Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(wave equation). Showing records 1 – 30 of 307 total matches.

[1] [2] [3] [4] [5] … [11]

Search Limiters

Last 2 Years | English Only

Department

Degrees

Levels

Languages

Country

▼ Search Limiters


Rutgers University

1. Xiao, Jianguo, 1987-. Multi-center vector field methods and some applications for dispersive equations.

Degree: PhD, Mathematics, 2016, Rutgers University

Decay estimates of various types have been widely used in studying the long time behavior of solutions to Dispersive Wave Equations. In this work, we… (more)

Subjects/Keywords: Wave equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xiao, Jianguo, 1. (2016). Multi-center vector field methods and some applications for dispersive equations. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/50461/

Chicago Manual of Style (16th Edition):

Xiao, Jianguo, 1987-. “Multi-center vector field methods and some applications for dispersive equations.” 2016. Doctoral Dissertation, Rutgers University. Accessed September 22, 2019. https://rucore.libraries.rutgers.edu/rutgers-lib/50461/.

MLA Handbook (7th Edition):

Xiao, Jianguo, 1987-. “Multi-center vector field methods and some applications for dispersive equations.” 2016. Web. 22 Sep 2019.

Vancouver:

Xiao, Jianguo 1. Multi-center vector field methods and some applications for dispersive equations. [Internet] [Doctoral dissertation]. Rutgers University; 2016. [cited 2019 Sep 22]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/50461/.

Council of Science Editors:

Xiao, Jianguo 1. Multi-center vector field methods and some applications for dispersive equations. [Doctoral Dissertation]. Rutgers University; 2016. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/50461/


Rice University

2. Vargas, Arturo. Hermite Methods for the Simulation of Wave Propagation.

Degree: PhD, Engineering, 2017, Rice University

 Simulations of wave propagation play a crucial role in science and engineering. In applications of geophysics, they are the engine of many seismic imaging algorithms.… (more)

Subjects/Keywords: Wave Equation; GPU

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vargas, A. (2017). Hermite Methods for the Simulation of Wave Propagation. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/96153

Chicago Manual of Style (16th Edition):

Vargas, Arturo. “Hermite Methods for the Simulation of Wave Propagation.” 2017. Doctoral Dissertation, Rice University. Accessed September 22, 2019. http://hdl.handle.net/1911/96153.

MLA Handbook (7th Edition):

Vargas, Arturo. “Hermite Methods for the Simulation of Wave Propagation.” 2017. Web. 22 Sep 2019.

Vancouver:

Vargas A. Hermite Methods for the Simulation of Wave Propagation. [Internet] [Doctoral dissertation]. Rice University; 2017. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/1911/96153.

Council of Science Editors:

Vargas A. Hermite Methods for the Simulation of Wave Propagation. [Doctoral Dissertation]. Rice University; 2017. Available from: http://hdl.handle.net/1911/96153


University of Notre Dame

3. Melissa Davidson. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>.

Degree: PhD, Mathematics, 2013, University of Notre Dame

  It is shown that the data-to-solution map for the generalized reduced Ostrovsky (gRO) equation is not uniformly continuous on bounded sets in Sobolev spaces… (more)

Subjects/Keywords: soliton; wave equation; partial differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Davidson, M. (2013). Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>. (Doctoral Dissertation). University of Notre Dame. Retrieved from https://curate.nd.edu/show/9p29086334c

Chicago Manual of Style (16th Edition):

Davidson, Melissa. “Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>.” 2013. Doctoral Dissertation, University of Notre Dame. Accessed September 22, 2019. https://curate.nd.edu/show/9p29086334c.

MLA Handbook (7th Edition):

Davidson, Melissa. “Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>.” 2013. Web. 22 Sep 2019.

Vancouver:

Davidson M. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>. [Internet] [Doctoral dissertation]. University of Notre Dame; 2013. [cited 2019 Sep 22]. Available from: https://curate.nd.edu/show/9p29086334c.

Council of Science Editors:

Davidson M. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation</h1>. [Doctoral Dissertation]. University of Notre Dame; 2013. Available from: https://curate.nd.edu/show/9p29086334c


Oregon State University

4. Minei, Marvin. An analysis of accuracy of finite difference and finite element methods for the wave equation.

Degree: MS, Mathematics, 1988, Oregon State University

 In this paper, Fourier analysis is used to investigate various approximation methods for the one- and two-dimensional wave equations. The spatial derivatives are approximated by… (more)

Subjects/Keywords: Wave equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Minei, M. (1988). An analysis of accuracy of finite difference and finite element methods for the wave equation. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/40929

Chicago Manual of Style (16th Edition):

Minei, Marvin. “An analysis of accuracy of finite difference and finite element methods for the wave equation.” 1988. Masters Thesis, Oregon State University. Accessed September 22, 2019. http://hdl.handle.net/1957/40929.

MLA Handbook (7th Edition):

Minei, Marvin. “An analysis of accuracy of finite difference and finite element methods for the wave equation.” 1988. Web. 22 Sep 2019.

Vancouver:

Minei M. An analysis of accuracy of finite difference and finite element methods for the wave equation. [Internet] [Masters thesis]. Oregon State University; 1988. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/1957/40929.

