Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(wave equation)`

.
Showing records 1 – 30 of
307 total matches.

◁ [1] [2] [3] [4] [5] … [11] ▶

Search Limiters

Dates

- 2015 – 2019 (90)
- 2010 – 2014 (115)
- 2005 – 2009 (60)
- 2000 – 2004 (21)
- 1990 – 1994 (11)
- 1985 – 1989 (19)

Department

- Mathematics (19)
- Mathématiques (12)

Degrees

- PhD (62)
- Docteur es (46)
- MS (22)

Languages

- English (194)
- French (23)
- Portuguese (14)

▼ Search Limiters

Rutgers University

1. Xiao, Jianguo, 1987-. Multi-center vector field methods and some applications for dispersive equations.

Degree: PhD, Mathematics, 2016, Rutgers University

URL: https://rucore.libraries.rutgers.edu/rutgers-lib/50461/

►

Decay estimates of various types have been widely used in studying the long time behavior of solutions to Dispersive *Wave* Equations. In this work, we…
(more)

Subjects/Keywords: Wave equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Xiao, Jianguo, 1. (2016). Multi-center vector field methods and some applications for dispersive equations. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/50461/

Chicago Manual of Style (16^{th} Edition):

Xiao, Jianguo, 1987-. “Multi-center vector field methods and some applications for dispersive equations.” 2016. Doctoral Dissertation, Rutgers University. Accessed September 22, 2019. https://rucore.libraries.rutgers.edu/rutgers-lib/50461/.

MLA Handbook (7^{th} Edition):

Xiao, Jianguo, 1987-. “Multi-center vector field methods and some applications for dispersive equations.” 2016. Web. 22 Sep 2019.

Vancouver:

Xiao, Jianguo 1. Multi-center vector field methods and some applications for dispersive equations. [Internet] [Doctoral dissertation]. Rutgers University; 2016. [cited 2019 Sep 22]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/50461/.

Council of Science Editors:

Xiao, Jianguo 1. Multi-center vector field methods and some applications for dispersive equations. [Doctoral Dissertation]. Rutgers University; 2016. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/50461/

Rice University

2.
Vargas, Arturo.
Hermite Methods for the Simulation of *Wave* Propagation.

Degree: PhD, Engineering, 2017, Rice University

URL: http://hdl.handle.net/1911/96153

► Simulations of *wave* propagation play a crucial role in science and engineering. In applications of geophysics, they are the engine of many seismic imaging algorithms.…
(more)

Subjects/Keywords: Wave Equation; GPU

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vargas, A. (2017). Hermite Methods for the Simulation of Wave Propagation. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/96153

Chicago Manual of Style (16^{th} Edition):

Vargas, Arturo. “Hermite Methods for the Simulation of Wave Propagation.” 2017. Doctoral Dissertation, Rice University. Accessed September 22, 2019. http://hdl.handle.net/1911/96153.

MLA Handbook (7^{th} Edition):

Vargas, Arturo. “Hermite Methods for the Simulation of Wave Propagation.” 2017. Web. 22 Sep 2019.

Vancouver:

Vargas A. Hermite Methods for the Simulation of Wave Propagation. [Internet] [Doctoral dissertation]. Rice University; 2017. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/1911/96153.

Council of Science Editors:

Vargas A. Hermite Methods for the Simulation of Wave Propagation. [Doctoral Dissertation]. Rice University; 2017. Available from: http://hdl.handle.net/1911/96153

University of Notre Dame

3.
Melissa Davidson.
Continuity Properties of the Solution Map for the
Generalized Reduced Ostrovsky *Equation*</h1>.

Degree: PhD, Mathematics, 2013, University of Notre Dame

URL: https://curate.nd.edu/show/9p29086334c

► It is shown that the data-to-solution map for the generalized reduced Ostrovsky (gRO) *equation* is not uniformly continuous on bounded sets in Sobolev spaces…
(more)

Subjects/Keywords: soliton; wave equation; partial differential equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Davidson, M. (2013). Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>. (Doctoral Dissertation). University of Notre Dame. Retrieved from https://curate.nd.edu/show/9p29086334c

Chicago Manual of Style (16^{th} Edition):

Davidson, Melissa. “Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>.” 2013. Doctoral Dissertation, University of Notre Dame. Accessed September 22, 2019. https://curate.nd.edu/show/9p29086334c.

MLA Handbook (7^{th} Edition):

Davidson, Melissa. “Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>.” 2013. Web. 22 Sep 2019.

Vancouver:

Davidson M. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>. [Internet] [Doctoral dissertation]. University of Notre Dame; 2013. [cited 2019 Sep 22]. Available from: https://curate.nd.edu/show/9p29086334c.

Council of Science Editors:

Davidson M. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>. [Doctoral Dissertation]. University of Notre Dame; 2013. Available from: https://curate.nd.edu/show/9p29086334c

Oregon State University

4.
Minei, Marvin.
An analysis of accuracy of finite difference and finite element methods for the *wave* * equation*.

Degree: MS, Mathematics, 1988, Oregon State University

URL: http://hdl.handle.net/1957/40929

► In this paper, Fourier analysis is used to investigate various approximation methods for the one- and two-dimensional *wave* equations. The spatial derivatives are approximated by…
(more)

Subjects/Keywords: Wave equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Minei, M. (1988). An analysis of accuracy of finite difference and finite element methods for the wave equation. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/40929

Chicago Manual of Style (16^{th} Edition):

Minei, Marvin. “An analysis of accuracy of finite difference and finite element methods for the wave equation.” 1988. Masters Thesis, Oregon State University. Accessed September 22, 2019. http://hdl.handle.net/1957/40929.

MLA Handbook (7^{th} Edition):

Minei, Marvin. “An analysis of accuracy of finite difference and finite element methods for the wave equation.” 1988. Web. 22 Sep 2019.

