Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(weighted sobolev spaces). Showing records 1 – 14 of 14 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of New Orleans

1. Khanfar, Abeer. Multiple Solutions on a Ball for a Generalized Lane Emden Equation.

Degree: PhD, Mathematics, 2008, University of New Orleans

 In this work we study the Generalized Lane-Emden equation and the interplay between the exponents involved and their consequences on the existence and non existence… (more)

Subjects/Keywords: p-laplacian; critical Sobolev exponents; weighted Sobolev spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khanfar, A. (2008). Multiple Solutions on a Ball for a Generalized Lane Emden Equation. (Doctoral Dissertation). University of New Orleans. Retrieved from https://scholarworks.uno.edu/td/901

Chicago Manual of Style (16th Edition):

Khanfar, Abeer. “Multiple Solutions on a Ball for a Generalized Lane Emden Equation.” 2008. Doctoral Dissertation, University of New Orleans. Accessed August 14, 2020. https://scholarworks.uno.edu/td/901.

MLA Handbook (7th Edition):

Khanfar, Abeer. “Multiple Solutions on a Ball for a Generalized Lane Emden Equation.” 2008. Web. 14 Aug 2020.

Vancouver:

Khanfar A. Multiple Solutions on a Ball for a Generalized Lane Emden Equation. [Internet] [Doctoral dissertation]. University of New Orleans; 2008. [cited 2020 Aug 14]. Available from: https://scholarworks.uno.edu/td/901.

Council of Science Editors:

Khanfar A. Multiple Solutions on a Ball for a Generalized Lane Emden Equation. [Doctoral Dissertation]. University of New Orleans; 2008. Available from: https://scholarworks.uno.edu/td/901


Penn State University

2. Qu, Qingqin. The Generalized Finite Element Method: Numerical Treatment of Singularities, Interfaces, and Boundary Conditions.

Degree: 2012, Penn State University

 This dissertation is devoted to numerical approximation of partial differential equations by Generalized Finite Element Method (GFEM), which is closely related to some other methods,… (more)

Subjects/Keywords: Interface problems; Partition of unity; Generalized finite element method; Weighted Sobolev spaces; Optimal rate of Convergence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Qu, Q. (2012). The Generalized Finite Element Method: Numerical Treatment of Singularities, Interfaces, and Boundary Conditions. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/15427

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Qu, Qingqin. “The Generalized Finite Element Method: Numerical Treatment of Singularities, Interfaces, and Boundary Conditions.” 2012. Thesis, Penn State University. Accessed August 14, 2020. https://submit-etda.libraries.psu.edu/catalog/15427.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Qu, Qingqin. “The Generalized Finite Element Method: Numerical Treatment of Singularities, Interfaces, and Boundary Conditions.” 2012. Web. 14 Aug 2020.

Vancouver:

Qu Q. The Generalized Finite Element Method: Numerical Treatment of Singularities, Interfaces, and Boundary Conditions. [Internet] [Thesis]. Penn State University; 2012. [cited 2020 Aug 14]. Available from: https://submit-etda.libraries.psu.edu/catalog/15427.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Qu Q. The Generalized Finite Element Method: Numerical Treatment of Singularities, Interfaces, and Boundary Conditions. [Thesis]. Penn State University; 2012. Available from: https://submit-etda.libraries.psu.edu/catalog/15427

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Neelima. Stochastic PDEs beyond standard monotonicity : well posedness and regularity of solutions.