Council of Science Editors:

Minei M. An analysis of accuracy of finite difference and finite element methods for the wave equation. [Masters Thesis]. Oregon State University; 1988. Available from: http://hdl.handle.net/1957/40929

5. YILDIRIM, Battalgazi. Topics in Numerical Ocean Simulation.

Degree: PhD, Fluids, Thermal, and Chemical Processing, 2012, Brown University

 We investigate two primary aspects of numerical simulations for the oceans. The first is the degree of spatial complexity of the dynamics in regional ocean… (more)

Subjects/Keywords: numerical ocean wave equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

YILDIRIM, B. (2012). Topics in Numerical Ocean Simulation. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:297633/

Chicago Manual of Style (16th Edition):

YILDIRIM, Battalgazi. “Topics in Numerical Ocean Simulation.” 2012. Doctoral Dissertation, Brown University. Accessed September 22, 2019. https://repository.library.brown.edu/studio/item/bdr:297633/.

MLA Handbook (7th Edition):

YILDIRIM, Battalgazi. “Topics in Numerical Ocean Simulation.” 2012. Web. 22 Sep 2019.

Vancouver:

YILDIRIM B. Topics in Numerical Ocean Simulation. [Internet] [Doctoral dissertation]. Brown University; 2012. [cited 2019 Sep 22]. Available from: https://repository.library.brown.edu/studio/item/bdr:297633/.

Council of Science Editors:

YILDIRIM B. Topics in Numerical Ocean Simulation. [Doctoral Dissertation]. Brown University; 2012. Available from: https://repository.library.brown.edu/studio/item/bdr:297633/


University of British Columbia

6. Ma, Alex Yim-Cheong. Extended group analysis of the wave equation .

Degree: 1990, University of British Columbia

 A comprehensive study of potential symmetries admitted by partial differential equations is given using the wave equation utt = c²(x)uxx as a given prototype equation,… (more)

Subjects/Keywords: Wave equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ma, A. Y. (1990). Extended group analysis of the wave equation . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/29420

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ma, Alex Yim-Cheong. “Extended group analysis of the wave equation .” 1990. Thesis, University of British Columbia. Accessed September 22, 2019. http://hdl.handle.net/2429/29420.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ma, Alex Yim-Cheong. “Extended group analysis of the wave equation .” 1990. Web. 22 Sep 2019.

Vancouver:

Ma AY. Extended group analysis of the wave equation . [Internet] [Thesis]. University of British Columbia; 1990. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/2429/29420.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ma AY. Extended group analysis of the wave equation . [Thesis]. University of British Columbia; 1990. Available from: http://hdl.handle.net/2429/29420

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of British Columbia

7. Zelt, Barry Curtis. Truncated asymptotic solution of the one-dimensional inhomogeneous wave equation .

Degree: 1987, University of British Columbia

 I present a new time-domain method for solving for the stress and particle velocity of normally incident plane waves propagating in a smoothly varying one-dimensional… (more)

Subjects/Keywords: Wave equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zelt, B. C. (1987). Truncated asymptotic solution of the one-dimensional inhomogeneous wave equation . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/26677

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zelt, Barry Curtis. “Truncated asymptotic solution of the one-dimensional inhomogeneous wave equation .” 1987. Thesis, University of British Columbia. Accessed September 22, 2019. http://hdl.handle.net/2429/26677.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zelt, Barry Curtis. “Truncated asymptotic solution of the one-dimensional inhomogeneous wave equation .” 1987. Web. 22 Sep 2019.

Vancouver:

Zelt BC. Truncated asymptotic solution of the one-dimensional inhomogeneous wave equation . [Internet] [Thesis]. University of British Columbia; 1987. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/2429/26677.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zelt BC. Truncated asymptotic solution of the one-dimensional inhomogeneous wave equation . [Thesis]. University of British Columbia; 1987. Available from: http://hdl.handle.net/2429/26677

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Syracuse University

8. Aydin, Gokhan. A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations.

Degree: PhD, Electrical Engineering and Computer Science, 2011, Syracuse University

  In this dissertation, a set of general purpose single-field finite-difference time-domain updating equations for solving electromagnetic problems is derived. The formulation uses a single-field… (more)

Subjects/Keywords: FDTD; Single-Field; Vector wave equation; Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Aydin, G. (2011). A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations. (Doctoral Dissertation). Syracuse University. Retrieved from https://surface.syr.edu/eecs_etd/298

Chicago Manual of Style (16th Edition):

Aydin, Gokhan. “A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations.” 2011. Doctoral Dissertation, Syracuse University. Accessed September 22, 2019. https://surface.syr.edu/eecs_etd/298.

MLA Handbook (7th Edition):

Aydin, Gokhan. “A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations.” 2011. Web. 22 Sep 2019.

Vancouver:

Aydin G. A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations. [Internet] [Doctoral dissertation]. Syracuse University; 2011. [cited 2019 Sep 22]. Available from: https://surface.syr.edu/eecs_etd/298.

Council of Science Editors:

Aydin G. A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations. [Doctoral Dissertation]. Syracuse University; 2011. Available from: https://surface.syr.edu/eecs_etd/298


King Abdullah University of Science and Technology

9. Asiri, Sharefa M. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach.

Degree: 2013, King Abdullah University of Science and Technology

 Observers are well known in the theory of dynamical systems. They are used to estimate the states of a system from some measurements. However, recently… (more)

Subjects/Keywords: Inverse Problem; Wave Equation; Tikhonov Regularization; Observer

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Asiri, S. M. (2013). An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach. (Thesis). King Abdullah University of Science and Technology. Retrieved from http://hdl.handle.net/10754/292839

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Asiri, Sharefa M. “An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach.” 2013. Thesis, King Abdullah University of Science and Technology. Accessed September 22, 2019. http://hdl.handle.net/10754/292839.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Asiri, Sharefa M. “An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach.” 2013. Web. 22 Sep 2019.

