Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(twisted cohomology). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Alberta

1. Chang, Zhihua. AUTOMORPHISMS AND TWISTED FORMS OF DIFFERENTIAL LIE CONFORMAL SUPERALGEBRAS.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2013, University of Alberta

 Given a conformal superalgebra A over an algebraically closed field k of characteristic zero, a twisted loop conformal superalgebra L based on A has a… (more)

Subjects/Keywords: twisted forms; Galois cohomology; automorphisms; differential conformal superalgebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chang, Z. (2013). AUTOMORPHISMS AND TWISTED FORMS OF DIFFERENTIAL LIE CONFORMAL SUPERALGEBRAS. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/cjq085k07b

Chicago Manual of Style (16th Edition):

Chang, Zhihua. “AUTOMORPHISMS AND TWISTED FORMS OF DIFFERENTIAL LIE CONFORMAL SUPERALGEBRAS.” 2013. Doctoral Dissertation, University of Alberta. Accessed September 19, 2020. https://era.library.ualberta.ca/files/cjq085k07b.

MLA Handbook (7th Edition):

Chang, Zhihua. “AUTOMORPHISMS AND TWISTED FORMS OF DIFFERENTIAL LIE CONFORMAL SUPERALGEBRAS.” 2013. Web. 19 Sep 2020.

Vancouver:

Chang Z. AUTOMORPHISMS AND TWISTED FORMS OF DIFFERENTIAL LIE CONFORMAL SUPERALGEBRAS. [Internet] [Doctoral dissertation]. University of Alberta; 2013. [cited 2020 Sep 19]. Available from: https://era.library.ualberta.ca/files/cjq085k07b.

Council of Science Editors:

Chang Z. AUTOMORPHISMS AND TWISTED FORMS OF DIFFERENTIAL LIE CONFORMAL SUPERALGEBRAS. [Doctoral Dissertation]. University of Alberta; 2013. Available from: https://era.library.ualberta.ca/files/cjq085k07b


University of Oxford

2. Rubio, Roberto. Generalized geometry of type Bn.

Degree: PhD, 2014, University of Oxford

 Generalized geometry of type Bn is the study of geometric structures in T+T<sup>*</sup>+1, the sum of the tangent and cotangent bundles of a manifold and… (more)

Subjects/Keywords: 516; Mathematics; 3-manifold; almost contact geometry; complex geometry; deformation theory; G2(2)-structure; generalized complex geometry; twisted cohomology; generalized geometry; Lie algebroid

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rubio, R. (2014). Generalized geometry of type Bn. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803

Chicago Manual of Style (16th Edition):

Rubio, Roberto. “Generalized geometry of type Bn.” 2014. Doctoral Dissertation, University of Oxford. Accessed September 19, 2020. http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803.

MLA Handbook (7th Edition):

Rubio, Roberto. “Generalized geometry of type Bn.” 2014. Web. 19 Sep 2020.

Vancouver:

Rubio R. Generalized geometry of type Bn. [Internet] [Doctoral dissertation]. University of Oxford; 2014. [cited 2020 Sep 19]. Available from: http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803.

Council of Science Editors:

Rubio R. Generalized geometry of type Bn. [Doctoral Dissertation]. University of Oxford; 2014. Available from: http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803

3. Molinier, Rémi. Cohomology with twisted coefficients of the geometric realization of linking systems : Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison.

Degree: Docteur es, Mathématiques, 2015, Sorbonne Paris Cité

Nous présentons une étude de la cohomologie à coefficients tordus de la réalisation géométrique des systèmes de liaison. Plus précisément, si (S, Ƒ, ℒ) est… (more)

Subjects/Keywords: Système de fusion; Cohomologie à coefficients tordus; Classifiant; Cohomologie des groupes; Systeme de laison; Groupe fini p-local; Fusion system; Cohomology with twisted coefficients; Cohomology of groups; System of laying; P-Local finite group

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Molinier, R. (2015). Cohomology with twisted coefficients of the geometric realization of linking systems : Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2015USPCD021

Chicago Manual of Style (16th Edition):

Molinier, Rémi. “Cohomology with twisted coefficients of the geometric realization of linking systems : Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison.” 2015. Doctoral Dissertation, Sorbonne Paris Cité. Accessed September 19, 2020. http://www.theses.fr/2015USPCD021.

MLA Handbook (7th Edition):

Molinier, Rémi. “Cohomology with twisted coefficients of the geometric realization of linking systems : Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison.” 2015. Web. 19 Sep 2020.

Vancouver:

Molinier R. Cohomology with twisted coefficients of the geometric realization of linking systems : Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2015. [cited 2020 Sep 19]. Available from: http://www.theses.fr/2015USPCD021.

Council of Science Editors:

Molinier R. Cohomology with twisted coefficients of the geometric realization of linking systems : Cohomologie à coefficients tordus de la réalisation géométrique de systèmes de liaison. [Doctoral Dissertation]. Sorbonne Paris Cité; 2015. Available from: http://www.theses.fr/2015USPCD021

4. Istrati, Nicolina. Conformal structures on compact complex manifolds : Structures conformes sur les variétés complexes compactes.

Degree: Docteur es, Mathématiques, 2018, Sorbonne Paris Cité

Dans cette thèse on s’intéresse à deux types de structures conformes non-dégénérées sur une variété complexe compacte donnée. La première c’est une forme holomorphe symplectique… (more)

Subjects/Keywords: Forme holomorphe symplectique; Variété hyperkählerienne; Métrique localement conformément kählerienne; Métrique de Vaisman; Variété d’Oeljeklaus-Toma; Cohomologie twistée; Holomorphic symplectic form; Hyperkähler manifold; Locally conformally Kähler metric; Vaisman metric; Toric geometry; Oeljeklaus-Toma manifold; Twisted cohomology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Istrati, N. (2018). Conformal structures on compact complex manifolds : Structures conformes sur les variétés complexes compactes. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2018USPCC054

Chicago Manual of Style (16th Edition):

Istrati, Nicolina. “Conformal structures on compact complex manifolds : Structures conformes sur les variétés complexes compactes.” 2018. Doctoral Dissertation, Sorbonne Paris Cité. Accessed September 19, 2020. http://www.theses.fr/2018USPCC054.

MLA Handbook (7th Edition):

Istrati, Nicolina. “Conformal structures on compact complex manifolds : Structures conformes sur les variétés complexes compactes.” 2018. Web. 19 Sep 2020.

Vancouver:

Istrati N. Conformal structures on compact complex manifolds : Structures conformes sur les variétés complexes compactes. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2018. [cited 2020 Sep 19]. Available from: http://www.theses.fr/2018USPCC054.

Council of Science Editors:

Istrati N. Conformal structures on compact complex manifolds : Structures conformes sur les variétés complexes compactes. [Doctoral Dissertation]. Sorbonne Paris Cité; 2018. Available from: http://www.theses.fr/2018USPCC054

.