAGIER CONJECTURE . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/225380

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Satou, Nobuo. “AN ENHANCEMENT OF THE ZAGIER CONJECTURE .” 2017. Thesis, Kyoto University. Accessed July 10, 2020. http://hdl.handle.net/2433/225380.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Satou, Nobuo. “AN ENHANCEMENT OF THE ZAGIER CONJECTURE .” 2017. Web. 10 Jul 2020.

Vancouver:

Satou N. AN ENHANCEMENT OF THE ZAGIER CONJECTURE . [Internet] [Thesis]. Kyoto University; 2017. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2433/225380.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Satou N. AN ENHANCEMENT OF THE ZAGIER CONJECTURE . [Thesis]. Kyoto University; 2017. Available from: http://hdl.handle.net/2433/225380

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Cambridge

16. Fernandez, Arran. Analysis in fractional calculus and asymptotics related to zeta functions.

Degree: PhD, 2018, University of Cambridge

 This thesis presents results in two apparently disparate mathematical fields which can both be examined  – and even united  – by means of pure analysis.… (more)

Subjects/Keywords: fractional calculus; fractional derivatives; fractional integrals; fractional differential equations; zeta functions; asymptotic expansions; oscillatory integrals; analytic number theory; riemann zeta function; hurwitz zeta function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fernandez, A. (2018). Analysis in fractional calculus and asymptotics related to zeta functions. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/284390 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763663

Chicago Manual of Style (16th Edition):

Fernandez, Arran. “Analysis in fractional calculus and asymptotics related to zeta functions.” 2018. Doctoral Dissertation, University of Cambridge. Accessed July 10, 2020. https://www.repository.cam.ac.uk/handle/1810/284390 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763663.

MLA Handbook (7th Edition):

Fernandez, Arran. “Analysis in fractional calculus and asymptotics related to zeta functions.” 2018. Web. 10 Jul 2020.

Vancouver:

Fernandez A. Analysis in fractional calculus and asymptotics related to zeta functions. [Internet] [Doctoral dissertation]. University of Cambridge; 2018. [cited 2020 Jul 10]. Available from: https://www.repository.cam.ac.uk/handle/1810/284390 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763663.

Council of Science Editors:

Fernandez A. Analysis in fractional calculus and asymptotics related to zeta functions. [Doctoral Dissertation]. University of Cambridge; 2018. Available from: https://www.repository.cam.ac.uk/handle/1810/284390 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763663


University of Rochester

17. Lester, Stephen J. (1984 - ). The distribution of values of the Riemann zeta-function.

Degree: PhD, 2013, University of Rochester

 We consider three different problems in the theory of the Riemann zeta-function. The first problem concerns the distribution of the logarithmic derivative of the Riemann… (more)

Subjects/Keywords: Analytic number theory; Riemann zeta-function; L-functions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lester, S. J. (. -. ). (2013). The distribution of values of the Riemann zeta-function. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/27217

Chicago Manual of Style (16th Edition):

Lester, Stephen J (1984 - ). “The distribution of values of the Riemann zeta-function.” 2013. Doctoral Dissertation, University of Rochester. Accessed July 10, 2020. http://hdl.handle.net/1802/27217.

MLA Handbook (7th Edition):

Lester, Stephen J (1984 - ). “The distribution of values of the Riemann zeta-function.” 2013. Web. 10 Jul 2020.

Vancouver:

Lester SJ(-). The distribution of values of the Riemann zeta-function. [Internet] [Doctoral dissertation]. University of Rochester; 2013. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1802/27217.

Council of Science Editors:

Lester SJ(-). The distribution of values of the Riemann zeta-function. [Doctoral Dissertation]. University of Rochester; 2013. Available from: http://hdl.handle.net/1802/27217


University of Rochester

18. Kirila, Scott J. Discrete moments and linear combinations of L-functions.

Degree: PhD, 2018, University of Rochester

 In the first half of this thesis, assuming the Riemann hypothesis, we establish an upper bound for the 2k-th discrete moment of the derivative of… (more)

Subjects/Keywords: Discrete moments; Dirichlet L-functions; Riemann zeta-function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kirila, S. J. (2018). Discrete moments and linear combinations of L-functions. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/34130

Chicago Manual of Style (16th Edition):

Kirila, Scott J. “Discrete moments and linear combinations of L-functions.” 2018. Doctoral Dissertation, University of Rochester. Accessed July 10, 2020. http://hdl.handle.net/1802/34130.

MLA Handbook (7th Edition):

Kirila, Scott J. “Discrete moments and linear combinations of L-functions.” 2018. Web. 10 Jul 2020.

