Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(theorem proving)`

.
Showing records 1 – 30 of
137 total matches.

Search Limiters

Dates

- 2017 – 2021 (28)
- 2012 – 2016 (42)
- 2007 – 2011 (33)
- 2002 – 2006 (16)

Universities

▼ Search Limiters

1. Scott, Phil. Ordered geometry in Hilbert's Grundlagen der Geometrie.

Degree: PhD, 2015, University of Edinburgh

URL: http://hdl.handle.net/1842/15948

► The Grundlagen der Geometrie brought Euclid’s ancient axioms up to the standards of modern logic, anticipating a completely mechanical verification of their theorems. There are…
(more)

Subjects/Keywords: 516.2; geometry; theorem proving; proofs

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Scott, P. (2015). Ordered geometry in Hilbert's Grundlagen der Geometrie. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/15948

Chicago Manual of Style (16^{th} Edition):

Scott, Phil. “Ordered geometry in Hilbert's Grundlagen der Geometrie.” 2015. Doctoral Dissertation, University of Edinburgh. Accessed March 05, 2021. http://hdl.handle.net/1842/15948.

MLA Handbook (7^{th} Edition):

Scott, Phil. “Ordered geometry in Hilbert's Grundlagen der Geometrie.” 2015. Web. 05 Mar 2021.

Vancouver:

Scott P. Ordered geometry in Hilbert's Grundlagen der Geometrie. [Internet] [Doctoral dissertation]. University of Edinburgh; 2015. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1842/15948.

Council of Science Editors:

Scott P. Ordered geometry in Hilbert's Grundlagen der Geometrie. [Doctoral Dissertation]. University of Edinburgh; 2015. Available from: http://hdl.handle.net/1842/15948

University of Kansas

2.
Austin, Evan Christopher.
HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic *Theorem* * Proving*.

Degree: MS, Electrical Engineering & Computer Science, 2011, University of Kansas

URL: http://hdl.handle.net/1808/8037

► HaskHOL is an implementation of a HOL *theorem* *proving* capability in Haskell. Motivated by a need to integrate *theorem* *proving* capabilities into a Haskell-based tool…
(more)

Subjects/Keywords: Computer science; Haskell; Hol; Theorem proving

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Austin, E. C. (2011). HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving. (Masters Thesis). University of Kansas. Retrieved from http://hdl.handle.net/1808/8037

Chicago Manual of Style (16^{th} Edition):

Austin, Evan Christopher. “HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving.” 2011. Masters Thesis, University of Kansas. Accessed March 05, 2021. http://hdl.handle.net/1808/8037.

MLA Handbook (7^{th} Edition):

Austin, Evan Christopher. “HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving.” 2011. Web. 05 Mar 2021.

Vancouver:

Austin EC. HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving. [Internet] [Masters thesis]. University of Kansas; 2011. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1808/8037.

Council of Science Editors:

Austin EC. HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving. [Masters Thesis]. University of Kansas; 2011. Available from: http://hdl.handle.net/1808/8037

University of Manchester

3. Hoder, Krystof. Practical aspects of automated first-order reasoning.

Degree: PhD, 2012, University of Manchester

URL: https://www.research.manchester.ac.uk/portal/en/theses/practical-aspects-of-automated-firstorder-reasoning(1331ec1f-802c-4aeb-9265-1248d8db2a8e).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558052

► Our work focuses on bringing the first-order reasoning closer to practicalapplications, particularly in software and hardware verification. The aim is to develop techniques that make…
(more)

Subjects/Keywords: 006.3; First-Order Reasoning; Automated Theorem Proving

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hoder, K. (2012). Practical aspects of automated first-order reasoning. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/practical-aspects-of-automated-firstorder-reasoning(1331ec1f-802c-4aeb-9265-1248d8db2a8e).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558052

Chicago Manual of Style (16^{th} Edition):

Hoder, Krystof. “Practical aspects of automated first-order reasoning.” 2012. Doctoral Dissertation, University of Manchester. Accessed March 05, 2021. https://www.research.manchester.ac.uk/portal/en/theses/practical-aspects-of-automated-firstorder-reasoning(1331ec1f-802c-4aeb-9265-1248d8db2a8e).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558052.

MLA Handbook (7^{th} Edition):

Hoder, Krystof. “Practical aspects of automated first-order reasoning.” 2012. Web. 05 Mar 2021.

Vancouver:

Hoder K. Practical aspects of automated first-order reasoning. [Internet] [Doctoral dissertation]. University of Manchester; 2012. [cited 2021 Mar 05]. Available from: https://www.research.manchester.ac.uk/portal/en/theses/practical-aspects-of-automated-firstorder-reasoning(1331ec1f-802c-4aeb-9265-1248d8db2a8e).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558052.

Council of Science Editors:

Hoder K. Practical aspects of automated first-order reasoning. [Doctoral Dissertation]. University of Manchester; 2012. Available from: https://www.research.manchester.ac.uk/portal/en/theses/practical-aspects-of-automated-firstorder-reasoning(1331ec1f-802c-4aeb-9265-1248d8db2a8e).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558052

4. Meikle, Laura Isabel. Intuition in formal proof : a novel framework for combining mathematical tools.

Degree: PhD, 2014, University of Edinburgh

URL: http://hdl.handle.net/1842/9663

► This doctoral thesis addresses one major difficulty in formal proof: removing obstructions to intuition which hamper the proof endeavour. We investigate this in the context…
(more)

Subjects/Keywords: 006.3; theorem proving; automated reasoning; computational geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Meikle, L. I. (2014). Intuition in formal proof : a novel framework for combining mathematical tools. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/9663

Chicago Manual of Style (16^{th} Edition):

Meikle, Laura Isabel. “Intuition in formal proof : a novel framework for combining mathematical tools.” 2014. Doctoral Dissertation, University of Edinburgh. Accessed March 05, 2021. http://hdl.handle.net/1842/9663.