Degree: PhD, 2019, University of Edinburgh

 Nonlinear stochastic partial differential equations (SPDEs) are used to model wide variety of phenomena in physics, engineering, finance and economics. In many such models the… (more)

Subjects/Keywords: stochastic partial differential equations; local monotonicity; coercivity; Levy Noise; anisotropic p-Laplace equation; regularity; weighted Sobolev spaces

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Neelima. (2019). Stochastic PDEs beyond standard monotonicity : well posedness and regularity of solutions. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/36090

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

Neelima. “Stochastic PDEs beyond standard monotonicity : well posedness and regularity of solutions.” 2019. Doctoral Dissertation, University of Edinburgh. Accessed August 14, 2020. http://hdl.handle.net/1842/36090.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

Neelima. “Stochastic PDEs beyond standard monotonicity : well posedness and regularity of solutions.” 2019. Web. 14 Aug 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

Neelima. Stochastic PDEs beyond standard monotonicity : well posedness and regularity of solutions. [Internet] [Doctoral dissertation]. University of Edinburgh; 2019. [cited 2020 Aug 14]. Available from: http://hdl.handle.net/1842/36090.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

Neelima. Stochastic PDEs beyond standard monotonicity : well posedness and regularity of solutions. [Doctoral Dissertation]. University of Edinburgh; 2019. Available from: http://hdl.handle.net/1842/36090

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

4. Meslameni, Mohamed. Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. : Stokes and Oseen equations in an exterior domain with different boundary conditions.

Degree: Docteur es, Mathématiques appliquées, 2013, Pau

On s’intéresse aux équations stationnaires de Navier-Stokes linéarisées, il s'agit ici des équations d'Oseen et des équations de Stokes posées dans des domaines infinis, comme… (more)

Subjects/Keywords: Problème de Stokes; Problème d'Oseen; Espaces de Sobolev avec poids; Mécanique des fluides; Stokes equations; Oseen equations; Weighted Sobolev spaces; Fluid mechanics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meslameni, M. (2013). Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. : Stokes and Oseen equations in an exterior domain with different boundary conditions. (Doctoral Dissertation). Pau. Retrieved from http://www.theses.fr/2013PAUU3002

Chicago Manual of Style (16th Edition):

Meslameni, Mohamed. “Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. : Stokes and Oseen equations in an exterior domain with different boundary conditions.” 2013. Doctoral Dissertation, Pau. Accessed August 14, 2020. http://www.theses.fr/2013PAUU3002.

MLA Handbook (7th Edition):

Meslameni, Mohamed. “Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. : Stokes and Oseen equations in an exterior domain with different boundary conditions.” 2013. Web. 14 Aug 2020.

Vancouver:

Meslameni M. Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. : Stokes and Oseen equations in an exterior domain with different boundary conditions. [Internet] [Doctoral dissertation]. Pau; 2013. [cited 2020 Aug 14]. Available from: http://www.theses.fr/2013PAUU3002.

Council of Science Editors:

Meslameni M. Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. : Stokes and Oseen equations in an exterior domain with different boundary conditions. [Doctoral Dissertation]. Pau; 2013. Available from: http://www.theses.fr/2013PAUU3002

5. Pozzi, Élodie. Propriétés spectrales et universalité d’opérateurs de composition pondérés : Spectral properties and universality of weighted composition operators.

Degree: Docteur es, Mathématiques, 2011, Université Claude Bernard – Lyon I

Cette thèse est dédiée à l'étude d'opérateurs de composition pondérés sur plusieurs espaces fonctionnels sous fond du problème du sous-espace invariant. Cet important problème ouvert… (more)

Subjects/Keywords: Opérateurs de composition à poids; Shifts pondérés; Espaces de Sobolev; Espaces de Hardy du demi-plan supérieur; Espaces de Hardy de l'anneau; Propriétés spectrales; Approximation diophantienne; Cyclicité; Weighted composition operators; Weighted shifts; Sobolev spaces; Hardy spaces of the upper half-plane; Hardy spaces of the annulus; Spectral properties; Diophantine approximation; Cyclicity; 515.7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pozzi, . (2011). Propriétés spectrales et universalité d’opérateurs de composition pondérés : Spectral properties and universality of weighted composition operators. (Doctoral Dissertation). Université Claude Bernard – Lyon I. Retrieved from http://www.theses.fr/2011LYO10186

Chicago Manual of Style (16th Edition):

Pozzi, Élodie. “Propriétés spectrales et universalité d’opérateurs de composition pondérés : Spectral properties and universality of weighted composition operators.” 2011. Doctoral Dissertation, Université Claude Bernard – Lyon I. Accessed August 14, 2020. http://www.theses.fr/2011LYO10186.