Vancouver:

Kirila SJ. Discrete moments and linear combinations of L-functions. [Internet] [Doctoral dissertation]. University of Rochester; 2018. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1802/34130.

Council of Science Editors:

Kirila SJ. Discrete moments and linear combinations of L-functions. [Doctoral Dissertation]. University of Rochester; 2018. Available from: http://hdl.handle.net/1802/34130


University of Akron

19. Dickson, Cavan James. Conjugacy Class Sizes of the Symmetric and Alternating Groups.

Degree: MS, Mathematics, 2014, University of Akron

 The symmetric group of degree n, denoted <b> Sn </b>, is the group of permutations on a set of cardinality n. The alternating group <b>… (more)

Subjects/Keywords: Mathematics; symmetric group; alternating group; conjugacy class; largest; smallest; zeta function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dickson, C. J. (2014). Conjugacy Class Sizes of the Symmetric and Alternating Groups. (Masters Thesis). University of Akron. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=akron1396838435

Chicago Manual of Style (16th Edition):

Dickson, Cavan James. “Conjugacy Class Sizes of the Symmetric and Alternating Groups.” 2014. Masters Thesis, University of Akron. Accessed July 10, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1396838435.

MLA Handbook (7th Edition):

Dickson, Cavan James. “Conjugacy Class Sizes of the Symmetric and Alternating Groups.” 2014. Web. 10 Jul 2020.

Vancouver:

Dickson CJ. Conjugacy Class Sizes of the Symmetric and Alternating Groups. [Internet] [Masters thesis]. University of Akron; 2014. [cited 2020 Jul 10]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=akron1396838435.

Council of Science Editors:

Dickson CJ. Conjugacy Class Sizes of the Symmetric and Alternating Groups. [Masters Thesis]. University of Akron; 2014. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=akron1396838435


Johannes Gutenberg Universität Mainz

20. Samol, Kira Verena. Frobenius polynomials for Calabi-Yau equations.

Degree: 2010, Johannes Gutenberg Universität Mainz

Sei π:X →  S eine \&quot;uber \Z definierte Familie von Calabi-Yau Varietaten der Dimension drei. Es existiere ein unter dem Gauss-Manin Zusammenhang invarianter Untermodul M\subset H3DR(X/S)… (more)

Subjects/Keywords: Zeta function, Calabi-Yau Differential equation, Frobenius Polynomial; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Samol, K. V. (2010). Frobenius polynomials for Calabi-Yau equations. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2010/2281/

Chicago Manual of Style (16th Edition):

Samol, Kira Verena. “Frobenius polynomials for Calabi-Yau equations.” 2010. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed July 10, 2020. http://ubm.opus.hbz-nrw.de/volltexte/2010/2281/.

MLA Handbook (7th Edition):

Samol, Kira Verena. “Frobenius polynomials for Calabi-Yau equations.” 2010. Web. 10 Jul 2020.

Vancouver:

Samol KV. Frobenius polynomials for Calabi-Yau equations. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2010. [cited 2020 Jul 10]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2010/2281/.

Council of Science Editors:

Samol KV. Frobenius polynomials for Calabi-Yau equations. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2010. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2010/2281/


Tulane University

21. Kesarwani, Aashita. Theory of the generalized modified Bessel function K_{z,w}(x) and 2-adic valuations of integer sequences.

Degree: 2017, Tulane University

Modular-type transformation formulas are the identities that are invariant under the transformation α → 1/α, and they can be represented as F (α) = F… (more)

Subjects/Keywords: Bessel functions; Theta transformation formula; Riemann zeta function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kesarwani, A. (2017). Theory of the generalized modified Bessel function K_{z,w}(x) and 2-adic valuations of integer sequences. (Thesis). Tulane University. Retrieved from https://digitallibrary.tulane.edu/islandora/object/tulane:77514

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kesarwani, Aashita. “Theory of the generalized modified Bessel function K_{z,w}(x) and 2-adic valuations of integer sequences.” 2017. Thesis, Tulane University. Accessed July 10, 2020. https://digitallibrary.tulane.edu/islandora/object/tulane:77514.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kesarwani, Aashita. “Theory of the generalized modified Bessel function K_{z,w}(x) and 2-adic valuations of integer sequences.” 2017. Web. 10 Jul 2020.