Vancouver:

Minei M. An analysis of accuracy of finite difference and finite element methods for the wave equation. [Internet] [Masters thesis]. Oregon State University; 1988. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/1957/40929.

Council of Science Editors:

Minei M. An analysis of accuracy of finite difference and finite element methods for the wave equation. [Masters Thesis]. Oregon State University; 1988. Available from: http://hdl.handle.net/1957/40929

5. YILDIRIM, Battalgazi. Topics in Numerical Ocean Simulation.

Degree: PhD, Fluids, Thermal, and Chemical Processing, 2012, Brown University

URL: https://repository.library.brown.edu/studio/item/bdr:297633/

► We investigate two primary aspects of numerical simulations for the oceans. The first is the degree of spatial complexity of the dynamics in regional ocean…
(more)

Subjects/Keywords: numerical ocean wave equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

YILDIRIM, B. (2012). Topics in Numerical Ocean Simulation. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:297633/

Chicago Manual of Style (16^{th} Edition):

YILDIRIM, Battalgazi. “Topics in Numerical Ocean Simulation.” 2012. Doctoral Dissertation, Brown University. Accessed September 22, 2019. https://repository.library.brown.edu/studio/item/bdr:297633/.

MLA Handbook (7^{th} Edition):

YILDIRIM, Battalgazi. “Topics in Numerical Ocean Simulation.” 2012. Web. 22 Sep 2019.

Vancouver:

YILDIRIM B. Topics in Numerical Ocean Simulation. [Internet] [Doctoral dissertation]. Brown University; 2012. [cited 2019 Sep 22]. Available from: https://repository.library.brown.edu/studio/item/bdr:297633/.

Council of Science Editors:

YILDIRIM B. Topics in Numerical Ocean Simulation. [Doctoral Dissertation]. Brown University; 2012. Available from: https://repository.library.brown.edu/studio/item/bdr:297633/

University of British Columbia

6.
Ma, Alex Yim-Cheong.
Extended group analysis of the *wave* * equation*
.

Degree: 1990, University of British Columbia

URL: http://hdl.handle.net/2429/29420

► A comprehensive study of potential symmetries admitted by partial differential equations is given using the *wave* *equation* utt = c²(x)uxx as a given prototype *equation*,…
(more)

Subjects/Keywords: Wave equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ma, A. Y. (1990). Extended group analysis of the wave equation . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/29420

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ma, Alex Yim-Cheong. “Extended group analysis of the wave equation .” 1990. Thesis, University of British Columbia. Accessed September 22, 2019. http://hdl.handle.net/2429/29420.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ma, Alex Yim-Cheong. “Extended group analysis of the wave equation .” 1990. Web. 22 Sep 2019.

Vancouver:

Ma AY. Extended group analysis of the wave equation . [Internet] [Thesis]. University of British Columbia; 1990. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/2429/29420.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ma AY. Extended group analysis of the wave equation . [Thesis]. University of British Columbia; 1990. Available from: http://hdl.handle.net/2429/29420

Not specified: Masters Thesis or Doctoral Dissertation

University of British Columbia

7.
Zelt, Barry Curtis.
Truncated asymptotic solution of the one-dimensional inhomogeneous *wave* * equation*
.

Degree: 1987, University of British Columbia

URL: http://hdl.handle.net/2429/26677

► I present a new time-domain method for solving for the stress and particle velocity of normally incident plane waves propagating in a smoothly varying one-dimensional…
(more)

Subjects/Keywords: Wave equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zelt, B. C. (1987). Truncated asymptotic solution of the one-dimensional inhomogeneous wave equation . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/26677

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Zelt, Barry Curtis. “Truncated asymptotic solution of the one-dimensional inhomogeneous wave equation .” 1987. Thesis, University of British Columbia. Accessed September 22, 2019. http://hdl.handle.net/2429/26677.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Zelt, Barry Curtis. “Truncated asymptotic solution of the one-dimensional inhomogeneous wave equation .” 1987. Web. 22 Sep 2019.

Vancouver:

Zelt BC. Truncated asymptotic solution of the one-dimensional inhomogeneous wave equation . [Internet] [Thesis]. University of British Columbia; 1987. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/2429/26677.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zelt BC. Truncated asymptotic solution of the one-dimensional inhomogeneous wave equation . [Thesis]. University of British Columbia; 1987. Available from: http://hdl.handle.net/2429/26677

Not specified: Masters Thesis or Doctoral Dissertation

Syracuse University

8. Aydin, Gokhan. A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations.

Degree: PhD, Electrical Engineering and Computer Science, 2011, Syracuse University

URL: https://surface.syr.edu/eecs_etd/298

► In this dissertation, a set of general purpose single-field finite-difference time-domain updating equations for solving electromagnetic problems is derived. The formulation uses a single-field…
(more)

Subjects/Keywords: FDTD; Single-Field; Vector wave equation; Engineering

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Aydin, G. (2011). A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations. (Doctoral Dissertation). Syracuse University. Retrieved from https://surface.syr.edu/eecs_etd/298

Chicago Manual of Style (16^{th} Edition):

Aydin, Gokhan. “A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations.” 2011. Doctoral Dissertation, Syracuse University. Accessed September 22, 2019. https://surface.syr.edu/eecs_etd/298.

MLA Handbook (7^{th} Edition):

Aydin, Gokhan. “A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations.” 2011. Web. 22 Sep 2019.

Vancouver:

Aydin G. A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations. [Internet] [Doctoral dissertation]. Syracuse University; 2011. [cited 2019 Sep 22]. Available from: https://surface.syr.edu/eecs_etd/298.