MLA Handbook (7^{th} Edition):

Meikle, Laura Isabel. “Intuition in formal proof : a novel framework for combining mathematical tools.” 2014. Web. 05 Mar 2021.

Vancouver:

Meikle LI. Intuition in formal proof : a novel framework for combining mathematical tools. [Internet] [Doctoral dissertation]. University of Edinburgh; 2014. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1842/9663.

Council of Science Editors:

Meikle LI. Intuition in formal proof : a novel framework for combining mathematical tools. [Doctoral Dissertation]. University of Edinburgh; 2014. Available from: http://hdl.handle.net/1842/9663

Loughborough University

5. Okoli, Ifeyinwa. A novel term rewriting strategy for certain hierarchical AC-algebraic systems.

Degree: PhD, 1989, Loughborough University

URL: http://hdl.handle.net/2134/10641

Subjects/Keywords: 510; Theorem proving

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Okoli, I. (1989). A novel term rewriting strategy for certain hierarchical AC-algebraic systems. (Doctoral Dissertation). Loughborough University. Retrieved from http://hdl.handle.net/2134/10641

Chicago Manual of Style (16^{th} Edition):

Okoli, Ifeyinwa. “A novel term rewriting strategy for certain hierarchical AC-algebraic systems.” 1989. Doctoral Dissertation, Loughborough University. Accessed March 05, 2021. http://hdl.handle.net/2134/10641.

MLA Handbook (7^{th} Edition):

Okoli, Ifeyinwa. “A novel term rewriting strategy for certain hierarchical AC-algebraic systems.” 1989. Web. 05 Mar 2021.

Vancouver:

Okoli I. A novel term rewriting strategy for certain hierarchical AC-algebraic systems. [Internet] [Doctoral dissertation]. Loughborough University; 1989. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2134/10641.

Council of Science Editors:

Okoli I. A novel term rewriting strategy for certain hierarchical AC-algebraic systems. [Doctoral Dissertation]. Loughborough University; 1989. Available from: http://hdl.handle.net/2134/10641

University of British Columbia

6.
LeQuesne, Peter Neave.
A unit resolution *theorem* *proving* system.

Degree: MS- MSc, Computer Science, 1972, University of British Columbia

URL: http://hdl.handle.net/2429/33349

A unit resolution theorem proving system is developed and compared with the previous work of C.L. Chang. This thesis includes a description of a particular approach to unit resolution and a description of the resulting program and its effectiveness.

Subjects/Keywords: Automatic theorem proving.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

LeQuesne, P. N. (1972). A unit resolution theorem proving system. (Masters Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/33349

Chicago Manual of Style (16^{th} Edition):

LeQuesne, Peter Neave. “A unit resolution theorem proving system.” 1972. Masters Thesis, University of British Columbia. Accessed March 05, 2021. http://hdl.handle.net/2429/33349.

MLA Handbook (7^{th} Edition):

LeQuesne, Peter Neave. “A unit resolution theorem proving system.” 1972. Web. 05 Mar 2021.

Vancouver:

LeQuesne PN. A unit resolution theorem proving system. [Internet] [Masters thesis]. University of British Columbia; 1972. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2429/33349.

Council of Science Editors:

LeQuesne PN. A unit resolution theorem proving system. [Masters Thesis]. University of British Columbia; 1972. Available from: http://hdl.handle.net/2429/33349

University of British Columbia

7. Minicozzi, Eliana. On the completeness of linear strategies in automatic consequence finding.

Degree: MS- MSc, Computer Science, 1972, University of British Columbia

URL: http://hdl.handle.net/2429/33572

► The problem of the automatic generation of logical consequences of a set of axioms is examined. The merging subsumption linear strategy has been shown complete…
(more)

Subjects/Keywords: Automatic theorem proving.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Minicozzi, E. (1972). On the completeness of linear strategies in automatic consequence finding. (Masters Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/33572

Chicago Manual of Style (16^{th} Edition):

Minicozzi, Eliana. “On the completeness of linear strategies in automatic consequence finding.” 1972. Masters Thesis, University of British Columbia. Accessed March 05, 2021. http://hdl.handle.net/2429/33572.

MLA Handbook (7^{th} Edition):

Minicozzi, Eliana. “On the completeness of linear strategies in automatic consequence finding.” 1972. Web. 05 Mar 2021.

Vancouver:

Minicozzi E. On the completeness of linear strategies in automatic consequence finding. [Internet] [Masters thesis]. University of British Columbia; 1972. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2429/33572.

Council of Science Editors:

Minicozzi E. On the completeness of linear strategies in automatic consequence finding. [Masters Thesis]. University of British Columbia; 1972. Available from: http://hdl.handle.net/2429/33572

University of New South Wales

8. Greenaway, David. Automated proof-producing abstraction of C code.

Degree: Computer Science & Engineering, 2014, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/54260 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:13743/SOURCE02?view=true

► Before software can be formally reasoned about, it must first be represented in some form of logic. There are two approaches to carrying out this…
(more)

Subjects/Keywords: Interactive Theorem Proving; Formal Verification; Program Verification

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Greenaway, D. (2014). Automated proof-producing abstraction of C code. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/54260 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:13743/SOURCE02?view=true

Chicago Manual of Style (16^{th} Edition):

Greenaway, David. “Automated proof-producing abstraction of C code.” 2014. Doctoral Dissertation, University of New South Wales. Accessed March 05, 2021. http://handle.unsw.edu.au/1959.4/54260 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:13743/SOURCE02?view=true.

MLA Handbook (7^{th} Edition):

Greenaway, David. “Automated proof-producing abstraction of C code.” 2014. Web. 05 Mar 2021.