MLA Handbook (7th Edition):

Pozzi, Élodie. “Propriétés spectrales et universalité d’opérateurs de composition pondérés : Spectral properties and universality of weighted composition operators.” 2011. Web. 14 Aug 2020.

Vancouver:

Pozzi . Propriétés spectrales et universalité d’opérateurs de composition pondérés : Spectral properties and universality of weighted composition operators. [Internet] [Doctoral dissertation]. Université Claude Bernard – Lyon I; 2011. [cited 2020 Aug 14]. Available from: http://www.theses.fr/2011LYO10186.

Council of Science Editors:

Pozzi . Propriétés spectrales et universalité d’opérateurs de composition pondérés : Spectral properties and universality of weighted composition operators. [Doctoral Dissertation]. Université Claude Bernard – Lyon I; 2011. Available from: http://www.theses.fr/2011LYO10186


University of North Texas

6. Mahavier, William Ted. A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces.

Degree: 1995, University of North Texas

 We develop a numerical method for solving singular differential equations and demonstrate the method on a variety of singular problems including first order ordinary differential… (more)

Subjects/Keywords: Differential equations.; Sobolev spaces.; Method of steepest descent (Numerical analysis); weighted sobolev spaces; differential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mahavier, W. T. (1995). A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc278653/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mahavier, William Ted. “A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces.” 1995. Thesis, University of North Texas. Accessed August 14, 2020. https://digital.library.unt.edu/ark:/67531/metadc278653/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mahavier, William Ted. “A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces.” 1995. Web. 14 Aug 2020.

Vancouver:

Mahavier WT. A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces. [Internet] [Thesis]. University of North Texas; 1995. [cited 2020 Aug 14]. Available from: https://digital.library.unt.edu/ark:/67531/metadc278653/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mahavier WT. A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces. [Thesis]. University of North Texas; 1995. Available from: https://digital.library.unt.edu/ark:/67531/metadc278653/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Kaliche, Keltoum. Méthode des éléments finis inversés pour des domaines non bornés : Inverted finite elements method for unbounded domains.

Degree: Docteur es, Mathématiques appliquées, 2016, Université Paris-Saclay (ComUE)

La méthode des éléments finis inversés est une méthode sans troncature qui a été introduite pour résoudre des équations aux dérivées partielles en domaines non… (more)

Subjects/Keywords: Problèmes elliptiques; Espaces des sobolev avec poids; Éléments inversés; Domaines non bornés; Ferromagnétisme; Potentiel vecteur; Elliptic problems; Weighted spaces; Inverted elements; Unbounded domains; Ferromagnetism; Potentiel vector

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kaliche, K. (2016). Méthode des éléments finis inversés pour des domaines non bornés : Inverted finite elements method for unbounded domains. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2016SACLV014

Chicago Manual of Style (16th Edition):

Kaliche, Keltoum. “Méthode des éléments finis inversés pour des domaines non bornés : Inverted finite elements method for unbounded domains.” 2016. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed August 14, 2020. http://www.theses.fr/2016SACLV014.

MLA Handbook (7th Edition):

Kaliche, Keltoum. “Méthode des éléments finis inversés pour des domaines non bornés : Inverted finite elements method for unbounded domains.” 2016. Web. 14 Aug 2020.

Vancouver:

Kaliche K. Méthode des éléments finis inversés pour des domaines non bornés : Inverted finite elements method for unbounded domains. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2016. [cited 2020 Aug 14]. Available from: http://www.theses.fr/2016SACLV014.