Council of Science Editors:

Aydin G. A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations. [Doctoral Dissertation]. Syracuse University; 2011. Available from: https://surface.syr.edu/eecs_etd/298

King Abdullah University of Science and Technology

9.
Asiri, Sharefa M.
An Inverse Source Problem for a One-dimensional *Wave* *Equation*: An Observer-Based Approach.

Degree: 2013, King Abdullah University of Science and Technology

URL: http://hdl.handle.net/10754/292839

► Observers are well known in the theory of dynamical systems. They are used to estimate the states of a system from some measurements. However, recently…
(more)

Subjects/Keywords: Inverse Problem; Wave Equation; Tikhonov Regularization; Observer

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Asiri, S. M. (2013). An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach. (Thesis). King Abdullah University of Science and Technology. Retrieved from http://hdl.handle.net/10754/292839

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Asiri, Sharefa M. “An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach.” 2013. Thesis, King Abdullah University of Science and Technology. Accessed September 22, 2019. http://hdl.handle.net/10754/292839.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Asiri, Sharefa M. “An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach.” 2013. Web. 22 Sep 2019.

Vancouver:

Asiri SM. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach. [Internet] [Thesis]. King Abdullah University of Science and Technology; 2013. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/10754/292839.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Asiri SM. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach. [Thesis]. King Abdullah University of Science and Technology; 2013. Available from: http://hdl.handle.net/10754/292839

Not specified: Masters Thesis or Doctoral Dissertation

Texas A&M University

10. Fu, Shubin. Some Applications of the Generalized Multiscale Finite Element Method.

Degree: PhD, Mathematics, 2017, Texas A&M University

URL: http://hdl.handle.net/1969.1/165743

► Many materials in nature are highly heterogeneous and their properties can vary at different scales. Direct numerical simulations in such multiscale media are prohibitively expensive…
(more)

Subjects/Keywords: Multiscale method; linear elasticity; wave equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fu, S. (2017). Some Applications of the Generalized Multiscale Finite Element Method. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/165743

Chicago Manual of Style (16^{th} Edition):

Fu, Shubin. “Some Applications of the Generalized Multiscale Finite Element Method.” 2017. Doctoral Dissertation, Texas A&M University. Accessed September 22, 2019. http://hdl.handle.net/1969.1/165743.

MLA Handbook (7^{th} Edition):

Fu, Shubin. “Some Applications of the Generalized Multiscale Finite Element Method.” 2017. Web. 22 Sep 2019.

Vancouver:

Fu S. Some Applications of the Generalized Multiscale Finite Element Method. [Internet] [Doctoral dissertation]. Texas A&M University; 2017. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/1969.1/165743.

Council of Science Editors:

Fu S. Some Applications of the Generalized Multiscale Finite Element Method. [Doctoral Dissertation]. Texas A&M University; 2017. Available from: http://hdl.handle.net/1969.1/165743

University of Waterloo

11.
He, Yangxin.
Modelling Internal Solitary Waves and the Alternative Ostrovsky * Equation*.

Degree: 2014, University of Waterloo

URL: http://hdl.handle.net/10012/8359

► Internal solitary waves (ISWs) are commonly observed in the ocean, and they play important roles in many ways, such as transport of mass and various…
(more)

Subjects/Keywords: Internal Solitary Wave; Ostrovsky equation; fluid mechanics; alternative Ostrovsky equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

He, Y. (2014). Modelling Internal Solitary Waves and the Alternative Ostrovsky Equation. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/8359

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

He, Yangxin. “Modelling Internal Solitary Waves and the Alternative Ostrovsky Equation.” 2014. Thesis, University of Waterloo. Accessed September 22, 2019. http://hdl.handle.net/10012/8359.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

He, Yangxin. “Modelling Internal Solitary Waves and the Alternative Ostrovsky Equation.” 2014. Web. 22 Sep 2019.

Vancouver:

He Y. Modelling Internal Solitary Waves and the Alternative Ostrovsky Equation. [Internet] [Thesis]. University of Waterloo; 2014. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/10012/8359.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

He Y. Modelling Internal Solitary Waves and the Alternative Ostrovsky Equation. [Thesis]. University of Waterloo; 2014. Available from: http://hdl.handle.net/10012/8359

Not specified: Masters Thesis or Doctoral Dissertation

University of New Mexico

12. Tejeda, Kaylee. On Roots of the Macdonald Function.

Degree: Mathematics & Statistics, 2014, University of New Mexico

URL: http://hdl.handle.net/1928/24518

► An overview is given for the Dirichlet-to-Neumann map for outgoing solutions to the radial *wave* *equation*' in the context of nonreflecting radiation boundary conditions on…
(more)

Subjects/Keywords: Macdonald function; Bessel equation; radial wave equation; Newton's identities; Mathematica

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tejeda, K. (2014). On Roots of the Macdonald Function. (Masters Thesis). University of New Mexico. Retrieved from http://hdl.handle.net/1928/24518

Chicago Manual of Style (16^{th} Edition):

Tejeda, Kaylee. “On Roots of the Macdonald Function.” 2014. Masters Thesis, University of New Mexico. Accessed September 22, 2019. http://hdl.handle.net/1928/24518.

MLA Handbook (7^{th} Edition):

Tejeda, Kaylee. “On Roots of the Macdonald Function.” 2014. Web. 22 Sep 2019.

Vancouver:

Tejeda K. On Roots of the Macdonald Function. [Internet] [Masters thesis]. University of New Mexico; 2014. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/1928/24518.

Council of Science Editors:

Tejeda K. On Roots of the Macdonald Function. [Masters Thesis]. University of New Mexico; 2014. Available from: http://hdl.handle.net/1928/24518

13. Hachicha, Imène. Approximations hyperboliques des équations de Navier-Stokes : Hyperbolic approximations of the Navier-Stokes equations.