Vancouver:

Greenaway D. Automated proof-producing abstraction of C code. [Internet] [Doctoral dissertation]. University of New South Wales; 2014. [cited 2021 Mar 05]. Available from: http://handle.unsw.edu.au/1959.4/54260 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:13743/SOURCE02?view=true.

Council of Science Editors:

Greenaway D. Automated proof-producing abstraction of C code. [Doctoral Dissertation]. University of New South Wales; 2014. Available from: http://handle.unsw.edu.au/1959.4/54260 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:13743/SOURCE02?view=true

University of Oklahoma

9. Ralston, Ryan. Translating Clojure to ACL2 for Verification.

Degree: PhD, 2016, University of Oklahoma

URL: http://hdl.handle.net/11244/42982

► Software spends a significant portion of its life-cycle in the maintenance phase and over 20% of the maintenance effort is fixing defects. Formal methods, including…
(more)

Subjects/Keywords: Software Verification; Formal Methods; Theorem Proving

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ralston, R. (2016). Translating Clojure to ACL2 for Verification. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/42982

Chicago Manual of Style (16^{th} Edition):

Ralston, Ryan. “Translating Clojure to ACL2 for Verification.” 2016. Doctoral Dissertation, University of Oklahoma. Accessed March 05, 2021. http://hdl.handle.net/11244/42982.

MLA Handbook (7^{th} Edition):

Ralston, Ryan. “Translating Clojure to ACL2 for Verification.” 2016. Web. 05 Mar 2021.

Vancouver:

Ralston R. Translating Clojure to ACL2 for Verification. [Internet] [Doctoral dissertation]. University of Oklahoma; 2016. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/11244/42982.

Council of Science Editors:

Ralston R. Translating Clojure to ACL2 for Verification. [Doctoral Dissertation]. University of Oklahoma; 2016. Available from: http://hdl.handle.net/11244/42982

Univerzitet u Beogradu

10. Stojanović, Sana. 1981-. Формализација и аутоматско доказивање теорема еуклидске геометрије.

Degree: Matematički fakultet, 2018, Univerzitet u Beogradu

URL: https://fedorabg.bg.ac.rs/fedora/get/o:15164/bdef:Content/get

►

Рачунарство - Вештачка интелигенција / Computer Science - Artificial intelligence

Напредак геометрије кроз векове се може разматрати кроз развој различитих аксиоматских система који је описују.… (more)

Subjects/Keywords: coherent logic; formalization of geometry; automated theorem proving; interactive theorem proving; automated generation of readable proofs

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Stojanović, S. 1. (2018). Формализација и аутоматско доказивање теорема еуклидске геометрије. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:15164/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Stojanović, Sana 1981-. “Формализација и аутоматско доказивање теорема еуклидске геометрије.” 2018. Thesis, Univerzitet u Beogradu. Accessed March 05, 2021. https://fedorabg.bg.ac.rs/fedora/get/o:15164/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Stojanović, Sana 1981-. “Формализација и аутоматско доказивање теорема еуклидске геометрије.” 2018. Web. 05 Mar 2021.

Vancouver:

Stojanović S1. Формализација и аутоматско доказивање теорема еуклидске геометрије. [Internet] [Thesis]. Univerzitet u Beogradu; 2018. [cited 2021 Mar 05]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:15164/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Stojanović S1. Формализација и аутоматско доказивање теорема еуклидске геометрије. [Thesis]. Univerzitet u Beogradu; 2018. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:15164/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

Universiteit Utrecht

11. Bitane, Y. On Formalizing Decreasing Proof Orders.

Degree: 2015, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/321339

► Confluence is an important property of term rewriting systems. Since any algorithm can be modelled as such, the decreasing diagrams technique is very useful for…
(more)

Subjects/Keywords: term rewriting; coq; automated theorem proving; decreasing diagrams

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bitane, Y. (2015). On Formalizing Decreasing Proof Orders. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/321339

Chicago Manual of Style (16^{th} Edition):

Bitane, Y. “On Formalizing Decreasing Proof Orders.” 2015. Masters Thesis, Universiteit Utrecht. Accessed March 05, 2021. http://dspace.library.uu.nl:8080/handle/1874/321339.

MLA Handbook (7^{th} Edition):

Bitane, Y. “On Formalizing Decreasing Proof Orders.” 2015. Web. 05 Mar 2021.

Vancouver:

Bitane Y. On Formalizing Decreasing Proof Orders. [Internet] [Masters thesis]. Universiteit Utrecht; 2015. [cited 2021 Mar 05]. Available from: http://dspace.library.uu.nl:8080/handle/1874/321339.

Council of Science Editors:

Bitane Y. On Formalizing Decreasing Proof Orders. [Masters Thesis]. Universiteit Utrecht; 2015. Available from: http://dspace.library.uu.nl:8080/handle/1874/321339

University of Tasmania

12. Stokes, T E(Timothy Edward). On the algebraic and algorithmic properties of some generalised algebras.

Degree: 1990, University of Tasmania

URL: https://eprints.utas.edu.au/21929/1/whole_StokesTimothyEdward1991_thesis.pdf

Subjects/Keywords: Geometry; Algebraic; Automatic theorem proving

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Stokes, T. E. E. (1990). On the algebraic and algorithmic properties of some generalised algebras. (Thesis). University of Tasmania. Retrieved from https://eprints.utas.edu.au/21929/1/whole_StokesTimothyEdward1991_thesis.pdf

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Stokes, T E(Timothy Edward). “On the algebraic and algorithmic properties of some generalised algebras.” 1990. Thesis, University of Tasmania. Accessed March 05, 2021. https://eprints.utas.edu.au/21929/1/whole_StokesTimothyEdward1991_thesis.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Stokes, T E(Timothy Edward). “On the algebraic and algorithmic properties of some generalised algebras.” 1990. Web. 05 Mar 2021.

