Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(unipotent group). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Colorado

1. Andrews, Scott D. Type-free Approaches to Supercharacter Theories of Unipotent Groups.

Degree: PhD, Mathematics, 2014, University of Colorado

  Supercharacter theories are a relatively new tool in studying the representation theory of unipotent groups over finite fields. In this thesis I present two… (more)

Subjects/Keywords: combinatorics; representation theory; supercharacter; unipotent group; Discrete Mathematics and Combinatorics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Andrews, S. D. (2014). Type-free Approaches to Supercharacter Theories of Unipotent Groups. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/31

Chicago Manual of Style (16th Edition):

Andrews, Scott D. “Type-free Approaches to Supercharacter Theories of Unipotent Groups.” 2014. Doctoral Dissertation, University of Colorado. Accessed October 28, 2020. https://scholar.colorado.edu/math_gradetds/31.

MLA Handbook (7th Edition):

Andrews, Scott D. “Type-free Approaches to Supercharacter Theories of Unipotent Groups.” 2014. Web. 28 Oct 2020.

Vancouver:

Andrews SD. Type-free Approaches to Supercharacter Theories of Unipotent Groups. [Internet] [Doctoral dissertation]. University of Colorado; 2014. [cited 2020 Oct 28]. Available from: https://scholar.colorado.edu/math_gradetds/31.

Council of Science Editors:

Andrews SD. Type-free Approaches to Supercharacter Theories of Unipotent Groups. [Doctoral Dissertation]. University of Colorado; 2014. Available from: https://scholar.colorado.edu/math_gradetds/31


North Carolina State University

2. Wang, Qiang. Classification of K_F-orbits of Unipotent Elements in Symmetric F-varieties of SL(n, F).

Degree: PhD, Applied Mathematics, 2010, North Carolina State University

 Richardson proved in 1982 that, given an algebraic group G and some involution, we could have only a finite number of K-orbits of unipotent elements… (more)

Subjects/Keywords: unipotent elements; Jordan decomposition; special linear group; orbit decomposition; symmetric variety; Classifications

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, Q. (2010). Classification of K_F-orbits of Unipotent Elements in Symmetric F-varieties of SL(n, F). (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/6172

Chicago Manual of Style (16th Edition):

Wang, Qiang. “Classification of K_F-orbits of Unipotent Elements in Symmetric F-varieties of SL(n, F).” 2010. Doctoral Dissertation, North Carolina State University. Accessed October 28, 2020. http://www.lib.ncsu.edu/resolver/1840.16/6172.

MLA Handbook (7th Edition):

Wang, Qiang. “Classification of K_F-orbits of Unipotent Elements in Symmetric F-varieties of SL(n, F).” 2010. Web. 28 Oct 2020.

Vancouver:

Wang Q. Classification of K_F-orbits of Unipotent Elements in Symmetric F-varieties of SL(n, F). [Internet] [Doctoral dissertation]. North Carolina State University; 2010. [cited 2020 Oct 28]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/6172.

Council of Science Editors:

Wang Q. Classification of K_F-orbits of Unipotent Elements in Symmetric F-varieties of SL(n, F). [Doctoral Dissertation]. North Carolina State University; 2010. Available from: http://www.lib.ncsu.edu/resolver/1840.16/6172


Boston College

3. Cai, Yuanqing. Theta representations on covering groups.

Degree: PhD, Mathematics, 2017, Boston College

 Kazhdan and Patterson constructed generalized theta representations on covers of general linear groups as multi-residues of the Borel Eisenstein series. For the double covers, these… (more)

Subjects/Keywords: covering group; doubling construction; Fourier coefficient; semi-Whittaker coefficient; Theta representation; unipotent orbit

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cai, Y. (2017). Theta representations on covering groups. (Doctoral Dissertation). Boston College. Retrieved from http://dlib.bc.edu/islandora/object/bc-ir:107492

Chicago Manual of Style (16th Edition):

Cai, Yuanqing. “Theta representations on covering groups.” 2017. Doctoral Dissertation, Boston College. Accessed October 28, 2020. http://dlib.bc.edu/islandora/object/bc-ir:107492.

MLA Handbook (7th Edition):

Cai, Yuanqing. “Theta representations on covering groups.” 2017. Web. 28 Oct 2020.

Vancouver:

Cai Y. Theta representations on covering groups. [Internet] [Doctoral dissertation]. Boston College; 2017. [cited 2020 Oct 28]. Available from: http://dlib.bc.edu/islandora/object/bc-ir:107492.