Degree: Docteur es, Mathématiques, 2013, Evry-Val d'Essonne

URL: http://www.theses.fr/2013EVRY0015

►

Dans cette thèse, nous nous intéressons à deux approximations hyperboliques des équations de Navier-Stokes incompressibles en dimensions 2 et 3 d'espace. Dans un premier temps,… (more)

Subjects/Keywords: Faible compressibilité; Weak compressibility; Navier-Stokes equation; Damped wave equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hachicha, I. (2013). Approximations hyperboliques des équations de Navier-Stokes : Hyperbolic approximations of the Navier-Stokes equations. (Doctoral Dissertation). Evry-Val d'Essonne. Retrieved from http://www.theses.fr/2013EVRY0015

Chicago Manual of Style (16^{th} Edition):

Hachicha, Imène. “Approximations hyperboliques des équations de Navier-Stokes : Hyperbolic approximations of the Navier-Stokes equations.” 2013. Doctoral Dissertation, Evry-Val d'Essonne. Accessed September 22, 2019. http://www.theses.fr/2013EVRY0015.

MLA Handbook (7^{th} Edition):

Hachicha, Imène. “Approximations hyperboliques des équations de Navier-Stokes : Hyperbolic approximations of the Navier-Stokes equations.” 2013. Web. 22 Sep 2019.

Vancouver:

Hachicha I. Approximations hyperboliques des équations de Navier-Stokes : Hyperbolic approximations of the Navier-Stokes equations. [Internet] [Doctoral dissertation]. Evry-Val d'Essonne; 2013. [cited 2019 Sep 22]. Available from: http://www.theses.fr/2013EVRY0015.

Council of Science Editors:

Hachicha I. Approximations hyperboliques des équations de Navier-Stokes : Hyperbolic approximations of the Navier-Stokes equations. [Doctoral Dissertation]. Evry-Val d'Essonne; 2013. Available from: http://www.theses.fr/2013EVRY0015

East Carolina University

14. Eidschun, Bradley. Mathematical Analysis of Tsunami and Rogue Waves.

Degree: 2012, East Carolina University

URL: http://hdl.handle.net/10342/3846

In this thesis both forced and non-linear wave equations will be studied. Actual data from tsunami and rogue waves will be used and a signal analysis will be performed using wavelets. Main results show that a different choice of wavelet leads to different efficiencies occurring in the signal recovery process.

Subjects/Keywords: Mathematics; Wave equation; Nonlinear wave equations; Mathematical analysis; Tsunamis; Rogue waves

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Eidschun, B. (2012). Mathematical Analysis of Tsunami and Rogue Waves. (Thesis). East Carolina University. Retrieved from http://hdl.handle.net/10342/3846

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Eidschun, Bradley. “Mathematical Analysis of Tsunami and Rogue Waves.” 2012. Thesis, East Carolina University. Accessed September 22, 2019. http://hdl.handle.net/10342/3846.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Eidschun, Bradley. “Mathematical Analysis of Tsunami and Rogue Waves.” 2012. Web. 22 Sep 2019.

Vancouver:

Eidschun B. Mathematical Analysis of Tsunami and Rogue Waves. [Internet] [Thesis]. East Carolina University; 2012. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/10342/3846.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Eidschun B. Mathematical Analysis of Tsunami and Rogue Waves. [Thesis]. East Carolina University; 2012. Available from: http://hdl.handle.net/10342/3846

Not specified: Masters Thesis or Doctoral Dissertation

King Abdullah University of Science and Technology

15. Moy, Pedro Henrique Rocha. Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling.

Degree: 2012, King Abdullah University of Science and Technology

URL: http://hdl.handle.net/10754/238360

► The discretization of time-dependent *wave* propagation is plagued with dispersion in which the wavefield is perceived to travel with an erroneous velocity. To remediate the…
(more)

Subjects/Keywords: Dispersion; Finite Elements; Wave Propagation; Wave Equation; Spectral Elements; Isogeometric Analysis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Moy, P. H. R. (2012). Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling. (Thesis). King Abdullah University of Science and Technology. Retrieved from http://hdl.handle.net/10754/238360

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Moy, Pedro Henrique Rocha. “Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling.” 2012. Thesis, King Abdullah University of Science and Technology. Accessed September 22, 2019. http://hdl.handle.net/10754/238360.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Moy, Pedro Henrique Rocha. “Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling.” 2012. Web. 22 Sep 2019.

Vancouver:

Moy PHR. Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling. [Internet] [Thesis]. King Abdullah University of Science and Technology; 2012. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/10754/238360.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Moy PHR. Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling. [Thesis]. King Abdullah University of Science and Technology; 2012. Available from: http://hdl.handle.net/10754/238360

Not specified: Masters Thesis or Doctoral Dissertation

East Carolina University

16. Eidschun, Bradley. Mathematical Analysis of Tsunami and Rogue Waves.

Degree: 2012, East Carolina University

URL: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14313

► In this thesis both forced and non-linear *wave* equations will be studied. Actual data from tsunami and rogue waves will be used and a signal analysis…
(more)

Subjects/Keywords: Wave equation; Nonlinear wave equations; Mathematical analysis; Tsunamis; Rogue waves

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Eidschun, B. (2012). Mathematical Analysis of Tsunami and Rogue Waves. (Masters Thesis). East Carolina University. Retrieved from http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14313

Chicago Manual of Style (16^{th} Edition):

Eidschun, Bradley. “Mathematical Analysis of Tsunami and Rogue Waves.” 2012. Masters Thesis, East Carolina University. Accessed September 22, 2019. http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14313.

MLA Handbook (7^{th} Edition):

Eidschun, Bradley. “Mathematical Analysis of Tsunami and Rogue Waves.” 2012. Web. 22 Sep 2019.

Vancouver:

Eidschun B. Mathematical Analysis of Tsunami and Rogue Waves. [Internet] [Masters thesis]. East Carolina University; 2012. [cited 2019 Sep 22]. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14313.