Council of Science Editors:

Kaliche K. Méthode des éléments finis inversés pour des domaines non bornés : Inverted finite elements method for unbounded domains. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2016. Available from: http://www.theses.fr/2016SACLV014

8. Marcati, Carlo. Discontinuous hp finite element methods for elliptic eigenvalue problems with singular potentials : with applications to quantum chemistry : Éléments finis hp discontinus pour problèmes aux valeurs propres elliptiques avec potentiels singuliers : avec applications en chimie quantique.

Degree: Docteur es, Mathématiques appliquées, 2018, Sorbonne université

Dans cette thèse, on étudie des problèmes aux valeurs propres elliptiques avec des potentiels singuliers, motivés par plusieurs modèles en physique et en chimie quantique,… (more)

Subjects/Keywords: Méthode des éléments finis hp/dG graduée; Galerkin discontinu; Problèmes aux valeurs propres non linéaires; Chimie quantique; Espaces de Sobolev à poids; Régularité elliptique; Hp/dG graded finite element method; Discontinuous Galerkin; Non linear eigenvalue problem; Quantum chemistry; Weighted Sobolev spaces; Elliptic regularity; 519

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marcati, C. (2018). Discontinuous hp finite element methods for elliptic eigenvalue problems with singular potentials : with applications to quantum chemistry : Éléments finis hp discontinus pour problèmes aux valeurs propres elliptiques avec potentiels singuliers : avec applications en chimie quantique. (Doctoral Dissertation). Sorbonne université. Retrieved from http://www.theses.fr/2018SORUS349

Chicago Manual of Style (16th Edition):

Marcati, Carlo. “Discontinuous hp finite element methods for elliptic eigenvalue problems with singular potentials : with applications to quantum chemistry : Éléments finis hp discontinus pour problèmes aux valeurs propres elliptiques avec potentiels singuliers : avec applications en chimie quantique.” 2018. Doctoral Dissertation, Sorbonne université. Accessed August 14, 2020. http://www.theses.fr/2018SORUS349.

MLA Handbook (7th Edition):

Marcati, Carlo. “Discontinuous hp finite element methods for elliptic eigenvalue problems with singular potentials : with applications to quantum chemistry : Éléments finis hp discontinus pour problèmes aux valeurs propres elliptiques avec potentiels singuliers : avec applications en chimie quantique.” 2018. Web. 14 Aug 2020.

Vancouver:

Marcati C. Discontinuous hp finite element methods for elliptic eigenvalue problems with singular potentials : with applications to quantum chemistry : Éléments finis hp discontinus pour problèmes aux valeurs propres elliptiques avec potentiels singuliers : avec applications en chimie quantique. [Internet] [Doctoral dissertation]. Sorbonne université; 2018. [cited 2020 Aug 14]. Available from: http://www.theses.fr/2018SORUS349.

Council of Science Editors:

Marcati C. Discontinuous hp finite element methods for elliptic eigenvalue problems with singular potentials : with applications to quantum chemistry : Éléments finis hp discontinus pour problèmes aux valeurs propres elliptiques avec potentiels singuliers : avec applications en chimie quantique. [Doctoral Dissertation]. Sorbonne université; 2018. Available from: http://www.theses.fr/2018SORUS349

9. Salloum, Zaynab. Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers : Mathematical study of viscoelastic fluid flows in singular domains.