Vancouver:

Stokes TEE. On the algebraic and algorithmic properties of some generalised algebras. [Internet] [Thesis]. University of Tasmania; 1990. [cited 2021 Mar 05]. Available from: https://eprints.utas.edu.au/21929/1/whole_StokesTimothyEdward1991_thesis.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Stokes TEE. On the algebraic and algorithmic properties of some generalised algebras. [Thesis]. University of Tasmania; 1990. Available from: https://eprints.utas.edu.au/21929/1/whole_StokesTimothyEdward1991_thesis.pdf

Not specified: Masters Thesis or Doctoral Dissertation

Univerzitet u Beogradu

13. Nikolić, Mladen S. Usmeravanje pretrage u automatskom dokazivanju teorema.

Degree: Matematički fakultet, 2015, Univerzitet u Beogradu

URL: https://fedorabg.bg.ac.rs/fedora/get/o:8050/bdef:Content/get

►

Računarstvo-Automatsko dokazivanje teorema / computer science-Automated *theorem* *proving*

U ovom radu se razmatra problem usmeravanja pretrage u automatskom dokazivanju teorema. Rad se sastoji od dva… (more)

Subjects/Keywords: automated theorem proving; search; SAT solvers; coherent logic; data mining

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nikolić, M. S. (2015). Usmeravanje pretrage u automatskom dokazivanju teorema. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:8050/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Nikolić, Mladen S. “Usmeravanje pretrage u automatskom dokazivanju teorema.” 2015. Thesis, Univerzitet u Beogradu. Accessed March 05, 2021. https://fedorabg.bg.ac.rs/fedora/get/o:8050/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Nikolić, Mladen S. “Usmeravanje pretrage u automatskom dokazivanju teorema.” 2015. Web. 05 Mar 2021.

Vancouver:

Nikolić MS. Usmeravanje pretrage u automatskom dokazivanju teorema. [Internet] [Thesis]. Univerzitet u Beogradu; 2015. [cited 2021 Mar 05]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:8050/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Nikolić MS. Usmeravanje pretrage u automatskom dokazivanju teorema. [Thesis]. Univerzitet u Beogradu; 2015. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:8050/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

University of Cambridge

14. Li, Wenda. Towards justifying computer algebra algorithms in Isabelle/HOL.

Degree: PhD, 2019, University of Cambridge

URL: https://www.repository.cam.ac.uk/handle/1810/289389

► As verification efforts using interactive *theorem* *proving* grow, we are in need of certified algorithms in computer algebra to tackle problems over the real numbers.…
(more)

Subjects/Keywords: formal verification; theorem proving; Isabelle/HOL; computer algebra; cylindrical algebraic decomposition

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Li, W. (2019). Towards justifying computer algebra algorithms in Isabelle/HOL. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/289389

Chicago Manual of Style (16^{th} Edition):

Li, Wenda. “Towards justifying computer algebra algorithms in Isabelle/HOL.” 2019. Doctoral Dissertation, University of Cambridge. Accessed March 05, 2021. https://www.repository.cam.ac.uk/handle/1810/289389.

MLA Handbook (7^{th} Edition):

Li, Wenda. “Towards justifying computer algebra algorithms in Isabelle/HOL.” 2019. Web. 05 Mar 2021.

Vancouver:

Li W. Towards justifying computer algebra algorithms in Isabelle/HOL. [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2021 Mar 05]. Available from: https://www.repository.cam.ac.uk/handle/1810/289389.

Council of Science Editors:

Li W. Towards justifying computer algebra algorithms in Isabelle/HOL. [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://www.repository.cam.ac.uk/handle/1810/289389

University of Oxford

15. Boehm, Peter. Incremental modelling for verified communication architectures.

Degree: PhD, 2011, University of Oxford

URL: http://ora.ox.ac.uk/objects/uuid:ec6c9e06-7395-4af4-b961-b2ed837fda89 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559739

► Modern computer systems are advancing from multi-core to many-core designs and System-on-chips (SoC) are becoming increasingly complex while integrating a great variety of components, thus…
(more)

Subjects/Keywords: 004.62; Theory and automated verification; communication protocols; verification; theorem proving

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Boehm, P. (2011). Incremental modelling for verified communication architectures. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:ec6c9e06-7395-4af4-b961-b2ed837fda89 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559739

Chicago Manual of Style (16^{th} Edition):

Boehm, Peter. “Incremental modelling for verified communication architectures.” 2011. Doctoral Dissertation, University of Oxford. Accessed March 05, 2021. http://ora.ox.ac.uk/objects/uuid:ec6c9e06-7395-4af4-b961-b2ed837fda89 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559739.

MLA Handbook (7^{th} Edition):

Boehm, Peter. “Incremental modelling for verified communication architectures.” 2011. Web. 05 Mar 2021.

Vancouver:

Boehm P. Incremental modelling for verified communication architectures. [Internet] [Doctoral dissertation]. University of Oxford; 2011. [cited 2021 Mar 05]. Available from: http://ora.ox.ac.uk/objects/uuid:ec6c9e06-7395-4af4-b961-b2ed837fda89 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559739.