Council of Science Editors:

Eidschun B. Mathematical Analysis of Tsunami and Rogue Waves. [Masters Thesis]. East Carolina University; 2012. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14313

University of Illinois – Chicago

17.
Haidau, Cristina A.
A Study of Well Posedness for Systems of Coupled Non-linear Dispersive *Wave* Equations.

Degree: 2014, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/18851

► To model two-way propagation of waves in physical systems where nonlinear and dispersive effects are equally important, coupled systems of partial differential equations arise. The…
(more)

Subjects/Keywords: Systems of non-linear dispersive wave equations; Benjamin-Bona-Mahony equation; generalized BBM equation; surface water wave models, internal wave motion

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Haidau, C. A. (2014). A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/18851

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Haidau, Cristina A. “A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations.” 2014. Thesis, University of Illinois – Chicago. Accessed September 22, 2019. http://hdl.handle.net/10027/18851.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Haidau, Cristina A. “A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations.” 2014. Web. 22 Sep 2019.

Vancouver:

Haidau CA. A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations. [Internet] [Thesis]. University of Illinois – Chicago; 2014. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/10027/18851.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Haidau CA. A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations. [Thesis]. University of Illinois – Chicago; 2014. Available from: http://hdl.handle.net/10027/18851

Not specified: Masters Thesis or Doctoral Dissertation

18.
Jamal Eddine, Alaa.
Equations d'évolution sur certains groupes hyperboliques : Evolution *equation* on some hyperbolic groups.

Degree: Docteur es, Mathématiques, 2013, Université d'Orléans

URL: http://www.theses.fr/2013ORLE2055

►

Cette thèse porte sur l’étude d’équations d’évolution sur certains groupes hyperboliques, en particulier, nous étudions l’équation de la chaleur, l’équation de Schrödinger et l’équation des… (more)

Subjects/Keywords: Arbre homogène; Graphes symétriques; Equation des ondes; Equation de la chaleur; Equation de Schrödinger; Estimations de Strichartz; Homogeneous tree; Symmetric graph; Wave equation; Heat equation; Schrödinger equation; Strichartz estiamtes

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jamal Eddine, A. (2013). Equations d'évolution sur certains groupes hyperboliques : Evolution equation on some hyperbolic groups. (Doctoral Dissertation). Université d'Orléans. Retrieved from http://www.theses.fr/2013ORLE2055

Chicago Manual of Style (16^{th} Edition):

Jamal Eddine, Alaa. “Equations d'évolution sur certains groupes hyperboliques : Evolution equation on some hyperbolic groups.” 2013. Doctoral Dissertation, Université d'Orléans. Accessed September 22, 2019. http://www.theses.fr/2013ORLE2055.

MLA Handbook (7^{th} Edition):

Jamal Eddine, Alaa. “Equations d'évolution sur certains groupes hyperboliques : Evolution equation on some hyperbolic groups.” 2013. Web. 22 Sep 2019.

Vancouver:

Jamal Eddine A. Equations d'évolution sur certains groupes hyperboliques : Evolution equation on some hyperbolic groups. [Internet] [Doctoral dissertation]. Université d'Orléans; 2013. [cited 2019 Sep 22]. Available from: http://www.theses.fr/2013ORLE2055.

Council of Science Editors:

Jamal Eddine A. Equations d'évolution sur certains groupes hyperboliques : Evolution equation on some hyperbolic groups. [Doctoral Dissertation]. Université d'Orléans; 2013. Available from: http://www.theses.fr/2013ORLE2055

19. Kitic, Srdan. Cosparse regularization of physics-driven inverse problems : Régularisation co-parcimonieuse de problèmes inverse guidée par la physique.

Degree: Docteur es, Traitement du signal et télécommunications, 2015, Rennes 1

URL: http://www.theses.fr/2015REN1S152

►

Les problèmes inverses liés à des processus physiques sont d'une grande importance dans la plupart des domaines liés au traitement du signal, tels que la… (more)

Subjects/Keywords: Problèmes inverses; Parcimonie; Coparcimonie; Equation des ondes; Eeg; Inverse problems; Sparsity; Cosparsity; Wave equation; Eeg

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kitic, S. (2015). Cosparse regularization of physics-driven inverse problems : Régularisation co-parcimonieuse de problèmes inverse guidée par la physique. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2015REN1S152

Chicago Manual of Style (16^{th} Edition):

Kitic, Srdan. “Cosparse regularization of physics-driven inverse problems : Régularisation co-parcimonieuse de problèmes inverse guidée par la physique.” 2015. Doctoral Dissertation, Rennes 1. Accessed September 22, 2019. http://www.theses.fr/2015REN1S152.

MLA Handbook (7^{th} Edition):

Kitic, Srdan. “Cosparse regularization of physics-driven inverse problems : Régularisation co-parcimonieuse de problèmes inverse guidée par la physique.” 2015. Web. 22 Sep 2019.

Vancouver:

Kitic S. Cosparse regularization of physics-driven inverse problems : Régularisation co-parcimonieuse de problèmes inverse guidée par la physique. [Internet] [Doctoral dissertation]. Rennes 1; 2015. [cited 2019 Sep 22]. Available from: http://www.theses.fr/2015REN1S152.