Vancouver:

Asiri SM. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach. [Internet] [Thesis]. King Abdullah University of Science and Technology; 2013. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/10754/292839.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Asiri SM. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach. [Thesis]. King Abdullah University of Science and Technology; 2013. Available from: http://hdl.handle.net/10754/292839

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas A&M University

10. Fu, Shubin. Some Applications of the Generalized Multiscale Finite Element Method.

Degree: PhD, Mathematics, 2017, Texas A&M University

 Many materials in nature are highly heterogeneous and their properties can vary at different scales. Direct numerical simulations in such multiscale media are prohibitively expensive… (more)

Subjects/Keywords: Multiscale method; linear elasticity; wave equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fu, S. (2017). Some Applications of the Generalized Multiscale Finite Element Method. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/165743

Chicago Manual of Style (16th Edition):

Fu, Shubin. “Some Applications of the Generalized Multiscale Finite Element Method.” 2017. Doctoral Dissertation, Texas A&M University. Accessed September 22, 2019. http://hdl.handle.net/1969.1/165743.

MLA Handbook (7th Edition):

Fu, Shubin. “Some Applications of the Generalized Multiscale Finite Element Method.” 2017. Web. 22 Sep 2019.

Vancouver:

Fu S. Some Applications of the Generalized Multiscale Finite Element Method. [Internet] [Doctoral dissertation]. Texas A&M University; 2017. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/1969.1/165743.

Council of Science Editors:

Fu S. Some Applications of the Generalized Multiscale Finite Element Method. [Doctoral Dissertation]. Texas A&M University; 2017. Available from: http://hdl.handle.net/1969.1/165743


University of Waterloo

11. He, Yangxin. Modelling Internal Solitary Waves and the Alternative Ostrovsky Equation.

Degree: 2014, University of Waterloo

 Internal solitary waves (ISWs) are commonly observed in the ocean, and they play important roles in many ways, such as transport of mass and various… (more)

Subjects/Keywords: Internal Solitary Wave; Ostrovsky equation; fluid mechanics; alternative Ostrovsky equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

He, Y. (2014). Modelling Internal Solitary Waves and the Alternative Ostrovsky Equation. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/8359

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

He, Yangxin. “Modelling Internal Solitary Waves and the Alternative Ostrovsky Equation.” 2014. Thesis, University of Waterloo. Accessed September 22, 2019. http://hdl.handle.net/10012/8359.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

He, Yangxin. “Modelling Internal Solitary Waves and the Alternative Ostrovsky Equation.” 2014. Web. 22 Sep 2019.

Vancouver:

He Y. Modelling Internal Solitary Waves and the Alternative Ostrovsky Equation. [Internet] [Thesis]. University of Waterloo; 2014. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/10012/8359.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

He Y. Modelling Internal Solitary Waves and the Alternative Ostrovsky Equation. [Thesis]. University of Waterloo; 2014. Available from: http://hdl.handle.net/10012/8359

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of New Mexico

12. Tejeda, Kaylee. On Roots of the Macdonald Function.

Degree: Mathematics & Statistics, 2014, University of New Mexico

 An overview is given for the Dirichlet-to-Neumann map for outgoing solutions to the radial wave equation' in the context of nonreflecting radiation boundary conditions on… (more)

Subjects/Keywords: Macdonald function; Bessel equation; radial wave equation; Newton's identities; Mathematica

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tejeda, K. (2014). On Roots of the Macdonald Function. (Masters Thesis). University of New Mexico. Retrieved from http://hdl.handle.net/1928/24518

Chicago Manual of Style (16th Edition):

Tejeda, Kaylee. “On Roots of the Macdonald Function.” 2014. Masters Thesis, University of New Mexico. Accessed September 22, 2019. http://hdl.handle.net/1928/24518.

MLA Handbook (7th Edition):

Tejeda, Kaylee. “On Roots of the Macdonald Function.” 2014. Web. 22 Sep 2019.

Vancouver:

Tejeda K. On Roots of the Macdonald Function. [Internet] [Masters thesis]. University of New Mexico; 2014. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/1928/24518.

Council of Science Editors:

Tejeda K. On Roots of the Macdonald Function. [Masters Thesis]. University of New Mexico; 2014. Available from: http://hdl.handle.net/1928/24518

13. Hachicha, Imène. Approximations hyperboliques des équations de Navier-Stokes : Hyperbolic approximations of the Navier-Stokes equations.

Degree: Docteur es, Mathématiques, 2013, Evry-Val d'Essonne

Dans cette thèse, nous nous intéressons à deux approximations hyperboliques des équations de Navier-Stokes incompressibles en dimensions 2 et 3 d'espace. Dans un premier temps,… (more)

Subjects/Keywords: Faible compressibilité; Weak compressibility; Navier-Stokes equation; Damped wave equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hachicha, I. (2013). Approximations hyperboliques des équations de Navier-Stokes : Hyperbolic approximations of the Navier-Stokes equations. (Doctoral Dissertation). Evry-Val d'Essonne. Retrieved from http://www.theses.fr/2013EVRY0015

Chicago Manual of Style (16th Edition):

Hachicha, Imène. “Approximations hyperboliques des équations de Navier-Stokes : Hyperbolic approximations of the Navier-Stokes equations.” 2013. Doctoral Dissertation, Evry-Val d'Essonne. Accessed September 22, 2019. http://www.theses.fr/2013EVRY0015.