Council of Science Editors:

Boehm P. Incremental modelling for verified communication architectures. [Doctoral Dissertation]. University of Oxford; 2011. Available from: http://ora.ox.ac.uk/objects/uuid:ec6c9e06-7395-4af4-b961-b2ed837fda89 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559739

University of Edinburgh

16. Duncan, Hazel. The use of data-mining for the automatic formation of tactics.

Degree: PhD, 2007, University of Edinburgh

URL: http://hdl.handle.net/1842/1768

► As functions which further the state of a proof in automated *theorem* *proving*, tactics are an important development in automated deduction. This thesis describes a…
(more)

Subjects/Keywords: 005.3; Tactics; Theorem Proving

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Duncan, H. (2007). The use of data-mining for the automatic formation of tactics. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/1768

Chicago Manual of Style (16^{th} Edition):

Duncan, Hazel. “The use of data-mining for the automatic formation of tactics.” 2007. Doctoral Dissertation, University of Edinburgh. Accessed March 05, 2021. http://hdl.handle.net/1842/1768.

MLA Handbook (7^{th} Edition):

Duncan, Hazel. “The use of data-mining for the automatic formation of tactics.” 2007. Web. 05 Mar 2021.

Vancouver:

Duncan H. The use of data-mining for the automatic formation of tactics. [Internet] [Doctoral dissertation]. University of Edinburgh; 2007. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1842/1768.

Council of Science Editors:

Duncan H. The use of data-mining for the automatic formation of tactics. [Doctoral Dissertation]. University of Edinburgh; 2007. Available from: http://hdl.handle.net/1842/1768

University of Edinburgh

17. Raggi, Daniel. Searching the space of representations : reasoning through transformations for mathematical problem solving.

Degree: PhD, 2016, University of Edinburgh

URL: http://hdl.handle.net/1842/22936

► The role of representation in reasoning has been long and widely regarded as crucial. It has remained one of the fundamental considerations in the design…
(more)

Subjects/Keywords: 511; automated reasoning; representation; transformation; interactive theorem proving

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Raggi, D. (2016). Searching the space of representations : reasoning through transformations for mathematical problem solving. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/22936

Chicago Manual of Style (16^{th} Edition):

Raggi, Daniel. “Searching the space of representations : reasoning through transformations for mathematical problem solving.” 2016. Doctoral Dissertation, University of Edinburgh. Accessed March 05, 2021. http://hdl.handle.net/1842/22936.

MLA Handbook (7^{th} Edition):

Raggi, Daniel. “Searching the space of representations : reasoning through transformations for mathematical problem solving.” 2016. Web. 05 Mar 2021.

Vancouver:

Raggi D. Searching the space of representations : reasoning through transformations for mathematical problem solving. [Internet] [Doctoral dissertation]. University of Edinburgh; 2016. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1842/22936.

Council of Science Editors:

Raggi D. Searching the space of representations : reasoning through transformations for mathematical problem solving. [Doctoral Dissertation]. University of Edinburgh; 2016. Available from: http://hdl.handle.net/1842/22936

Hong Kong University of Science and Technology

18.
Wang, Jianwei CSE.
Find closed form solutions to recurrences using *theorem* discovery.

Degree: 2019, Hong Kong University of Science and Technology

URL: http://repository.ust.hk/ir/Record/1783.1-100110 ; https://doi.org/10.14711/thesis-991012730263703412 ; http://repository.ust.hk/ir/bitstream/1783.1-100110/1/th_redirect.html

► Recent years, program verification has become a more and more key problem in computer science. Solving recurrences, as a vital part of program verification system,…
(more)

Subjects/Keywords: Automatic theorem proving ; Computer programs ; Verification ; Machine learning ; Computer algorithms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang, J. C. (2019). Find closed form solutions to recurrences using theorem discovery. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-100110 ; https://doi.org/10.14711/thesis-991012730263703412 ; http://repository.ust.hk/ir/bitstream/1783.1-100110/1/th_redirect.html

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wang, Jianwei CSE. “Find closed form solutions to recurrences using theorem discovery.” 2019. Thesis, Hong Kong University of Science and Technology. Accessed March 05, 2021. http://repository.ust.hk/ir/Record/1783.1-100110 ; https://doi.org/10.14711/thesis-991012730263703412 ; http://repository.ust.hk/ir/bitstream/1783.1-100110/1/th_redirect.html.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wang, Jianwei CSE. “Find closed form solutions to recurrences using theorem discovery.” 2019. Web. 05 Mar 2021.

Vancouver:

Wang JC. Find closed form solutions to recurrences using theorem discovery. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2019. [cited 2021 Mar 05]. Available from: http://repository.ust.hk/ir/Record/1783.1-100110 ; https://doi.org/10.14711/thesis-991012730263703412 ; http://repository.ust.hk/ir/bitstream/1783.1-100110/1/th_redirect.html.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang JC. Find closed form solutions to recurrences using theorem discovery. [Thesis]. Hong Kong University of Science and Technology; 2019. Available from: http://repository.ust.hk/ir/Record/1783.1-100110 ; https://doi.org/10.14711/thesis-991012730263703412 ; http://repository.ust.hk/ir/bitstream/1783.1-100110/1/th_redirect.html

Not specified: Masters Thesis or Doctoral Dissertation

Georgia Tech

19. Goble, Tiffany Danielle. Automate Reasoning: Computer Assisted Proofs in Set Theory Using Godel's Algorithm for Class Formation.

Degree: MS, Mathematics, 2004, Georgia Tech

URL: http://hdl.handle.net/1853/4767

► Automated reasoning, and in particular automated *theorem* *proving*, has become a very important research field within the world of mathematics. Besides being used to verify…
(more)

Subjects/Keywords: Automated reasoning; Automated theorem proving

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Goble, T. D. (2004). Automate Reasoning: Computer Assisted Proofs in Set Theory Using Godel's Algorithm for Class Formation. (Masters Thesis). Georgia Tech. Retrieved from http://hdl.handle.net/1853/4767

Chicago Manual of Style (16^{th} Edition):

Goble, Tiffany Danielle. “Automate Reasoning: Computer Assisted Proofs in Set Theory Using Godel's Algorithm for Class Formation.” 2004. Masters Thesis, Georgia Tech. Accessed March 05, 2021. http://hdl.handle.net/1853/4767.