Council of Science Editors:

Kitic S. Cosparse regularization of physics-driven inverse problems : Régularisation co-parcimonieuse de problèmes inverse guidée par la physique. [Doctoral Dissertation]. Rennes 1; 2015. Available from: http://www.theses.fr/2015REN1S152

University of Colorado

20.
Martin, Bradley Pifer.
Application of Rbf-Fd to *Wave* and Heat Transport Problems in Domains with Interfaces.

Degree: PhD, Applied Mathematics, 2016, University of Colorado

URL: http://scholar.colorado.edu/appm_gradetds/79

► Traditional finite difference methods for solving the partial differential equations (PDEs) associated with *wave* and heat transport often perform poorly when used in domains…
(more)

Subjects/Keywords: finite differences; heat equation; interfaces; mesh free; RBF; wave equation; Applied Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Martin, B. P. (2016). Application of Rbf-Fd to Wave and Heat Transport Problems in Domains with Interfaces. (Doctoral Dissertation). University of Colorado. Retrieved from http://scholar.colorado.edu/appm_gradetds/79

Chicago Manual of Style (16^{th} Edition):

Martin, Bradley Pifer. “Application of Rbf-Fd to Wave and Heat Transport Problems in Domains with Interfaces.” 2016. Doctoral Dissertation, University of Colorado. Accessed September 22, 2019. http://scholar.colorado.edu/appm_gradetds/79.

MLA Handbook (7^{th} Edition):

Martin, Bradley Pifer. “Application of Rbf-Fd to Wave and Heat Transport Problems in Domains with Interfaces.” 2016. Web. 22 Sep 2019.

Vancouver:

Martin BP. Application of Rbf-Fd to Wave and Heat Transport Problems in Domains with Interfaces. [Internet] [Doctoral dissertation]. University of Colorado; 2016. [cited 2019 Sep 22]. Available from: http://scholar.colorado.edu/appm_gradetds/79.

Council of Science Editors:

Martin BP. Application of Rbf-Fd to Wave and Heat Transport Problems in Domains with Interfaces. [Doctoral Dissertation]. University of Colorado; 2016. Available from: http://scholar.colorado.edu/appm_gradetds/79

21.
Alzaix, Benjamin.
Mathematical and numerical analysis of the Herberthson integral *equation* dedicated to electromagnetic plane *wave* scattering : Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes.

Degree: Docteur es, Mathematiques appliquees et calcul scientifique, 2017, Bordeaux

URL: http://www.theses.fr/2017BORD0578

►

Cette thèse porte sur la diffraction d’une onde plane électromagnétique par une surface lisse parfaitement conductrice (PEC). Elle présente l’analyse des propriétés d’une nouvelle formulation… (more)

Subjects/Keywords: Diffraction électromagnétique; Equation intégrale de frontières; Onde planes; Electromagnetic scattering; Boundary integral equation; Plane wave

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Alzaix, B. (2017). Mathematical and numerical analysis of the Herberthson integral equation dedicated to electromagnetic plane wave scattering : Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2017BORD0578

Chicago Manual of Style (16^{th} Edition):

Alzaix, Benjamin. “Mathematical and numerical analysis of the Herberthson integral equation dedicated to electromagnetic plane wave scattering : Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes.” 2017. Doctoral Dissertation, Bordeaux. Accessed September 22, 2019. http://www.theses.fr/2017BORD0578.

MLA Handbook (7^{th} Edition):

Alzaix, Benjamin. “Mathematical and numerical analysis of the Herberthson integral equation dedicated to electromagnetic plane wave scattering : Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes.” 2017. Web. 22 Sep 2019.

Vancouver:

Alzaix B. Mathematical and numerical analysis of the Herberthson integral equation dedicated to electromagnetic plane wave scattering : Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes. [Internet] [Doctoral dissertation]. Bordeaux; 2017. [cited 2019 Sep 22]. Available from: http://www.theses.fr/2017BORD0578.

Council of Science Editors:

Alzaix B. Mathematical and numerical analysis of the Herberthson integral equation dedicated to electromagnetic plane wave scattering : Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes. [Doctoral Dissertation]. Bordeaux; 2017. Available from: http://www.theses.fr/2017BORD0578

Cornell University

22.
Lo, Hong Yueh.
Modeling landslide-generated tsunamis with long-*wave* equations
.

Degree: 2018, Cornell University

URL: http://hdl.handle.net/1813/59453

► Landslides are recognized as a generation mechanism of tsunamis. While earthquake-generated tsunamis are catastrophes on a more global scale, landslide-generated tsunamis tend to cause extreme…
(more)

Subjects/Keywords: Ocean engineering; Fluid Mechanics; Civil engineering; Boussinesq equation; landslide; long wave; shallow water equation; tsunami

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lo, H. Y. (2018). Modeling landslide-generated tsunamis with long-wave equations . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/59453

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lo, Hong Yueh. “Modeling landslide-generated tsunamis with long-wave equations .” 2018. Thesis, Cornell University. Accessed September 22, 2019. http://hdl.handle.net/1813/59453.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lo, Hong Yueh. “Modeling landslide-generated tsunamis with long-wave equations .” 2018. Web. 22 Sep 2019.

Vancouver:

Lo HY. Modeling landslide-generated tsunamis with long-wave equations . [Internet] [Thesis]. Cornell University; 2018. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/1813/59453.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lo HY. Modeling landslide-generated tsunamis with long-wave equations . [Thesis]. Cornell University; 2018. Available from: http://hdl.handle.net/1813/59453

Not specified: Masters Thesis or Doctoral Dissertation

Portland State University

23.
Sepùlveda Salas, Paulina Ester.
Spacetime Numerical Techniques for the *Wave* and Schrödinger Equations.

Degree: PhD, Mathematics and Statistics, 2018, Portland State University

URL: https://pdxscholar.library.pdx.edu/open_access_etds/4206

► The most common tool for solving spacetime problems using finite elements is based on semidiscretization: discretizing in space by a finite element method and…
(more)

Subjects/Keywords: Space and time; Wave equation; Boundary value problems; Schrödinger equation; Applied Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sepùlveda Salas, P. E. (2018). Spacetime Numerical Techniques for the Wave and Schrödinger Equations. (Doctoral Dissertation). Portland State University. Retrieved from https://pdxscholar.library.pdx.edu/open_access_etds/4206

Chicago Manual of Style (16^{th} Edition):

Sepùlveda Salas, Paulina Ester. “Spacetime Numerical Techniques for the Wave and Schrödinger Equations.” 2018. Doctoral Dissertation, Portland State University. Accessed September 22, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/4206.