MLA Handbook (7th Edition):

Hachicha, Imène. “Approximations hyperboliques des équations de Navier-Stokes : Hyperbolic approximations of the Navier-Stokes equations.” 2013. Web. 22 Sep 2019.

Vancouver:

Hachicha I. Approximations hyperboliques des équations de Navier-Stokes : Hyperbolic approximations of the Navier-Stokes equations. [Internet] [Doctoral dissertation]. Evry-Val d'Essonne; 2013. [cited 2019 Sep 22]. Available from: http://www.theses.fr/2013EVRY0015.

Council of Science Editors:

Hachicha I. Approximations hyperboliques des équations de Navier-Stokes : Hyperbolic approximations of the Navier-Stokes equations. [Doctoral Dissertation]. Evry-Val d'Essonne; 2013. Available from: http://www.theses.fr/2013EVRY0015


East Carolina University

14. Eidschun, Bradley. Mathematical Analysis of Tsunami and Rogue Waves.

Degree: 2012, East Carolina University

In this thesis both forced and non-linear wave equations will be studied.   Actual data from tsunami and rogue waves will be used and a signal analysis will be performed using wavelets. Main results show that a different choice of wavelet leads to different efficiencies occurring in the signal recovery process.  

Subjects/Keywords: Mathematics; Wave equation; Nonlinear wave equations; Mathematical analysis; Tsunamis; Rogue waves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eidschun, B. (2012). Mathematical Analysis of Tsunami and Rogue Waves. (Thesis). East Carolina University. Retrieved from http://hdl.handle.net/10342/3846

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Eidschun, Bradley. “Mathematical Analysis of Tsunami and Rogue Waves.” 2012. Thesis, East Carolina University. Accessed September 22, 2019. http://hdl.handle.net/10342/3846.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Eidschun, Bradley. “Mathematical Analysis of Tsunami and Rogue Waves.” 2012. Web. 22 Sep 2019.

Vancouver:

Eidschun B. Mathematical Analysis of Tsunami and Rogue Waves. [Internet] [Thesis]. East Carolina University; 2012. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/10342/3846.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Eidschun B. Mathematical Analysis of Tsunami and Rogue Waves. [Thesis]. East Carolina University; 2012. Available from: http://hdl.handle.net/10342/3846

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


King Abdullah University of Science and Technology

15. Moy, Pedro Henrique Rocha. Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling.

Degree: 2012, King Abdullah University of Science and Technology

 The discretization of time-dependent wave propagation is plagued with dispersion in which the wavefield is perceived to travel with an erroneous velocity. To remediate the… (more)

Subjects/Keywords: Dispersion; Finite Elements; Wave Propagation; Wave Equation; Spectral Elements; Isogeometric Analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moy, P. H. R. (2012). Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling. (Thesis). King Abdullah University of Science and Technology. Retrieved from http://hdl.handle.net/10754/238360

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Moy, Pedro Henrique Rocha. “Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling.” 2012. Thesis, King Abdullah University of Science and Technology. Accessed September 22, 2019. http://hdl.handle.net/10754/238360.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Moy, Pedro Henrique Rocha. “Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling.” 2012. Web. 22 Sep 2019.

Vancouver:

Moy PHR. Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling. [Internet] [Thesis]. King Abdullah University of Science and Technology; 2012. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/10754/238360.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Moy PHR. Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling. [Thesis]. King Abdullah University of Science and Technology; 2012. Available from: http://hdl.handle.net/10754/238360

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


East Carolina University

16. Eidschun, Bradley. Mathematical Analysis of Tsunami and Rogue Waves.

Degree: 2012, East Carolina University

 In this thesis both forced and non-linear wave equations will be studied. Actual data from tsunami and rogue waves will be used and a signal analysis… (more)

Subjects/Keywords: Wave equation; Nonlinear wave equations; Mathematical analysis; Tsunamis; Rogue waves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eidschun, B. (2012). Mathematical Analysis of Tsunami and Rogue Waves. (Masters Thesis). East Carolina University. Retrieved from http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14313

Chicago Manual of Style (16th Edition):

Eidschun, Bradley. “Mathematical Analysis of Tsunami and Rogue Waves.” 2012. Masters Thesis, East Carolina University. Accessed September 22, 2019. http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14313.

MLA Handbook (7th Edition):

Eidschun, Bradley. “Mathematical Analysis of Tsunami and Rogue Waves.” 2012. Web. 22 Sep 2019.

Vancouver:

Eidschun B. Mathematical Analysis of Tsunami and Rogue Waves. [Internet] [Masters thesis]. East Carolina University; 2012. [cited 2019 Sep 22]. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14313.

Council of Science Editors:

Eidschun B. Mathematical Analysis of Tsunami and Rogue Waves. [Masters Thesis]. East Carolina University; 2012. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14313


University of Illinois – Chicago

17. Haidau, Cristina A. A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations.

Degree: 2014, University of Illinois – Chicago

 To model two-way propagation of waves in physical systems where nonlinear and dispersive effects are equally important, coupled systems of partial differential equations arise. The… (more)

Subjects/Keywords: Systems of non-linear dispersive wave equations; Benjamin-Bona-Mahony equation; generalized BBM equation; surface water wave models, internal wave motion

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haidau, C. A. (2014). A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/18851

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Haidau, Cristina A. “A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations.” 2014. Thesis, University of Illinois – Chicago. Accessed September 22, 2019. http://hdl.handle.net/10027/18851.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Haidau, Cristina A. “A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations.” 2014. Web. 22 Sep 2019.