Degree: Docteur es, Mathématiques, 2008, Université Paris-Est

Cette thèse est consacrée à l’analyse mathématique de trois problèmes d’écoulements de fluides viscoélastiques de type Oldroyd. Tout d’abord, nous étudions des écoulements stationnaires faiblement… (more)

Subjects/Keywords: Fluide viscoélastique; Modèle Oldroyd; Faiblement compressible; Point fixe; Domaine singulier; Espaces de Sobolev et de Hölder avec poids; Convergence; Nombre de Mach; Viscoelastic fluids; Oldroyd model; Slightly compressible; Fixed-point arguments; Singular domains; Weighted Sobolev and Hölder spaces; Convergence; Mach number

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Salloum, Z. (2008). Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers : Mathematical study of viscoelastic fluid flows in singular domains. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2008PEST0017

Chicago Manual of Style (16th Edition):

Salloum, Zaynab. “Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers : Mathematical study of viscoelastic fluid flows in singular domains.” 2008. Doctoral Dissertation, Université Paris-Est. Accessed August 14, 2020. http://www.theses.fr/2008PEST0017.

MLA Handbook (7th Edition):

Salloum, Zaynab. “Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers : Mathematical study of viscoelastic fluid flows in singular domains.” 2008. Web. 14 Aug 2020.

Vancouver:

Salloum Z. Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers : Mathematical study of viscoelastic fluid flows in singular domains. [Internet] [Doctoral dissertation]. Université Paris-Est; 2008. [cited 2020 Aug 14]. Available from: http://www.theses.fr/2008PEST0017.

Council of Science Editors:

Salloum Z. Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers : Mathematical study of viscoelastic fluid flows in singular domains. [Doctoral Dissertation]. Université Paris-Est; 2008. Available from: http://www.theses.fr/2008PEST0017

10. Al Taki, Bilal. Sur quelques modèles hétérogènes en mécanique des fluides : On some heterogeneous models in fluid mechanics.

Degree: Docteur es, Mathématiques Appliquées, 2016, Université Grenoble Alpes (ComUE); Université Libanaise. Faculté des Sciences (Beyrouth, Liban)

Cette thèse est consacrée à l'analyse mathématique de quelques modèles hétérogènes intervenants en mécanique des fluides. En particulier, elle est consacré a l'étude théorique des… (more)

Subjects/Keywords: Équations des lacs; Modèle de ghost effect; Fluide Bingham; Faible nombre de Mach; Espaces de Sobolev à poids; Inégalité fonctionnelle; Lake equations; Ghost effect system; Bingham fluids; Low Mach number; Weighted Sobolev spaces; Functional inequality; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Al Taki, B. (2016). Sur quelques modèles hétérogènes en mécanique des fluides : On some heterogeneous models in fluid mechanics. (Doctoral Dissertation). Université Grenoble Alpes (ComUE); Université Libanaise. Faculté des Sciences (Beyrouth, Liban). Retrieved from http://www.theses.fr/2016GREAM057

Chicago Manual of Style (16th Edition):

Al Taki, Bilal. “Sur quelques modèles hétérogènes en mécanique des fluides : On some heterogeneous models in fluid mechanics.” 2016. Doctoral Dissertation, Université Grenoble Alpes (ComUE); Université Libanaise. Faculté des Sciences (Beyrouth, Liban). Accessed August 14, 2020. http://www.theses.fr/2016GREAM057.

MLA Handbook (7th Edition):

Al Taki, Bilal. “Sur quelques modèles hétérogènes en mécanique des fluides : On some heterogeneous models in fluid mechanics.” 2016. Web. 14 Aug 2020.

Vancouver:

Al Taki B. Sur quelques modèles hétérogènes en mécanique des fluides : On some heterogeneous models in fluid mechanics. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); Université Libanaise. Faculté des Sciences (Beyrouth, Liban); 2016. [cited 2020 Aug 14]. Available from: http://www.theses.fr/2016GREAM057.

Council of Science Editors:

Al Taki B. Sur quelques modèles hétérogènes en mécanique des fluides : On some heterogeneous models in fluid mechanics. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); Université Libanaise. Faculté des Sciences (Beyrouth, Liban); 2016. Available from: http://www.theses.fr/2016GREAM057

11. Ariche, Sadjiya. Régularité des solutions de problèmes elliptiques ou paraboliques avec des données sous forme de mesure : Regularity of the solutions of elliptic or parabolic problems with data measure.