Vancouver:

Kesarwani A. Theory of the generalized modified Bessel function K_{z,w}(x) and 2-adic valuations of integer sequences. [Internet] [Thesis]. Tulane University; 2017. [cited 2020 Jul 10]. Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:77514.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kesarwani A. Theory of the generalized modified Bessel function K_{z,w}(x) and 2-adic valuations of integer sequences. [Thesis]. Tulane University; 2017. Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:77514

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Baylor University

22. Graham, Curtis W., 1983-. Boundary condition dependence of spectral zeta functions.

Degree: PhD, Baylor University. Dept. of Mathematics., 2015, Baylor University

 In this work, we provide the analytic continuation of the spectral zeta function associated with the one-dimensional regular Sturm-Liouville problem and the two-dimensional Laplacian on… (more)

Subjects/Keywords: Spectral zeta function. Sturm-Liouville. Laplacian. WKB. Functional determinant. Heat kernel.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Graham, Curtis W., 1. (2015). Boundary condition dependence of spectral zeta functions. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/9459

Chicago Manual of Style (16th Edition):

Graham, Curtis W., 1983-. “Boundary condition dependence of spectral zeta functions.” 2015. Doctoral Dissertation, Baylor University. Accessed July 10, 2020. http://hdl.handle.net/2104/9459.

MLA Handbook (7th Edition):

Graham, Curtis W., 1983-. “Boundary condition dependence of spectral zeta functions.” 2015. Web. 10 Jul 2020.

Vancouver:

Graham, Curtis W. 1. Boundary condition dependence of spectral zeta functions. [Internet] [Doctoral dissertation]. Baylor University; 2015. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2104/9459.

Council of Science Editors:

Graham, Curtis W. 1. Boundary condition dependence of spectral zeta functions. [Doctoral Dissertation]. Baylor University; 2015. Available from: http://hdl.handle.net/2104/9459


University of Rochester

23. Shen, Qibin. v-adic multiple zeta values over function fields.

Degree: PhD, 2020, University of Rochester

 In this thesis, we study structural relations between interpolated v-adic multiple zeta values over function fields. In chapter 2, we show that when K =… (more)

Subjects/Keywords: Function field; Multiple zeta value; Number theory; v-adic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shen, Q. (2020). v-adic multiple zeta values over function fields. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/35754

Chicago Manual of Style (16th Edition):

Shen, Qibin. “v-adic multiple zeta values over function fields.” 2020. Doctoral Dissertation, University of Rochester. Accessed July 10, 2020. http://hdl.handle.net/1802/35754.

MLA Handbook (7th Edition):

Shen, Qibin. “v-adic multiple zeta values over function fields.” 2020. Web. 10 Jul 2020.

Vancouver:

Shen Q. v-adic multiple zeta values over function fields. [Internet] [Doctoral dissertation]. University of Rochester; 2020. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1802/35754.

Council of Science Editors:

Shen Q. v-adic multiple zeta values over function fields. [Doctoral Dissertation]. University of Rochester; 2020. Available from: http://hdl.handle.net/1802/35754


Colorado State University

24. Malmskog, Beth. Maximal curves, zeta functions, and digital signatures.

Degree: PhD, Mathematics, 2007, Colorado State University

 Curves with as many points as possible over a finite field Fq under the Hasse-Weil bound are called maximal curves. Besides being interesting as extremal… (more)

Subjects/Keywords: Ihara zeta function; maximal curves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Malmskog, B. (2007). Maximal curves, zeta functions, and digital signatures. (Doctoral Dissertation). Colorado State University. Retrieved from http://hdl.handle.net/10217/47399

Chicago Manual of Style (16th Edition):

Malmskog, Beth. “Maximal curves, zeta functions, and digital signatures.” 2007. Doctoral Dissertation, Colorado State University. Accessed July 10, 2020. http://hdl.handle.net/10217/47399.

MLA Handbook (7th Edition):

Malmskog, Beth. “Maximal curves, zeta functions, and digital signatures.” 2007. Web. 10 Jul 2020.

Vancouver:

Malmskog B. Maximal curves, zeta functions, and digital signatures. [Internet] [Doctoral dissertation]. Colorado State University; 2007. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10217/47399.

Council of Science Editors:

Malmskog B. Maximal curves, zeta functions, and digital signatures. [Doctoral Dissertation]. Colorado State University; 2007. Available from: http://hdl.handle.net/10217/47399


Loughborough University

25. Omenyi, Louis Okechukwu. On the second variation of the spectral zeta function of the Laplacian on homogeneous Riemanniann manifolds.