Vancouver:

Haidau CA. A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations. [Internet] [Thesis]. University of Illinois – Chicago; 2014. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/10027/18851.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Haidau CA. A Study of Well Posedness for Systems of Coupled Non-linear Dispersive Wave Equations. [Thesis]. University of Illinois – Chicago; 2014. Available from: http://hdl.handle.net/10027/18851

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

18. Jamal Eddine, Alaa. Equations d'évolution sur certains groupes hyperboliques : Evolution equation on some hyperbolic groups.

Degree: Docteur es, Mathématiques, 2013, Université d'Orléans

Cette thèse porte sur l’étude d’équations d’évolution sur certains groupes hyperboliques, en particulier, nous étudions l’équation de la chaleur, l’équation de Schrödinger et l’équation des… (more)

Subjects/Keywords: Arbre homogène; Graphes symétriques; Equation des ondes; Equation de la chaleur; Equation de Schrödinger; Estimations de Strichartz; Homogeneous tree; Symmetric graph; Wave equation; Heat equation; Schrödinger equation; Strichartz estiamtes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jamal Eddine, A. (2013). Equations d'évolution sur certains groupes hyperboliques : Evolution equation on some hyperbolic groups. (Doctoral Dissertation). Université d'Orléans. Retrieved from http://www.theses.fr/2013ORLE2055

Chicago Manual of Style (16th Edition):

Jamal Eddine, Alaa. “Equations d'évolution sur certains groupes hyperboliques : Evolution equation on some hyperbolic groups.” 2013. Doctoral Dissertation, Université d'Orléans. Accessed September 22, 2019. http://www.theses.fr/2013ORLE2055.

MLA Handbook (7th Edition):

Jamal Eddine, Alaa. “Equations d'évolution sur certains groupes hyperboliques : Evolution equation on some hyperbolic groups.” 2013. Web. 22 Sep 2019.

Vancouver:

Jamal Eddine A. Equations d'évolution sur certains groupes hyperboliques : Evolution equation on some hyperbolic groups. [Internet] [Doctoral dissertation]. Université d'Orléans; 2013. [cited 2019 Sep 22]. Available from: http://www.theses.fr/2013ORLE2055.

Council of Science Editors:

Jamal Eddine A. Equations d'évolution sur certains groupes hyperboliques : Evolution equation on some hyperbolic groups. [Doctoral Dissertation]. Université d'Orléans; 2013. Available from: http://www.theses.fr/2013ORLE2055

19. Kitic, Srdan. Cosparse regularization of physics-driven inverse problems : Régularisation co-parcimonieuse de problèmes inverse guidée par la physique.

Degree: Docteur es, Traitement du signal et télécommunications, 2015, Rennes 1

Les problèmes inverses liés à des processus physiques sont d'une grande importance dans la plupart des domaines liés au traitement du signal, tels que la… (more)

Subjects/Keywords: Problèmes inverses; Parcimonie; Coparcimonie; Equation des ondes; Eeg; Inverse problems; Sparsity; Cosparsity; Wave equation; Eeg

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kitic, S. (2015). Cosparse regularization of physics-driven inverse problems : Régularisation co-parcimonieuse de problèmes inverse guidée par la physique. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2015REN1S152

Chicago Manual of Style (16th Edition):

Kitic, Srdan. “Cosparse regularization of physics-driven inverse problems : Régularisation co-parcimonieuse de problèmes inverse guidée par la physique.” 2015. Doctoral Dissertation, Rennes 1. Accessed September 22, 2019. http://www.theses.fr/2015REN1S152.

MLA Handbook (7th Edition):

Kitic, Srdan. “Cosparse regularization of physics-driven inverse problems : Régularisation co-parcimonieuse de problèmes inverse guidée par la physique.” 2015. Web. 22 Sep 2019.

Vancouver:

Kitic S. Cosparse regularization of physics-driven inverse problems : Régularisation co-parcimonieuse de problèmes inverse guidée par la physique. [Internet] [Doctoral dissertation]. Rennes 1; 2015. [cited 2019 Sep 22]. Available from: http://www.theses.fr/2015REN1S152.

Council of Science Editors:

Kitic S. Cosparse regularization of physics-driven inverse problems : Régularisation co-parcimonieuse de problèmes inverse guidée par la physique. [Doctoral Dissertation]. Rennes 1; 2015. Available from: http://www.theses.fr/2015REN1S152


University of Colorado

20. Martin, Bradley Pifer. Application of Rbf-Fd to Wave and Heat Transport Problems in Domains with Interfaces.

Degree: PhD, Applied Mathematics, 2016, University of Colorado

  Traditional finite difference methods for solving the partial differential equations (PDEs) associated with wave and heat transport often perform poorly when used in domains… (more)

Subjects/Keywords: finite differences; heat equation; interfaces; mesh free; RBF; wave equation; Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martin, B. P. (2016). Application of Rbf-Fd to Wave and Heat Transport Problems in Domains with Interfaces. (Doctoral Dissertation). University of Colorado. Retrieved from http://scholar.colorado.edu/appm_gradetds/79

Chicago Manual of Style (16th Edition):

Martin, Bradley Pifer. “Application of Rbf-Fd to Wave and Heat Transport Problems in Domains with Interfaces.” 2016. Doctoral Dissertation, University of Colorado. Accessed September 22, 2019. http://scholar.colorado.edu/appm_gradetds/79.