Degree: Docteur es, Mathématiques. Mathématiques appliquées, 2015, Valenciennes

Dans cette thèse on étudie la régularité de problèmes elliptiques (Laplace, Helmholtz) ou paraboliques (équation de la chaleur) avec donnée mesure dans divers cadres géométriques.… (more)

Subjects/Keywords: Régularité; Espace de Sobolev à poids; Problèmes elliptiques; Equation de la chaleur; Mesure de Dirac; Fracture courbe; Equation de Helmholtz; Transformée de Fourier; Transformée de Mellin.; Regularity; Weighted Sobolev spaces; Elliptic problems; Heat equation; Dirac measure; Fracture curve; Helmholtz equation; Fourier transformation; Mellin transformation.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ariche, S. (2015). Régularité des solutions de problèmes elliptiques ou paraboliques avec des données sous forme de mesure : Regularity of the solutions of elliptic or parabolic problems with data measure. (Doctoral Dissertation). Valenciennes. Retrieved from http://www.theses.fr/2015VALE0015

Chicago Manual of Style (16th Edition):

Ariche, Sadjiya. “Régularité des solutions de problèmes elliptiques ou paraboliques avec des données sous forme de mesure : Regularity of the solutions of elliptic or parabolic problems with data measure.” 2015. Doctoral Dissertation, Valenciennes. Accessed August 14, 2020. http://www.theses.fr/2015VALE0015.

MLA Handbook (7th Edition):

Ariche, Sadjiya. “Régularité des solutions de problèmes elliptiques ou paraboliques avec des données sous forme de mesure : Regularity of the solutions of elliptic or parabolic problems with data measure.” 2015. Web. 14 Aug 2020.

Vancouver:

Ariche S. Régularité des solutions de problèmes elliptiques ou paraboliques avec des données sous forme de mesure : Regularity of the solutions of elliptic or parabolic problems with data measure. [Internet] [Doctoral dissertation]. Valenciennes; 2015. [cited 2020 Aug 14]. Available from: http://www.theses.fr/2015VALE0015.

Council of Science Editors:

Ariche S. Régularité des solutions de problèmes elliptiques ou paraboliques avec des données sous forme de mesure : Regularity of the solutions of elliptic or parabolic problems with data measure. [Doctoral Dissertation]. Valenciennes; 2015. Available from: http://www.theses.fr/2015VALE0015


University of Florida

12. Oh, Minah. Efficient Solution Techniques for Axisymmetric Problems.

Degree: PhD, Mathematics, 2010, University of Florida

 Consider a three-dimensional (3D) problem defined on a domain symmetric by rotation around an axis with data independent of the angular component. By using cylindrical… (more)

Subjects/Keywords: Approximation; Boundary conditions; Commuting; Curl; Finite element method; Mathematics; Maxwell equations; Sobolev spaces; Symmetry; Vertices; axisymmetric, fem, maxwell, multigrid, nedelec, sobolev, weighted

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oh, M. (2010). Efficient Solution Techniques for Axisymmetric Problems. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0041576

Chicago Manual of Style (16th Edition):

Oh, Minah. “Efficient Solution Techniques for Axisymmetric Problems.” 2010. Doctoral Dissertation, University of Florida. Accessed August 14, 2020. https://ufdc.ufl.edu/UFE0041576.

MLA Handbook (7th Edition):

Oh, Minah. “Efficient Solution Techniques for Axisymmetric Problems.” 2010. Web. 14 Aug 2020.

Vancouver:

Oh M. Efficient Solution Techniques for Axisymmetric Problems. [Internet] [Doctoral dissertation]. University of Florida; 2010. [cited 2020 Aug 14]. Available from: https://ufdc.ufl.edu/UFE0041576.