MLA Handbook (7^{th} Edition):

Goble, Tiffany Danielle. “Automate Reasoning: Computer Assisted Proofs in Set Theory Using Godel's Algorithm for Class Formation.” 2004. Web. 05 Mar 2021.

Vancouver:

Goble TD. Automate Reasoning: Computer Assisted Proofs in Set Theory Using Godel's Algorithm for Class Formation. [Internet] [Masters thesis]. Georgia Tech; 2004. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1853/4767.

Council of Science Editors:

Goble TD. Automate Reasoning: Computer Assisted Proofs in Set Theory Using Godel's Algorithm for Class Formation. [Masters Thesis]. Georgia Tech; 2004. Available from: http://hdl.handle.net/1853/4767

University of Illinois – Urbana-Champaign

20. Popescu, Andrei. Contributions to the theory of syntax with bindings and to process algebra.

Degree: PhD, 0112, 2011, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/18477

► We develop a theory of syntax with bindings, focusing on: - methodological issues concerning the convenient representation of syntax; - techniques for recursive definitions and…
(more)

Subjects/Keywords: Syntax with Bindings; Lambda Calculus; Coinduction; Theorem proving; Isabelle

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Popescu, A. (2011). Contributions to the theory of syntax with bindings and to process algebra. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/18477

Chicago Manual of Style (16^{th} Edition):

Popescu, Andrei. “Contributions to the theory of syntax with bindings and to process algebra.” 2011. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed March 05, 2021. http://hdl.handle.net/2142/18477.

MLA Handbook (7^{th} Edition):

Popescu, Andrei. “Contributions to the theory of syntax with bindings and to process algebra.” 2011. Web. 05 Mar 2021.

Vancouver:

Popescu A. Contributions to the theory of syntax with bindings and to process algebra. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2011. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2142/18477.

Council of Science Editors:

Popescu A. Contributions to the theory of syntax with bindings and to process algebra. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2011. Available from: http://hdl.handle.net/2142/18477

Georgia Tech

21. Jobredeaux, Romain J. Formal verification of control software.

Degree: PhD, Aerospace Engineering, 2015, Georgia Tech

URL: http://hdl.handle.net/1853/53841

► In a context of heightened requirements for safety-critical embedded systems and ever-increasing costs of verification and validation, this research proposes to advance the state of…
(more)

Subjects/Keywords: Formal methods; LMI; Lyapunov; Static analysis; Control software; Theorem proving

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jobredeaux, R. J. (2015). Formal verification of control software. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/53841

Chicago Manual of Style (16^{th} Edition):

Jobredeaux, Romain J. “Formal verification of control software.” 2015. Doctoral Dissertation, Georgia Tech. Accessed March 05, 2021. http://hdl.handle.net/1853/53841.

MLA Handbook (7^{th} Edition):

Jobredeaux, Romain J. “Formal verification of control software.” 2015. Web. 05 Mar 2021.

Vancouver:

Jobredeaux RJ. Formal verification of control software. [Internet] [Doctoral dissertation]. Georgia Tech; 2015. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1853/53841.

Council of Science Editors:

Jobredeaux RJ. Formal verification of control software. [Doctoral Dissertation]. Georgia Tech; 2015. Available from: http://hdl.handle.net/1853/53841

Louisiana State University

22. Lu, Zheng. Deductive formal verification of embedded systems.

Degree: PhD, Computer Sciences, 2012, Louisiana State University

URL: etd-11102012-171915 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1525

► <div align = "justify"> We combine static analysis techniques with model-based deductive verification using SMT solvers to provide a framework that, given an analysis aspect…
(more)

Subjects/Keywords: Coq; Static Code Analysis; Theorem Proving; Android; Formal Verification; SMT

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lu, Z. (2012). Deductive formal verification of embedded systems. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-11102012-171915 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1525

Chicago Manual of Style (16^{th} Edition):

Lu, Zheng. “Deductive formal verification of embedded systems.” 2012. Doctoral Dissertation, Louisiana State University. Accessed March 05, 2021. etd-11102012-171915 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1525.

MLA Handbook (7^{th} Edition):

Lu, Zheng. “Deductive formal verification of embedded systems.” 2012. Web. 05 Mar 2021.

Vancouver:

Lu Z. Deductive formal verification of embedded systems. [Internet] [Doctoral dissertation]. Louisiana State University; 2012. [cited 2021 Mar 05]. Available from: etd-11102012-171915 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1525.

Council of Science Editors:

Lu Z. Deductive formal verification of embedded systems. [Doctoral Dissertation]. Louisiana State University; 2012. Available from: etd-11102012-171915 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1525

23. RICART, JUAN. Hopster: Automated discovery of mathematical properties in HOL .

Degree: Chalmers tekniska högskola / Institutionen för data och informationsteknik, 2019, Chalmers University of Technology

URL: http://hdl.handle.net/20.500.12380/300420

► A new tactic for HOL is proposed that is suitable for *proving* equational properties of functional programs. HOL has numerous tactics that automate the process…
(more)

Subjects/Keywords: theory exploration; automated theorem proving; hopster; hol; quickspec

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

RICART, J. (2019). Hopster: Automated discovery of mathematical properties in HOL . (Thesis). Chalmers University of Technology. Retrieved from http://hdl.handle.net/20.500.12380/300420

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

RICART, JUAN. “Hopster: Automated discovery of mathematical properties in HOL .” 2019. Thesis, Chalmers University of Technology. Accessed March 05, 2021. http://hdl.handle.net/20.500.12380/300420.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

RICART, JUAN. “Hopster: Automated discovery of mathematical properties in HOL .” 2019. Web. 05 Mar 2021.