MLA Handbook (7th Edition):

Martin, Bradley Pifer. “Application of Rbf-Fd to Wave and Heat Transport Problems in Domains with Interfaces.” 2016. Web. 22 Sep 2019.

Vancouver:

Martin BP. Application of Rbf-Fd to Wave and Heat Transport Problems in Domains with Interfaces. [Internet] [Doctoral dissertation]. University of Colorado; 2016. [cited 2019 Sep 22]. Available from: http://scholar.colorado.edu/appm_gradetds/79.

Council of Science Editors:

Martin BP. Application of Rbf-Fd to Wave and Heat Transport Problems in Domains with Interfaces. [Doctoral Dissertation]. University of Colorado; 2016. Available from: http://scholar.colorado.edu/appm_gradetds/79

21. Alzaix, Benjamin. Mathematical and numerical analysis of the Herberthson integral equation dedicated to electromagnetic plane wave scattering : Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes.

Degree: Docteur es, Mathematiques appliquees et calcul scientifique, 2017, Bordeaux

Cette thèse porte sur la diffraction d’une onde plane électromagnétique par une surface lisse parfaitement conductrice (PEC). Elle présente l’analyse des propriétés d’une nouvelle formulation… (more)

Subjects/Keywords: Diffraction électromagnétique; Equation intégrale de frontières; Onde planes; Electromagnetic scattering; Boundary integral equation; Plane wave

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alzaix, B. (2017). Mathematical and numerical analysis of the Herberthson integral equation dedicated to electromagnetic plane wave scattering : Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2017BORD0578

Chicago Manual of Style (16th Edition):

Alzaix, Benjamin. “Mathematical and numerical analysis of the Herberthson integral equation dedicated to electromagnetic plane wave scattering : Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes.” 2017. Doctoral Dissertation, Bordeaux. Accessed September 22, 2019. http://www.theses.fr/2017BORD0578.

MLA Handbook (7th Edition):

Alzaix, Benjamin. “Mathematical and numerical analysis of the Herberthson integral equation dedicated to electromagnetic plane wave scattering : Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes.” 2017. Web. 22 Sep 2019.

Vancouver:

Alzaix B. Mathematical and numerical analysis of the Herberthson integral equation dedicated to electromagnetic plane wave scattering : Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes. [Internet] [Doctoral dissertation]. Bordeaux; 2017. [cited 2019 Sep 22]. Available from: http://www.theses.fr/2017BORD0578.

Council of Science Editors:

Alzaix B. Mathematical and numerical analysis of the Herberthson integral equation dedicated to electromagnetic plane wave scattering : Analyse mathématique et numérique de l’équation intégrale de Herberthson dédié à la diffraction d’ondes planes. [Doctoral Dissertation]. Bordeaux; 2017. Available from: http://www.theses.fr/2017BORD0578


Cornell University

22. Lo, Hong Yueh. Modeling landslide-generated tsunamis with long-wave equations .

Degree: 2018, Cornell University

 Landslides are recognized as a generation mechanism of tsunamis. While earthquake-generated tsunamis are catastrophes on a more global scale, landslide-generated tsunamis tend to cause extreme… (more)

Subjects/Keywords: Ocean engineering; Fluid Mechanics; Civil engineering; Boussinesq equation; landslide; long wave; shallow water equation; tsunami

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lo, H. Y. (2018). Modeling landslide-generated tsunamis with long-wave equations . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/59453

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lo, Hong Yueh. “Modeling landslide-generated tsunamis with long-wave equations .” 2018. Thesis, Cornell University. Accessed September 22, 2019. http://hdl.handle.net/1813/59453.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lo, Hong Yueh. “Modeling landslide-generated tsunamis with long-wave equations .” 2018. Web. 22 Sep 2019.

Vancouver:

Lo HY. Modeling landslide-generated tsunamis with long-wave equations . [Internet] [Thesis]. Cornell University; 2018. [cited 2019 Sep 22]. Available from: http://hdl.handle.net/1813/59453.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lo HY. Modeling landslide-generated tsunamis with long-wave equations . [Thesis]. Cornell University; 2018. Available from: http://hdl.handle.net/1813/59453

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Portland State University

23. Sepùlveda Salas, Paulina Ester. Spacetime Numerical Techniques for the Wave and Schrödinger Equations.

Degree: PhD, Mathematics and Statistics, 2018, Portland State University

  The most common tool for solving spacetime problems using finite elements is based on semidiscretization: discretizing in space by a finite element method and… (more)

Subjects/Keywords: Space and time; Wave equation; Boundary value problems; Schrödinger equation; Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sepùlveda Salas, P. E. (2018). Spacetime Numerical Techniques for the Wave and Schrödinger Equations. (Doctoral Dissertation). Portland State University. Retrieved from https://pdxscholar.library.pdx.edu/open_access_etds/4206

Chicago Manual of Style (16th Edition):

Sepùlveda Salas, Paulina Ester. “Spacetime Numerical Techniques for the Wave and Schrödinger Equations.” 2018. Doctoral Dissertation, Portland State University. Accessed September 22, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/4206.