Council of Science Editors:

Oh M. Efficient Solution Techniques for Axisymmetric Problems. [Doctoral Dissertation]. University of Florida; 2010. Available from: https://ufdc.ufl.edu/UFE0041576


Penn State University

13. Li, Hengguang. ELLIPTIC EQUATIONS WITH SINGULARITIES: A PRIORI ANALYSIS AND NUMERICAL APPROACHES .

Degree: 2008, Penn State University

 Elliptic equations in a two- or three-dimensional bounded domain may have singular solutions from the non-smoothness of the domain, changes of boundary conditions, and discontinuities,… (more)

Subjects/Keywords: the finite element method; weighted sobolev spaces; singularities; elliptic equations; a priori analysis; the multigrid method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, H. (2008). ELLIPTIC EQUATIONS WITH SINGULARITIES: A PRIORI ANALYSIS AND NUMERICAL APPROACHES . (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/8675

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Li, Hengguang. “ELLIPTIC EQUATIONS WITH SINGULARITIES: A PRIORI ANALYSIS AND NUMERICAL APPROACHES .” 2008. Thesis, Penn State University. Accessed August 14, 2020. https://submit-etda.libraries.psu.edu/catalog/8675.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Li, Hengguang. “ELLIPTIC EQUATIONS WITH SINGULARITIES: A PRIORI ANALYSIS AND NUMERICAL APPROACHES .” 2008. Web. 14 Aug 2020.

Vancouver:

Li H. ELLIPTIC EQUATIONS WITH SINGULARITIES: A PRIORI ANALYSIS AND NUMERICAL APPROACHES . [Internet] [Thesis]. Penn State University; 2008. [cited 2020 Aug 14]. Available from: https://submit-etda.libraries.psu.edu/catalog/8675.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Li H. ELLIPTIC EQUATIONS WITH SINGULARITIES: A PRIORI ANALYSIS AND NUMERICAL APPROACHES . [Thesis]. Penn State University; 2008. Available from: https://submit-etda.libraries.psu.edu/catalog/8675

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

14. Debroux, Noémie. Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation : Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentation.

Degree: Docteur es, Mathématiques appliquées, 2018, Normandie

Dans cette thèse, nous nous proposons d'étudier et de traiter conjointement plusieurs problèmes phares en traitement d'images incluant le recalage d'images qui vise à apparier… (more)

Subjects/Keywords: Modèles conjoints; Détection de structures fines; Méthodes variationnelles; Gamma-Convergence; Variation totale pondérée et caractérisation non locale; Opérateurs non locaux du second ordre; Fonctionnelles de Mumford-Shah et Blake-Zisserman; Méthode de supergradient; Registration; Joint models; Fine structures detection; Variational methods; Hyperelasticity; Elliptic approximations; Gamma-Convergence; Nonlocal characterization of weighted total variation; Nonlocal second order operators; Mumford-Shah functionnal; Blake-Zisserman functionnal; Space of oscillatroy functions; Fractional Sobolev spaces; Tempered distributions; Quasi-Convexity; Weak viscosity solutions; Augmented Lagrangian; Supergradient method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Debroux, N. (2018). Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation : Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentation. (Doctoral Dissertation). Normandie. Retrieved from http://www.theses.fr/2018NORMIR02

Chicago Manual of Style (16th Edition):

Debroux, Noémie. “Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation : Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentation.” 2018. Doctoral Dissertation, Normandie. Accessed August 14, 2020. http://www.theses.fr/2018NORMIR02.

MLA Handbook (7th Edition):

Debroux, Noémie. “Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation : Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentation.” 2018. Web. 14 Aug 2020.

Vancouver:

Debroux N. Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation : Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentation. [Internet] [Doctoral dissertation]. Normandie; 2018. [cited 2020 Aug 14]. Available from: http://www.theses.fr/2018NORMIR02.

Council of Science Editors:

Debroux N. Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation : Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentation. [Doctoral Dissertation]. Normandie; 2018. Available from: http://www.theses.fr/2018NORMIR02

.