MLA Handbook (7^{th} Edition):

Sepùlveda Salas, Paulina Ester. “Spacetime Numerical Techniques for the Wave and Schrödinger Equations.” 2018. Web. 22 Sep 2019.

Vancouver:

Sepùlveda Salas PE. Spacetime Numerical Techniques for the Wave and Schrödinger Equations. [Internet] [Doctoral dissertation]. Portland State University; 2018. [cited 2019 Sep 22]. Available from: https://pdxscholar.library.pdx.edu/open_access_etds/4206.

Council of Science Editors:

Sepùlveda Salas PE. Spacetime Numerical Techniques for the Wave and Schrödinger Equations. [Doctoral Dissertation]. Portland State University; 2018. Available from: https://pdxscholar.library.pdx.edu/open_access_etds/4206

24.
Carlson, Kenneth Emil.
The *Wave* *Equation* in One Dimension.

Degree: 1961, North Texas State College

URL: https://digital.library.unt.edu/ark:/67531/metadc108114/

It is intended that this paper present an acceptable proof of the existence of a solution for the wave equation.
*Advisors/Committee Members: Copp, George, Parrish, Herbert C..*

Subjects/Keywords: wave-motion equation; mathematical proof; Wave equation.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Carlson, K. E. (1961). The Wave Equation in One Dimension. (Thesis). North Texas State College. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc108114/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Carlson, Kenneth Emil. “The Wave Equation in One Dimension.” 1961. Thesis, North Texas State College. Accessed September 22, 2019. https://digital.library.unt.edu/ark:/67531/metadc108114/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Carlson, Kenneth Emil. “The Wave Equation in One Dimension.” 1961. Web. 22 Sep 2019.

Vancouver:

Carlson KE. The Wave Equation in One Dimension. [Internet] [Thesis]. North Texas State College; 1961. [cited 2019 Sep 22]. Available from: https://digital.library.unt.edu/ark:/67531/metadc108114/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Carlson KE. The Wave Equation in One Dimension. [Thesis]. North Texas State College; 1961. Available from: https://digital.library.unt.edu/ark:/67531/metadc108114/

Not specified: Masters Thesis or Doctoral Dissertation

Simon Fraser University

25.
Mulder, Leslie John.
An expansion procedure for radiation solutions of the Kortweg de Vries * equation*.

Degree: 1987, Simon Fraser University

URL: http://summit.sfu.ca/item/5332

Subjects/Keywords: Wave-motion, Theory of.; Wave equation.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mulder, L. J. (1987). An expansion procedure for radiation solutions of the Kortweg de Vries equation. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/5332

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mulder, Leslie John. “An expansion procedure for radiation solutions of the Kortweg de Vries equation.” 1987. Thesis, Simon Fraser University. Accessed September 22, 2019. http://summit.sfu.ca/item/5332.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mulder, Leslie John. “An expansion procedure for radiation solutions of the Kortweg de Vries equation.” 1987. Web. 22 Sep 2019.

Vancouver:

Mulder LJ. An expansion procedure for radiation solutions of the Kortweg de Vries equation. [Internet] [Thesis]. Simon Fraser University; 1987. [cited 2019 Sep 22]. Available from: http://summit.sfu.ca/item/5332.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mulder LJ. An expansion procedure for radiation solutions of the Kortweg de Vries equation. [Thesis]. Simon Fraser University; 1987. Available from: http://summit.sfu.ca/item/5332

Not specified: Masters Thesis or Doctoral Dissertation

26.
Nyoman Pujianiki, Ni.
TRANSFORMATION OF *WAVE* GROUPS FROM INTERMEDIATE THROUGH SHALLOW WATER DEPTHS : 中間水深から浅水深にかけての波群の伝播変形解析.

Degree: 博士(工学), 2016, Nagoya Institute of Technology / 名古屋工業大学

URL: http://id.nii.ac.jp/1476/00003076/

主査：喜岡 渉

Subjects/Keywords: wave groups; directional spectra; wave-wave interaction; Zakharov equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nyoman Pujianiki, N. (2016). TRANSFORMATION OF WAVE GROUPS FROM INTERMEDIATE THROUGH SHALLOW WATER DEPTHS : 中間水深から浅水深にかけての波群の伝播変形解析. (Thesis). Nagoya Institute of Technology / 名古屋工業大学. Retrieved from http://id.nii.ac.jp/1476/00003076/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Nyoman Pujianiki, Ni. “TRANSFORMATION OF WAVE GROUPS FROM INTERMEDIATE THROUGH SHALLOW WATER DEPTHS : 中間水深から浅水深にかけての波群の伝播変形解析.” 2016. Thesis, Nagoya Institute of Technology / 名古屋工業大学. Accessed September 22, 2019. http://id.nii.ac.jp/1476/00003076/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Nyoman Pujianiki, Ni. “TRANSFORMATION OF WAVE GROUPS FROM INTERMEDIATE THROUGH SHALLOW WATER DEPTHS : 中間水深から浅水深にかけての波群の伝播変形解析.” 2016. Web. 22 Sep 2019.

Vancouver:

Nyoman Pujianiki N. TRANSFORMATION OF WAVE GROUPS FROM INTERMEDIATE THROUGH SHALLOW WATER DEPTHS : 中間水深から浅水深にかけての波群の伝播変形解析. [Internet] [Thesis]. Nagoya Institute of Technology / 名古屋工業大学; 2016. [cited 2019 Sep 22]. Available from: http://id.nii.ac.jp/1476/00003076/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Nyoman Pujianiki N. TRANSFORMATION OF WAVE GROUPS FROM INTERMEDIATE THROUGH SHALLOW WATER DEPTHS : 中間水深から浅水深にかけての波群の伝播変形解析. [Thesis]. Nagoya Institute of Technology / 名古屋工業大学; 2016. Available from: http://id.nii.ac.jp/1476/00003076/

Not specified: Masters Thesis or Doctoral Dissertation

The Ohio State University

27.
Lee, Jong-eao John.
The inverse spectral solution, modulation theory and
linearized stability analysis of N-phase, quasi-periodic solutions
of the nonlinear Schrodinger * equation*.