Vancouver:

RICART J. Hopster: Automated discovery of mathematical properties in HOL . [Internet] [Thesis]. Chalmers University of Technology; 2019. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/20.500.12380/300420.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

RICART J. Hopster: Automated discovery of mathematical properties in HOL . [Thesis]. Chalmers University of Technology; 2019. Available from: http://hdl.handle.net/20.500.12380/300420

Not specified: Masters Thesis or Doctoral Dissertation

University of New South Wales

24. Syeda, Hira. Low-level program verification under cached address translation.

Degree: Computer Science & Engineering, 2019, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/63277 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:60079/SOURCE02?view=true

► Operating system (OS) kernels achieve isolation between user-level processes using multi-level page tables. The hardware-implemented translation lookaside buffer (TLB) caches page table walks, and therefore…
(more)

Subjects/Keywords: Theorem proving; Operating system verification; Cached address translation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Syeda, H. (2019). Low-level program verification under cached address translation. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/63277 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:60079/SOURCE02?view=true

Chicago Manual of Style (16^{th} Edition):

Syeda, Hira. “Low-level program verification under cached address translation.” 2019. Doctoral Dissertation, University of New South Wales. Accessed March 05, 2021. http://handle.unsw.edu.au/1959.4/63277 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:60079/SOURCE02?view=true.

MLA Handbook (7^{th} Edition):

Syeda, Hira. “Low-level program verification under cached address translation.” 2019. Web. 05 Mar 2021.

Vancouver:

Syeda H. Low-level program verification under cached address translation. [Internet] [Doctoral dissertation]. University of New South Wales; 2019. [cited 2021 Mar 05]. Available from: http://handle.unsw.edu.au/1959.4/63277 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:60079/SOURCE02?view=true.

Council of Science Editors:

Syeda H. Low-level program verification under cached address translation. [Doctoral Dissertation]. University of New South Wales; 2019. Available from: http://handle.unsw.edu.au/1959.4/63277 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:60079/SOURCE02?view=true

University of New South Wales

25. Boyton, Andrew. Secure architectures on a verified microkernel.

Degree: Computer Science & Engineering, 2014, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/55628 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:38182/SOURCE02?view=true

► The safety and security of software systems depends on how they are initially configured. Manually writing program codethat establishes such an initial configuration is a…
(more)

Subjects/Keywords: Separation logic; Interactive Theorem Proving; Microkernels; Separation logic

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Boyton, A. (2014). Secure architectures on a verified microkernel. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/55628 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:38182/SOURCE02?view=true

Chicago Manual of Style (16^{th} Edition):

Boyton, Andrew. “Secure architectures on a verified microkernel.” 2014. Doctoral Dissertation, University of New South Wales. Accessed March 05, 2021. http://handle.unsw.edu.au/1959.4/55628 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:38182/SOURCE02?view=true.

MLA Handbook (7^{th} Edition):

Boyton, Andrew. “Secure architectures on a verified microkernel.” 2014. Web. 05 Mar 2021.

Vancouver:

Boyton A. Secure architectures on a verified microkernel. [Internet] [Doctoral dissertation]. University of New South Wales; 2014. [cited 2021 Mar 05]. Available from: http://handle.unsw.edu.au/1959.4/55628 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:38182/SOURCE02?view=true.

Council of Science Editors:

Boyton A. Secure architectures on a verified microkernel. [Doctoral Dissertation]. University of New South Wales; 2014. Available from: http://handle.unsw.edu.au/1959.4/55628 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:38182/SOURCE02?view=true

University of New South Wales

26. Matichuk, Daniel. Automation for Proof Engineering: Machine-Checked Proofs At Scale.

Degree: Computer Science & Engineering, 2018, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/60290 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:51703/SOURCE2?view=true

► Formal proofs, interactively developed and machine-checked, are a means to achieve the highest level of assurance in the correctness of software. In larger verification projects,…
(more)

Subjects/Keywords: Automated reasoning; Interactive theorem proving; Proof engineering; Machine-checked proof

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Matichuk, D. (2018). Automation for Proof Engineering: Machine-Checked Proofs At Scale. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/60290 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:51703/SOURCE2?view=true

Chicago Manual of Style (16^{th} Edition):

Matichuk, Daniel. “Automation for Proof Engineering: Machine-Checked Proofs At Scale.” 2018. Doctoral Dissertation, University of New South Wales. Accessed March 05, 2021. http://handle.unsw.edu.au/1959.4/60290 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:51703/SOURCE2?view=true.

MLA Handbook (7^{th} Edition):

Matichuk, Daniel. “Automation for Proof Engineering: Machine-Checked Proofs At Scale.” 2018. Web. 05 Mar 2021.

Vancouver:

Matichuk D. Automation for Proof Engineering: Machine-Checked Proofs At Scale. [Internet] [Doctoral dissertation]. University of New South Wales; 2018. [cited 2021 Mar 05]. Available from: http://handle.unsw.edu.au/1959.4/60290 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:51703/SOURCE2?view=true.

Council of Science Editors:

Matichuk D. Automation for Proof Engineering: Machine-Checked Proofs At Scale. [Doctoral Dissertation]. University of New South Wales; 2018. Available from: http://handle.unsw.edu.au/1959.4/60290 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:51703/SOURCE2?view=true

Simon Fraser University

27. Mitchell, David G. An empirical study of random SAT.

Degree: 1993, Simon Fraser University

URL: http://summit.sfu.ca/item/5624

Subjects/Keywords: Automatic theorem proving.; Artificial intelligence.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mitchell, D. G. (1993). An empirical study of random SAT. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/5624

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mitchell, David G. “An empirical study of random SAT.” 1993. Thesis, Simon Fraser University. Accessed March 05, 2021. http://summit.sfu.ca/item/5624.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mitchell, David G. “An empirical study of random SAT.” 1993. Web. 05 Mar 2021.