MLA Handbook (7th Edition):

Sepùlveda Salas, Paulina Ester. “Spacetime Numerical Techniques for the Wave and Schrödinger Equations.” 2018. Web. 22 Sep 2019.

Vancouver:

Sepùlveda Salas PE. Spacetime Numerical Techniques for the Wave and Schrödinger Equations. [Internet] [Doctoral dissertation]. Portland State University; 2018. [cited 2019 Sep 22]. Available from: https://pdxscholar.library.pdx.edu/open_access_etds/4206.

Council of Science Editors:

Sepùlveda Salas PE. Spacetime Numerical Techniques for the Wave and Schrödinger Equations. [Doctoral Dissertation]. Portland State University; 2018. Available from: https://pdxscholar.library.pdx.edu/open_access_etds/4206

24. Carlson, Kenneth Emil. The Wave Equation in One Dimension.

Degree: 1961, North Texas State College

It is intended that this paper present an acceptable proof of the existence of a solution for the wave equation. Advisors/Committee Members: Copp, George, Parrish, Herbert C..

Subjects/Keywords: wave-motion equation; mathematical proof; Wave equation.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Carlson, K. E. (1961). The Wave Equation in One Dimension. (Thesis). North Texas State College. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc108114/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Carlson, Kenneth Emil. “The Wave Equation in One Dimension.” 1961. Thesis, North Texas State College. Accessed September 22, 2019. https://digital.library.unt.edu/ark:/67531/metadc108114/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Carlson, Kenneth Emil. “The Wave Equation in One Dimension.” 1961. Web. 22 Sep 2019.

Vancouver:

Carlson KE. The Wave Equation in One Dimension. [Internet] [Thesis]. North Texas State College; 1961. [cited 2019 Sep 22]. Available from: https://digital.library.unt.edu/ark:/67531/metadc108114/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Carlson KE. The Wave Equation in One Dimension. [Thesis]. North Texas State College; 1961. Available from: https://digital.library.unt.edu/ark:/67531/metadc108114/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Simon Fraser University

25. Mulder, Leslie John. An expansion procedure for radiation solutions of the Kortweg de Vries equation.

Degree: 1987, Simon Fraser University

Subjects/Keywords: Wave-motion, Theory of.; Wave equation.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mulder, L. J. (1987). An expansion procedure for radiation solutions of the Kortweg de Vries equation. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/5332

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mulder, Leslie John. “An expansion procedure for radiation solutions of the Kortweg de Vries equation.” 1987. Thesis, Simon Fraser University. Accessed September 22, 2019. http://summit.sfu.ca/item/5332.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mulder, Leslie John. “An expansion procedure for radiation solutions of the Kortweg de Vries equation.” 1987. Web. 22 Sep 2019.

Vancouver:

Mulder LJ. An expansion procedure for radiation solutions of the Kortweg de Vries equation. [Internet] [Thesis]. Simon Fraser University; 1987. [cited 2019 Sep 22]. Available from: http://summit.sfu.ca/item/5332.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mulder LJ. An expansion procedure for radiation solutions of the Kortweg de Vries equation. [Thesis]. Simon Fraser University; 1987. Available from: http://summit.sfu.ca/item/5332

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

26. Nyoman Pujianiki, Ni. TRANSFORMATION OF WAVE GROUPS FROM INTERMEDIATE THROUGH SHALLOW WATER DEPTHS : 中間水深から浅水深にかけての波群の伝播変形解析.

Degree: 博士(工学), 2016, Nagoya Institute of Technology / 名古屋工業大学

主査:喜岡 渉

Subjects/Keywords: wave groups; directional spectra; wave-wave interaction; Zakharov equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nyoman Pujianiki, N. (2016). TRANSFORMATION OF WAVE GROUPS FROM INTERMEDIATE THROUGH SHALLOW WATER DEPTHS : 中間水深から浅水深にかけての波群の伝播変形解析. (Thesis). Nagoya Institute of Technology / 名古屋工業大学. Retrieved from http://id.nii.ac.jp/1476/00003076/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Nyoman Pujianiki, Ni. “TRANSFORMATION OF WAVE GROUPS FROM INTERMEDIATE THROUGH SHALLOW WATER DEPTHS : 中間水深から浅水深にかけての波群の伝播変形解析.” 2016. Thesis, Nagoya Institute of Technology / 名古屋工業大学. Accessed September 22, 2019. http://id.nii.ac.jp/1476/00003076/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Nyoman Pujianiki, Ni. “TRANSFORMATION OF WAVE GROUPS FROM INTERMEDIATE THROUGH SHALLOW WATER DEPTHS : 中間水深から浅水深にかけての波群の伝播変形解析.” 2016. Web. 22 Sep 2019.

Vancouver:

Nyoman Pujianiki N. TRANSFORMATION OF WAVE GROUPS FROM INTERMEDIATE THROUGH SHALLOW WATER DEPTHS : 中間水深から浅水深にかけての波群の伝播変形解析. [Internet] [Thesis]. Nagoya Institute of Technology / 名古屋工業大学; 2016. [cited 2019 Sep 22]. Available from: http://id.nii.ac.jp/1476/00003076/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Nyoman Pujianiki N. TRANSFORMATION OF WAVE GROUPS FROM INTERMEDIATE THROUGH SHALLOW WATER DEPTHS : 中間水深から浅水深にかけての波群の伝播変形解析. [Thesis]. Nagoya Institute of Technology / 名古屋工業大学; 2016. Available from: http://id.nii.ac.jp/1476/00003076/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


The Ohio State University

27. Lee, Jong-eao John. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.

Degree: PhD, Graduate School, 1986, The Ohio State University

Subjects/Keywords: Mathematics; Schrodinger equation; Wave mechanics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, J. J. (1986). The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

Chicago Manual of Style (16th Edition):

Lee, Jong-eao John. “The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.” 1986. Doctoral Dissertation, The Ohio State University. Accessed September 22, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429.