Council of Science Editors:

Cai Y. Theta representations on covering groups. [Doctoral Dissertation]. Boston College; 2017. Available from: http://dlib.bc.edu/islandora/object/bc-ir:107492

4. Achet, Raphaël. Groupe de Picard des groupes unipotents sur un corps quelconque : Picard groups of unipotent algebraic groups over an arbitrary field.

Degree: Docteur es, Mathématiques, 2017, Grenoble Alpes

Soit k un corps quelconque. Dans cette th±se, on étudie le groupe de Picard des k-groupes algébriques unipotents (lisses et connexes).Tout k-groupe algébrique unipotent est… (more)

Subjects/Keywords: Groupe algébrique unipotent; Groupe de Picard; Torseur; Foncteur de Picard; Corps non parfait; Formes de l'espace affine; Unipotent Algebraic group; Picard group; Torsor; Picard functor; Imperfect field; Forms of the affine space; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Achet, R. (2017). Groupe de Picard des groupes unipotents sur un corps quelconque : Picard groups of unipotent algebraic groups over an arbitrary field. (Doctoral Dissertation). Grenoble Alpes. Retrieved from http://www.theses.fr/2017GREAM038

Chicago Manual of Style (16th Edition):

Achet, Raphaël. “Groupe de Picard des groupes unipotents sur un corps quelconque : Picard groups of unipotent algebraic groups over an arbitrary field.” 2017. Doctoral Dissertation, Grenoble Alpes. Accessed October 28, 2020. http://www.theses.fr/2017GREAM038.

MLA Handbook (7th Edition):

Achet, Raphaël. “Groupe de Picard des groupes unipotents sur un corps quelconque : Picard groups of unipotent algebraic groups over an arbitrary field.” 2017. Web. 28 Oct 2020.

Vancouver:

Achet R. Groupe de Picard des groupes unipotents sur un corps quelconque : Picard groups of unipotent algebraic groups over an arbitrary field. [Internet] [Doctoral dissertation]. Grenoble Alpes; 2017. [cited 2020 Oct 28]. Available from: http://www.theses.fr/2017GREAM038.

Council of Science Editors:

Achet R. Groupe de Picard des groupes unipotents sur un corps quelconque : Picard groups of unipotent algebraic groups over an arbitrary field. [Doctoral Dissertation]. Grenoble Alpes; 2017. Available from: http://www.theses.fr/2017GREAM038

5. Molag, L.D. Monodromy of the generalized hypergeometric equation in the maximally unipotent case.

Degree: 2013, Universiteit Utrecht

 We consider monodromy groups of the generalized hypergeometric equation z(θ − α1 ) · · · (θ − αn ) − (θ + β1 −… (more)

Subjects/Keywords: hypergeometric equation; generalized hypergeometric equation; hypergeometric function; maximally unipotent; linear differential equation; complex analysis; monodromy; monodromy matrix; monodromy group; Calabi-Yau threefold; Frobenius basis; zeta function; Hurwitz zeta function; Levelt’s theorem; Mellin-Barnes integral

…where β1 = . . . = βn = 1, described as the maximally unipotent case. Our research goal was to… …find a relatively neat expression for the monodromy matrices of the maximally unipotent case… …been what motivates us to study the maximally unipotent case. Our main theorem gives us… …monodromy group have their entries in Q(ζ(3)(2πi)−3 , ζ(5)… …1.13. M (π1 (D, z0 )) is called a monodromy group and its elements… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Sample image

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Molag, L. D. (2013). Monodromy of the generalized hypergeometric equation in the maximally unipotent case. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/282652

Chicago Manual of Style (16th Edition):

Molag, L D. “Monodromy of the generalized hypergeometric equation in the maximally unipotent case.” 2013. Masters Thesis, Universiteit Utrecht. Accessed October 28, 2020. http://dspace.library.uu.nl:8080/handle/1874/282652.

MLA Handbook (7th Edition):

Molag, L D. “Monodromy of the generalized hypergeometric equation in the maximally unipotent case.” 2013. Web. 28 Oct 2020.

Vancouver:

Molag LD. Monodromy of the generalized hypergeometric equation in the maximally unipotent case. [Internet] [Masters thesis]. Universiteit Utrecht; 2013. [cited 2020 Oct 28]. Available from: http://dspace.library.uu.nl:8080/handle/1874/282652.

Council of Science Editors:

Molag LD. Monodromy of the generalized hypergeometric equation in the maximally unipotent case. [Masters Thesis]. Universiteit Utrecht; 2013. Available from: http://dspace.library.uu.nl:8080/handle/1874/282652

.