Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:


Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(thermoremanence). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

University of Oxford

1. Muxworthy, Adrian R. Stability of magnetic remanence in multidomain magnetite.

Degree: PhD, 1998, University of Oxford

If a rock is to retain a geologically meaningful magnetic record of its history, it is essential that it contains magnetic minerals which are capable of carrying stable magnetic remanence. Of the natural occurring magnetic minerals, magnetite is the most important because of its abundance and strong magnetic signature. The stability, i.e., the resistance to demagnetisation or reorientation, of magnetic remanence is related to grain size; in smaller grains the magnetic moments align to have single domain (SD) structures, in larger grains complex magnetic patterns are formed (multidomain (MD)). “Classical” domain theory predicts that SD remanence is stable, whilst MD remanence is not. However experimental evidence has shown that both SD and MD grains can have stable remanences. In this thesis the origin of stable MD remanence is examined. There are two opposing theories; one suggests that the stability is due to independent SD-like structures, the other postulates that the stability is due to metastable MD structure. A series of experiments were designed to examine the stability using a selection of characterised synthetic and natural samples. Low-stress hydrothermal recrystallised samples where grown for this study. For the first time, the stability of thermoremanence induced in hydrothermal crystals to cooling was examined. The results agree with previous observations for crushed and natural magnetites, and support kinematic models. The behaviour of SIRM and thermoremanences in MD magnetite to low-temperature cooling to below the crystallographic Verwey transition at 120-124 K (Tv) and the cubic magnetocrystalline anisotropy isotropic point (Tk) at 130 K was investigated. On cooling through Tv, SIRM was observed to decrease and demagnetise, however thermoremanence was found to display a large increase in the magnetisation at Tv, which was partially re- versible on warming. The size of the anomaly is shown to be dependent on the temperature at which the thermoremanence is acquired, internal stress and grain size. The anomaly is attributed to the large increase in the magnetocrystalline anisotropy which occurs on cooling through Tv . It is postulated that low-temperature cycling demagnetisation is due to kinematic processes which occur on cooling between room temperature and Tk. Characterisation of low-temperature treated remanence and partially alternating field demagnetised remanence, suggest that the stable remanence is multidomain. Low-temperature cooling of remanence in single sub-micron crystals was simulated using micromagnetic models. The models predict the observed anomaly for thermoremanence on cooling through Tv, and also the relative behaviour of SIRM and thermoremanence. The single domain threshold was calculated for the low-temperature phase of magnetite, and was found to be 0.14 microns, compared to 0.07 microns at room temperature.

Subjects/Keywords: 538.7; Palaeomagnetism and rock magnetism; multi domain magnetite; Verwey transition; micro magnetic modelling; thermoremanence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Muxworthy, A. R. (1998). Stability of magnetic remanence in multidomain magnetite. (Doctoral Dissertation). University of Oxford. Retrieved from ;

Chicago Manual of Style (16th Edition):

Muxworthy, Adrian R. “Stability of magnetic remanence in multidomain magnetite.” 1998. Doctoral Dissertation, University of Oxford. Accessed January 22, 2021. ;

MLA Handbook (7th Edition):

Muxworthy, Adrian R. “Stability of magnetic remanence in multidomain magnetite.” 1998. Web. 22 Jan 2021.


Muxworthy AR. Stability of magnetic remanence in multidomain magnetite. [Internet] [Doctoral dissertation]. University of Oxford; 1998. [cited 2021 Jan 22]. Available from: ;

Council of Science Editors:

Muxworthy AR. Stability of magnetic remanence in multidomain magnetite. [Doctoral Dissertation]. University of Oxford; 1998. Available from: ;