Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(virtual knot theory). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Illinois – Chicago

1. Schneider, Jonathan. Diagrammatic Theories of 1- and 2- Dimensional Knots.

Degree: 2016, University of Illinois – Chicago

 A meta-theory is described whereby any diagrammatic knot theory may be defined by specifying diagrams and moves. This is done explicitly in dimensions 1 and… (more)

Subjects/Keywords: knot theory; knot diagrams; surface knot theory; 2-knot theory; virtual knots; virtual knot theory; welded knots

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schneider, J. (2016). Diagrammatic Theories of 1- and 2- Dimensional Knots. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/20811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Schneider, Jonathan. “Diagrammatic Theories of 1- and 2- Dimensional Knots.” 2016. Thesis, University of Illinois – Chicago. Accessed July 03, 2020. http://hdl.handle.net/10027/20811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Schneider, Jonathan. “Diagrammatic Theories of 1- and 2- Dimensional Knots.” 2016. Web. 03 Jul 2020.

Vancouver:

Schneider J. Diagrammatic Theories of 1- and 2- Dimensional Knots. [Internet] [Thesis]. University of Illinois – Chicago; 2016. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/10027/20811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Schneider J. Diagrammatic Theories of 1- and 2- Dimensional Knots. [Thesis]. University of Illinois – Chicago; 2016. Available from: http://hdl.handle.net/10027/20811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


McMaster University

2. White, Lindsay. Alexander Invariants of Periodic Virtual Knots.

Degree: PhD, 2017, McMaster University

In this thesis, we show that every periodic virtual knot can be realized as the closure of a periodic virtual braid. If K is a… (more)

Subjects/Keywords: Knot Theory; Virtual Knots; Periodic Knots; Virtual Knot Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

White, L. (2017). Alexander Invariants of Periodic Virtual Knots. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/21006

Chicago Manual of Style (16th Edition):

White, Lindsay. “Alexander Invariants of Periodic Virtual Knots.” 2017. Doctoral Dissertation, McMaster University. Accessed July 03, 2020. http://hdl.handle.net/11375/21006.

MLA Handbook (7th Edition):

White, Lindsay. “Alexander Invariants of Periodic Virtual Knots.” 2017. Web. 03 Jul 2020.

Vancouver:

White L. Alexander Invariants of Periodic Virtual Knots. [Internet] [Doctoral dissertation]. McMaster University; 2017. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/11375/21006.

Council of Science Editors:

White L. Alexander Invariants of Periodic Virtual Knots. [Doctoral Dissertation]. McMaster University; 2017. Available from: http://hdl.handle.net/11375/21006

3. Cisneros de la Cruz, Bruno Aarón. Caractérisation topologique de tresses virtuelles : Topological characterization of virtual braids.

Degree: Docteur es, Mathématiques, 2015, Université de Bourgogne

Le but de cette thèse est de fournir une caractérisation topologique de tresses virtuelles. Les tresses virtuelles sont des classes d’équivalence de diagrammes de type… (more)

Subjects/Keywords: Noeuds virtuels; Tresses virtuelles; Théorie de noeuds; Théorie de groupes; Virtual knots; Virtual braids; Knot theory; Group theory; 515

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cisneros de la Cruz, B. A. (2015). Caractérisation topologique de tresses virtuelles : Topological characterization of virtual braids. (Doctoral Dissertation). Université de Bourgogne. Retrieved from http://www.theses.fr/2015DIJOS025

Chicago Manual of Style (16th Edition):

Cisneros de la Cruz, Bruno Aarón. “Caractérisation topologique de tresses virtuelles : Topological characterization of virtual braids.” 2015. Doctoral Dissertation, Université de Bourgogne. Accessed July 03, 2020. http://www.theses.fr/2015DIJOS025.

MLA Handbook (7th Edition):

Cisneros de la Cruz, Bruno Aarón. “Caractérisation topologique de tresses virtuelles : Topological characterization of virtual braids.” 2015. Web. 03 Jul 2020.

Vancouver:

Cisneros de la Cruz BA. Caractérisation topologique de tresses virtuelles : Topological characterization of virtual braids. [Internet] [Doctoral dissertation]. Université de Bourgogne; 2015. [cited 2020 Jul 03]. Available from: http://www.theses.fr/2015DIJOS025.

Council of Science Editors:

Cisneros de la Cruz BA. Caractérisation topologique de tresses virtuelles : Topological characterization of virtual braids. [Doctoral Dissertation]. Université de Bourgogne; 2015. Available from: http://www.theses.fr/2015DIJOS025


McMaster University

4. Parchimowicz, Michael. From Classical to Unwelded - An Examination of Four Knot Classes.

Degree: MSc, 2011, McMaster University

This thesis is an introduction to virtual knots and the forbidden moves, and the closely related classes of welded and unwelded knots. Extensions of… (more)

Subjects/Keywords: Knot Theory; Virtual Knots; Welded Knots; Unwelded Knots; Geometry and Topology; Mathematics; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Parchimowicz, M. (2011). From Classical to Unwelded - An Examination of Four Knot Classes. (Masters Thesis). McMaster University. Retrieved from http://hdl.handle.net/11375/11403

Chicago Manual of Style (16th Edition):

Parchimowicz, Michael. “From Classical to Unwelded - An Examination of Four Knot Classes.” 2011. Masters Thesis, McMaster University. Accessed July 03, 2020. http://hdl.handle.net/11375/11403.

MLA Handbook (7th Edition):

Parchimowicz, Michael. “From Classical to Unwelded - An Examination of Four Knot Classes.” 2011. Web. 03 Jul 2020.

Vancouver:

Parchimowicz M. From Classical to Unwelded - An Examination of Four Knot Classes. [Internet] [Masters thesis]. McMaster University; 2011. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/11375/11403.

Council of Science Editors:

Parchimowicz M. From Classical to Unwelded - An Examination of Four Knot Classes. [Masters Thesis]. McMaster University; 2011. Available from: http://hdl.handle.net/11375/11403

5. Leung, Louis. Classical Lie Algebra Weight Systems of Arrow Diagrams.

Degree: 2010, University of Toronto

The notion of finite type invariants of virtual knots, introduced by Goussarov, Polyak and Viro, leads to the study of the space of diagrams with… (more)

Subjects/Keywords: knot theory; virtual knots; weight systems; 0405

…part of the knot involved is locally a braid. We say an invariant of virtual knots is of type… …n if it vanishes on all virtual knot diagrams with more than n semi-virtual crossings… …knot diagram we can always express it as a linear combination of virtual knot diagrams with… …systems This section is a review of the notion of finite type invariants of virtual knots and… …weight systems and finite type invariants of oriented virtual knots modulo “braid-like… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leung, L. (2010). Classical Lie Algebra Weight Systems of Arrow Diagrams. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/26366

Chicago Manual of Style (16th Edition):

Leung, Louis. “Classical Lie Algebra Weight Systems of Arrow Diagrams.” 2010. Doctoral Dissertation, University of Toronto. Accessed July 03, 2020. http://hdl.handle.net/1807/26366.

MLA Handbook (7th Edition):

Leung, Louis. “Classical Lie Algebra Weight Systems of Arrow Diagrams.” 2010. Web. 03 Jul 2020.

Vancouver:

Leung L. Classical Lie Algebra Weight Systems of Arrow Diagrams. [Internet] [Doctoral dissertation]. University of Toronto; 2010. [cited 2020 Jul 03]. Available from: http://hdl.handle.net/1807/26366.

Council of Science Editors:

Leung L. Classical Lie Algebra Weight Systems of Arrow Diagrams. [Doctoral Dissertation]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/26366

.