MLA Handbook (7th Edition):

Lee, Jong-eao John. “The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.” 1986. Web. 22 Sep 2019.

Vancouver:

Lee JJ. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. [Internet] [Doctoral dissertation]. The Ohio State University; 1986. [cited 2019 Sep 22]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429.

Council of Science Editors:

Lee JJ. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. [Doctoral Dissertation]. The Ohio State University; 1986. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

28. Chuño, Christian Manuel Surco. Atratores para equações de ondas em domínios de fronteira móvel.

Degree: PhD, Matemática, 2014, University of São Paulo

Este trabalho contém um estudo sobre equações de ondas fracamente dissipativas definidas em domínios de fronteira móvel ∂2u/∂t2/ + η∂u/∂t - Δu + g(u) =… (more)

Subjects/Keywords: Atratores; Attractors; Fronteira móvel; Noncylindrical; Pullback; Wave equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chuño, C. M. S. (2014). Atratores para equações de ondas em domínios de fronteira móvel. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032015-113226/ ;

Chicago Manual of Style (16th Edition):

Chuño, Christian Manuel Surco. “Atratores para equações de ondas em domínios de fronteira móvel.” 2014. Doctoral Dissertation, University of São Paulo. Accessed September 22, 2019. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032015-113226/ ;.

MLA Handbook (7th Edition):

Chuño, Christian Manuel Surco. “Atratores para equações de ondas em domínios de fronteira móvel.” 2014. Web. 22 Sep 2019.

Vancouver:

Chuño CMS. Atratores para equações de ondas em domínios de fronteira móvel. [Internet] [Doctoral dissertation]. University of São Paulo; 2014. [cited 2019 Sep 22]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032015-113226/ ;.

Council of Science Editors:

Chuño CMS. Atratores para equações de ondas em domínios de fronteira móvel. [Doctoral Dissertation]. University of São Paulo; 2014. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-17032015-113226/ ;


University of Alberta

29. Ferner, Robert M. Applications of Reverse-time Migration.

Degree: MS, Department of Physics, 2015, University of Alberta

 In a reflection seismic experiment, a controlled source function injects energy into the Earth. This causes the subsurface to undergo elastic deformation referred to as… (more)

Subjects/Keywords: elastic wave-equation; reverse-time migration; staggered-grid finite-difference

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ferner, R. M. (2015). Applications of Reverse-time Migration. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/nk322h04z

Chicago Manual of Style (16th Edition):

Ferner, Robert M. “Applications of Reverse-time Migration.” 2015. Masters Thesis, University of Alberta. Accessed September 22, 2019. https://era.library.ualberta.ca/files/nk322h04z.

MLA Handbook (7th Edition):

Ferner, Robert M. “Applications of Reverse-time Migration.” 2015. Web. 22 Sep 2019.

Vancouver:

Ferner RM. Applications of Reverse-time Migration. [Internet] [Masters thesis]. University of Alberta; 2015. [cited 2019 Sep 22]. Available from: https://era.library.ualberta.ca/files/nk322h04z.

Council of Science Editors:

Ferner RM. Applications of Reverse-time Migration. [Masters Thesis]. University of Alberta; 2015. Available from: https://era.library.ualberta.ca/files/nk322h04z


University of Alberta

30. Anagaw, Amsalu Y. Full waveform inversion using simultaneous encoded sources based on first- and second-order optimization methods.

Degree: PhD, Department of Physics, 2014, University of Alberta

 Full waveform inversion (FWI) is an emerging seismic technology engine for estimating subsurface model parameters such as velocity, density and attenuation through local minimization of… (more)

Subjects/Keywords: Full waveform inversion, wave-equation, simultaneous sources, inversion, optimization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Anagaw, A. Y. (2014). Full waveform inversion using simultaneous encoded sources based on first- and second-order optimization methods. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/vq27zp80c

Chicago Manual of Style (16th Edition):

Anagaw, Amsalu Y. “Full waveform inversion using simultaneous encoded sources based on first- and second-order optimization methods.” 2014. Doctoral Dissertation, University of Alberta. Accessed September 22, 2019. https://era.library.ualberta.ca/files/vq27zp80c.

MLA Handbook (7th Edition):

Anagaw, Amsalu Y. “Full waveform inversion using simultaneous encoded sources based on first- and second-order optimization methods.” 2014. Web. 22 Sep 2019.

Vancouver:

Anagaw AY. Full waveform inversion using simultaneous encoded sources based on first- and second-order optimization methods. [Internet] [Doctoral dissertation]. University of Alberta; 2014. [cited 2019 Sep 22]. Available from: https://era.library.ualberta.ca/files/vq27zp80c.

Council of Science Editors:

Anagaw AY. Full waveform inversion using simultaneous encoded sources based on first- and second-order optimization methods. [Doctoral Dissertation]. University of Alberta; 2014. Available from: https://era.library.ualberta.ca/files/vq27zp80c

[1] [2] [3] [4] [5] … [11]

.