Degree: PhD, Graduate School, 1986, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

Subjects/Keywords: Mathematics; Schrodinger equation; Wave mechanics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, J. J. (1986). The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

Chicago Manual of Style (16^{th} Edition):

Lee, Jong-eao John. “The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.” 1986. Doctoral Dissertation, The Ohio State University. Accessed September 22, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429.

MLA Handbook (7^{th} Edition):

Lee, Jong-eao John. “The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.” 1986. Web. 22 Sep 2019.

Vancouver:

Lee JJ. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. [Internet] [Doctoral dissertation]. The Ohio State University; 1986. [cited 2019 Sep 22]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429.

Council of Science Editors:

Lee JJ. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. [Doctoral Dissertation]. The Ohio State University; 1986. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

28. Chuño, Christian Manuel Surco. Atratores para equações de ondas em domínios de fronteira móvel.

Degree: PhD, Matemática, 2014, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032015-113226/ ;

►

Este trabalho contém um estudo sobre equações de ondas fracamente dissipativas definidas em domínios de fronteira móvel ∂2u/∂t2/ + η∂u/∂t - Δu + g(u) =… (more)

Subjects/Keywords: Atratores; Attractors; Fronteira móvel; Noncylindrical; Pullback; Wave equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chuño, C. M. S. (2014). Atratores para equações de ondas em domínios de fronteira móvel. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032015-113226/ ;

Chicago Manual of Style (16^{th} Edition):

Chuño, Christian Manuel Surco. “Atratores para equações de ondas em domínios de fronteira móvel.” 2014. Doctoral Dissertation, University of São Paulo. Accessed September 22, 2019. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032015-113226/ ;.

MLA Handbook (7^{th} Edition):

Chuño, Christian Manuel Surco. “Atratores para equações de ondas em domínios de fronteira móvel.” 2014. Web. 22 Sep 2019.

Vancouver:

Chuño CMS. Atratores para equações de ondas em domínios de fronteira móvel. [Internet] [Doctoral dissertation]. University of São Paulo; 2014. [cited 2019 Sep 22]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032015-113226/ ;.

Council of Science Editors:

Chuño CMS. Atratores para equações de ondas em domínios de fronteira móvel. [Doctoral Dissertation]. University of São Paulo; 2014. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032015-113226/ ;

University of Alberta

29. Ferner, Robert M. Applications of Reverse-time Migration.

Degree: MS, Department of Physics, 2015, University of Alberta

URL: https://era.library.ualberta.ca/files/nk322h04z

► In a reflection seismic experiment, a controlled source function injects energy into the Earth. This causes the subsurface to undergo elastic deformation referred to as…
(more)

Subjects/Keywords: elastic wave-equation; reverse-time migration; staggered-grid finite-difference

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ferner, R. M. (2015). Applications of Reverse-time Migration. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/nk322h04z

Chicago Manual of Style (16^{th} Edition):

Ferner, Robert M. “Applications of Reverse-time Migration.” 2015. Masters Thesis, University of Alberta. Accessed September 22, 2019. https://era.library.ualberta.ca/files/nk322h04z.

MLA Handbook (7^{th} Edition):

Ferner, Robert M. “Applications of Reverse-time Migration.” 2015. Web. 22 Sep 2019.

Vancouver:

Ferner RM. Applications of Reverse-time Migration. [Internet] [Masters thesis]. University of Alberta; 2015. [cited 2019 Sep 22]. Available from: https://era.library.ualberta.ca/files/nk322h04z.

Council of Science Editors:

Ferner RM. Applications of Reverse-time Migration. [Masters Thesis]. University of Alberta; 2015. Available from: https://era.library.ualberta.ca/files/nk322h04z

University of Alberta

30. Anagaw, Amsalu Y. Full waveform inversion using simultaneous encoded sources based on first- and second-order optimization methods.

Degree: PhD, Department of Physics, 2014, University of Alberta

URL: https://era.library.ualberta.ca/files/vq27zp80c

► Full waveform inversion (FWI) is an emerging seismic technology engine for estimating subsurface model parameters such as velocity, density and attenuation through local minimization of…
(more)

Subjects/Keywords: Full waveform inversion, wave-equation, simultaneous sources, inversion, optimization

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Anagaw, A. Y. (2014). Full waveform inversion using simultaneous encoded sources based on first- and second-order optimization methods. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/vq27zp80c

Chicago Manual of Style (16^{th} Edition):

Anagaw, Amsalu Y. “Full waveform inversion using simultaneous encoded sources based on first- and second-order optimization methods.” 2014. Doctoral Dissertation, University of Alberta. Accessed September 22, 2019. https://era.library.ualberta.ca/files/vq27zp80c.

MLA Handbook (7^{th} Edition):

Anagaw, Amsalu Y. “Full waveform inversion using simultaneous encoded sources based on first- and second-order optimization methods.” 2014. Web. 22 Sep 2019.

Vancouver:

Anagaw AY. Full waveform inversion using simultaneous encoded sources based on first- and second-order optimization methods. [Internet] [Doctoral dissertation]. University of Alberta; 2014. [cited 2019 Sep 22]. Available from: https://era.library.ualberta.ca/files/vq27zp80c.

Council of Science Editors:

Anagaw AY. Full waveform inversion using simultaneous encoded sources based on first- and second-order optimization methods. [Doctoral Dissertation]. University of Alberta; 2014. Available from: https://era.library.ualberta.ca/files/vq27zp80c