Degree: PhD, 2014, Loughborough University

 The spectral zeta function, introduced by Minakshisundaram and Pleijel in [36] and denoted by ζg(s), encodes important spectral information for the Laplacian on Riemannian manifolds.… (more)

Subjects/Keywords: 516.3; Spectral zeta function; Riemannian manifold; Meromorphic continuation; Harmonic analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Omenyi, L. O. (2014). On the second variation of the spectral zeta function of the Laplacian on homogeneous Riemanniann manifolds. (Doctoral Dissertation). Loughborough University. Retrieved from http://hdl.handle.net/2134/16167

Chicago Manual of Style (16th Edition):

Omenyi, Louis Okechukwu. “On the second variation of the spectral zeta function of the Laplacian on homogeneous Riemanniann manifolds.” 2014. Doctoral Dissertation, Loughborough University. Accessed July 10, 2020. http://hdl.handle.net/2134/16167.

MLA Handbook (7th Edition):

Omenyi, Louis Okechukwu. “On the second variation of the spectral zeta function of the Laplacian on homogeneous Riemanniann manifolds.” 2014. Web. 10 Jul 2020.

Vancouver:

Omenyi LO. On the second variation of the spectral zeta function of the Laplacian on homogeneous Riemanniann manifolds. [Internet] [Doctoral dissertation]. Loughborough University; 2014. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2134/16167.

Council of Science Editors:

Omenyi LO. On the second variation of the spectral zeta function of the Laplacian on homogeneous Riemanniann manifolds. [Doctoral Dissertation]. Loughborough University; 2014. Available from: http://hdl.handle.net/2134/16167


Siauliai University

26. Pocevičienė, Vaida. Apibendrintosios daliklių funkcijos Ryso vidurkis.

Degree: Master, Mathematics, 2008, Siauliai University

Darbe nustatyta, kad vidurkiui yra teisinga formulė. Ji sudaryta iš rymano dzeta funkcijos, Beselio funkcijų ir modifikuotos Beselio funkcijų kombinacijos.

It is obtained put for… (more)

Subjects/Keywords: Oilerio funkcija; Daliklių funkcija; Ryso vidurkis; Rymano dzeta funkcija; Euler function; Divisor function; Riesz mean; Rieman zeta function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pocevičienė, Vaida. (2008). Apibendrintosios daliklių funkcijos Ryso vidurkis. (Masters Thesis). Siauliai University. Retrieved from http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2008~D_20080925_090305-96045 ;

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

Pocevičienė, Vaida. “Apibendrintosios daliklių funkcijos Ryso vidurkis.” 2008. Masters Thesis, Siauliai University. Accessed July 10, 2020. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2008~D_20080925_090305-96045 ;.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

Pocevičienė, Vaida. “Apibendrintosios daliklių funkcijos Ryso vidurkis.” 2008. Web. 10 Jul 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

Pocevičienė, Vaida. Apibendrintosios daliklių funkcijos Ryso vidurkis. [Internet] [Masters thesis]. Siauliai University; 2008. [cited 2020 Jul 10]. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2008~D_20080925_090305-96045 ;.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

Pocevičienė, Vaida. Apibendrintosios daliklių funkcijos Ryso vidurkis. [Masters Thesis]. Siauliai University; 2008. Available from: http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2008~D_20080925_090305-96045 ;

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

27. Alvites, José Carlos Valencia. Hipótese de Riemann e física.

Degree: Mestrado, Matemática, 2012, University of São Paulo

Neste trabalho, introduzimos a função zeta de Riemann \'ZETA\'(s), para s \'PERTENCEĆ \ e apresentamos muito do que é conhecido como justificativa para a hipótese… (more)

Subjects/Keywords: Função zeta de Riemann; Função zeta de Riemann e física; Hipótese de Riemann; Nontrivial zeros; Riemann hypothesis; Riemann zeta function; Riemann zeta function and physics; Teorema dos números primos; Theorem of prime numbers; Zeros não triviais

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alvites, J. C. V. (2012). Hipótese de Riemann e física. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13042012-084309/ ;

Chicago Manual of Style (16th Edition):

Alvites, José Carlos Valencia. “Hipótese de Riemann e física.” 2012. Masters Thesis, University of São Paulo. Accessed July 10, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13042012-084309/ ;.

MLA Handbook (7th Edition):

Alvites, José Carlos Valencia. “Hipótese de Riemann e física.” 2012. Web. 10 Jul 2020.

Vancouver:

Alvites JCV. Hipótese de Riemann e física. [Internet] [Masters thesis]. University of São Paulo; 2012. [cited 2020 Jul 10]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13042012-084309/ ;.