Vancouver:

Mitchell DG. An empirical study of random SAT. [Internet] [Thesis]. Simon Fraser University; 1993. [cited 2021 Mar 05]. Available from: http://summit.sfu.ca/item/5624.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mitchell DG. An empirical study of random SAT. [Thesis]. Simon Fraser University; 1993. Available from: http://summit.sfu.ca/item/5624

Not specified: Masters Thesis or Doctoral Dissertation

Univerzitet u Beogradu

28. Marinković, Vesna, 1982-. Аутоматско решавање конструктивних проблема у геометрији.

Degree: Matematički fakultet, 2016, Univerzitet u Beogradu

URL: https://fedorabg.bg.ac.rs/fedora/get/o:11479/bdef:Content/get

►

Рачунарство - Вештачка интелигенција / Artificial Intelligence

Проблеми геометријских конструкција уз помоћ лењира и шестара представљају један од најстаријих и најизазовнијих проблема у елементарној математици.… (more)

Subjects/Keywords: automated reasoning; automated theorem proving; interactive theorem proving; automated generation of readable proofs; coherent logic; geometry construction problems; constructions by ruler and compass

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Marinković, Vesna, 1. (2016). Аутоматско решавање конструктивних проблема у геометрији. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:11479/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Marinković, Vesna, 1982-. “Аутоматско решавање конструктивних проблема у геометрији.” 2016. Thesis, Univerzitet u Beogradu. Accessed March 05, 2021. https://fedorabg.bg.ac.rs/fedora/get/o:11479/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Marinković, Vesna, 1982-. “Аутоматско решавање конструктивних проблема у геометрији.” 2016. Web. 05 Mar 2021.

Vancouver:

Marinković, Vesna 1. Аутоматско решавање конструктивних проблема у геометрији. [Internet] [Thesis]. Univerzitet u Beogradu; 2016. [cited 2021 Mar 05]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11479/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Marinković, Vesna 1. Аутоматско решавање конструктивних проблема у геометрији. [Thesis]. Univerzitet u Beogradu; 2016. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11479/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

Indian Institute of Science

29. Prathamesh, Turga Venkata Hanumantha. Mechanising knot Theory.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

URL: http://etd.iisc.ac.in/handle/2005/3052

► Mechanisation of Mathematics refers to use of computers to generate or check proofs in Mathematics. It involves translation of relevant mathematical theories from one system…
(more)

Subjects/Keywords: Knot Theory; Theorem Proving; Formal Theorem Proving; Kauffman Bracket; Link Theory; First Order Logic; Tangles; Matrices; Formalising Knot Theory; Symbolic and Mathematical Logic; Knots; Braids; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Prathamesh, T. V. H. (2018). Mechanising knot Theory. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3052

Chicago Manual of Style (16^{th} Edition):

Prathamesh, Turga Venkata Hanumantha. “Mechanising knot Theory.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed March 05, 2021. http://etd.iisc.ac.in/handle/2005/3052.

MLA Handbook (7^{th} Edition):

Prathamesh, Turga Venkata Hanumantha. “Mechanising knot Theory.” 2018. Web. 05 Mar 2021.

Vancouver:

Prathamesh TVH. Mechanising knot Theory. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2021 Mar 05]. Available from: http://etd.iisc.ac.in/handle/2005/3052.

Council of Science Editors:

Prathamesh TVH. Mechanising knot Theory. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3052

30. Mohand Oussaïd, Linda. Conception et vérification formelles des interfaces homme-machine multimodales : applications à la multimodalité en sortie : Formal modelling and verification of multimodal human computer interfaces : output multimodality.

Degree: Docteur es, Informatique et applications, 2014, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique

URL: http://www.theses.fr/2014ESMA0022

►

Les interfaces homme-machine (IHM) multimodales offrent à l’utilisateur la possibilité de combiner les modalités d’interaction afin d’augmenter la robustesse et l’utilisabilité de l’interface utilisateur d’un… (more)

Subjects/Keywords: Multimodalité en sortie; Raffinement; Preuve de théorème; Output multimodality; Refinement; Theorem proving

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mohand Oussaïd, L. (2014). Conception et vérification formelles des interfaces homme-machine multimodales : applications à la multimodalité en sortie : Formal modelling and verification of multimodal human computer interfaces : output multimodality. (Doctoral Dissertation). Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique. Retrieved from http://www.theses.fr/2014ESMA0022

Chicago Manual of Style (16^{th} Edition):

Mohand Oussaïd, Linda. “Conception et vérification formelles des interfaces homme-machine multimodales : applications à la multimodalité en sortie : Formal modelling and verification of multimodal human computer interfaces : output multimodality.” 2014. Doctoral Dissertation, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique. Accessed March 05, 2021. http://www.theses.fr/2014ESMA0022.

MLA Handbook (7^{th} Edition):

Mohand Oussaïd, Linda. “Conception et vérification formelles des interfaces homme-machine multimodales : applications à la multimodalité en sortie : Formal modelling and verification of multimodal human computer interfaces : output multimodality.” 2014. Web. 05 Mar 2021.

Vancouver:

Mohand Oussaïd L. Conception et vérification formelles des interfaces homme-machine multimodales : applications à la multimodalité en sortie : Formal modelling and verification of multimodal human computer interfaces : output multimodality. [Internet] [Doctoral dissertation]. Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique; 2014. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2014ESMA0022.

Council of Science Editors:

Mohand Oussaïd L. Conception et vérification formelles des interfaces homme-machine multimodales : applications à la multimodalité en sortie : Formal modelling and verification of multimodal human computer interfaces : output multimodality. [Doctoral Dissertation]. Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique; 2014. Available from: http://www.theses.fr/2014ESMA0022