Council of Science Editors:

Alvites JCV. Hipótese de Riemann e física. [Masters Thesis]. University of São Paulo; 2012. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13042012-084309/ ;


University of Rochester

28. Milinovich, Micah B. (1979 - ). Mean-value estimates for the derivative of the Riemann zeta-function.

Degree: PhD, 2008, University of Rochester

 Let ζ(s) denote the Riemann zeta-function. This thesis is concerned with estimating discrete moments of the form Jk(T) = (1/N(T))Σ <sub>0 < γ ≤T</sub>|ζ'(p)|2k where… (more)

Subjects/Keywords: Moments of the Riemann zeta-function; Zeros of the Reimann zeta-function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Milinovich, M. B. (. -. ). (2008). Mean-value estimates for the derivative of the Riemann zeta-function. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/6012

Chicago Manual of Style (16th Edition):

Milinovich, Micah B (1979 - ). “Mean-value estimates for the derivative of the Riemann zeta-function.” 2008. Doctoral Dissertation, University of Rochester. Accessed July 10, 2020. http://hdl.handle.net/1802/6012.

MLA Handbook (7th Edition):

Milinovich, Micah B (1979 - ). “Mean-value estimates for the derivative of the Riemann zeta-function.” 2008. Web. 10 Jul 2020.

Vancouver:

Milinovich MB(-). Mean-value estimates for the derivative of the Riemann zeta-function. [Internet] [Doctoral dissertation]. University of Rochester; 2008. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1802/6012.

Council of Science Editors:

Milinovich MB(-). Mean-value estimates for the derivative of the Riemann zeta-function. [Doctoral Dissertation]. University of Rochester; 2008. Available from: http://hdl.handle.net/1802/6012

29. Duong, Hoang Dung. Profinite groups with a rational probabilistic zeta function.

Degree: 2013, Mathematical Institute, Faculty of Science, Leiden University

 In this thesis, we investigate the connection between finitely generated profinite groups G and the associated Dirichlet series PG(s) of which the reciprocal is called… (more)

Subjects/Keywords: Profinite groups; Probabilistic zeta function; Profinite groups; Probabilistic zeta function

Page 1 Page 2

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Duong, H. D. (2013). Profinite groups with a rational probabilistic zeta function. (Doctoral Dissertation). Mathematical Institute, Faculty of Science, Leiden University. Retrieved from http://hdl.handle.net/1887/20880

Chicago Manual of Style (16th Edition):

Duong, Hoang Dung. “Profinite groups with a rational probabilistic zeta function.” 2013. Doctoral Dissertation, Mathematical Institute, Faculty of Science, Leiden University. Accessed July 10, 2020. http://hdl.handle.net/1887/20880.

MLA Handbook (7th Edition):

Duong, Hoang Dung. “Profinite groups with a rational probabilistic zeta function.” 2013. Web. 10 Jul 2020.

Vancouver:

Duong HD. Profinite groups with a rational probabilistic zeta function. [Internet] [Doctoral dissertation]. Mathematical Institute, Faculty of Science, Leiden University; 2013. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1887/20880.

Council of Science Editors:

Duong HD. Profinite groups with a rational probabilistic zeta function. [Doctoral Dissertation]. Mathematical Institute, Faculty of Science, Leiden University; 2013. Available from: http://hdl.handle.net/1887/20880


University of California – Irvine

30. Hill, Joshua Erin. On Calculating the Cardinality of the Value Set of a Polynomial (and some related problems).

Degree: Mathematics, 2014, University of California – Irvine

 We prove a combinatorial identity that relates the size of the value set of a map with the sizes of various iterated fiber products by… (more)

Subjects/Keywords: Mathematics; Computer science; Algorithm; Combinatorics; Number theory; Polynomials; Value Set; Zeta function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hill, J. E. (2014). On Calculating the Cardinality of the Value Set of a Polynomial (and some related problems). (Thesis). University of California – Irvine. Retrieved from http://www.escholarship.org/uc/item/9dw3d1gj

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hill, Joshua Erin. “On Calculating the Cardinality of the Value Set of a Polynomial (and some related problems).” 2014. Thesis, University of California – Irvine. Accessed July 10, 2020. http://www.escholarship.org/uc/item/9dw3d1gj.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hill, Joshua Erin. “On Calculating the Cardinality of the Value Set of a Polynomial (and some related problems).” 2014. Web. 10 Jul 2020.

Vancouver:

Hill JE. On Calculating the Cardinality of the Value Set of a Polynomial (and some related problems). [Internet] [Thesis]. University of California – Irvine; 2014. [cited 2020 Jul 10]. Available from: http://www.escholarship.org/uc/item/9dw3d1gj.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hill JE. On Calculating the Cardinality of the Value Set of a Polynomial (and some related problems). [Thesis]. University of California – Irvine; 2014. Available from: http://www.escholarship.org/uc/item/9dw3d1gj

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3]

.