Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(theorem proving). Showing records 1 – 30 of 137 total matches.

[1] [2] [3] [4] [5]

Search Limiters

Last 2 Years | English Only

Levels

Country

▼ Search Limiters

1. Scott, Phil. Ordered geometry in Hilbert's Grundlagen der Geometrie.

Degree: PhD, 2015, University of Edinburgh

 The Grundlagen der Geometrie brought Euclid’s ancient axioms up to the standards of modern logic, anticipating a completely mechanical verification of their theorems. There are… (more)

Subjects/Keywords: 516.2; geometry; theorem proving; proofs

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scott, P. (2015). Ordered geometry in Hilbert's Grundlagen der Geometrie. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/15948

Chicago Manual of Style (16th Edition):

Scott, Phil. “Ordered geometry in Hilbert's Grundlagen der Geometrie.” 2015. Doctoral Dissertation, University of Edinburgh. Accessed March 05, 2021. http://hdl.handle.net/1842/15948.

MLA Handbook (7th Edition):

Scott, Phil. “Ordered geometry in Hilbert's Grundlagen der Geometrie.” 2015. Web. 05 Mar 2021.

Vancouver:

Scott P. Ordered geometry in Hilbert's Grundlagen der Geometrie. [Internet] [Doctoral dissertation]. University of Edinburgh; 2015. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1842/15948.

Council of Science Editors:

Scott P. Ordered geometry in Hilbert's Grundlagen der Geometrie. [Doctoral Dissertation]. University of Edinburgh; 2015. Available from: http://hdl.handle.net/1842/15948


University of Kansas

2. Austin, Evan Christopher. HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving.

Degree: MS, Electrical Engineering & Computer Science, 2011, University of Kansas

 HaskHOL is an implementation of a HOL theorem proving capability in Haskell. Motivated by a need to integrate theorem proving capabilities into a Haskell-based tool… (more)

Subjects/Keywords: Computer science; Haskell; Hol; Theorem proving

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Austin, E. C. (2011). HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving. (Masters Thesis). University of Kansas. Retrieved from http://hdl.handle.net/1808/8037

Chicago Manual of Style (16th Edition):

Austin, Evan Christopher. “HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving.” 2011. Masters Thesis, University of Kansas. Accessed March 05, 2021. http://hdl.handle.net/1808/8037.

MLA Handbook (7th Edition):

Austin, Evan Christopher. “HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving.” 2011. Web. 05 Mar 2021.

Vancouver:

Austin EC. HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving. [Internet] [Masters thesis]. University of Kansas; 2011. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1808/8037.

Council of Science Editors:

Austin EC. HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic Theorem Proving. [Masters Thesis]. University of Kansas; 2011. Available from: http://hdl.handle.net/1808/8037


University of Manchester

3. Hoder, Krystof. Practical aspects of automated first-order reasoning.

Degree: PhD, 2012, University of Manchester

 Our work focuses on bringing the first-order reasoning closer to practicalapplications, particularly in software and hardware verification. The aim is to develop techniques that make… (more)

Subjects/Keywords: 006.3; First-Order Reasoning; Automated Theorem Proving

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hoder, K. (2012). Practical aspects of automated first-order reasoning. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/practical-aspects-of-automated-firstorder-reasoning(1331ec1f-802c-4aeb-9265-1248d8db2a8e).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558052

Chicago Manual of Style (16th Edition):

Hoder, Krystof. “Practical aspects of automated first-order reasoning.” 2012. Doctoral Dissertation, University of Manchester. Accessed March 05, 2021. https://www.research.manchester.ac.uk/portal/en/theses/practical-aspects-of-automated-firstorder-reasoning(1331ec1f-802c-4aeb-9265-1248d8db2a8e).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558052.

MLA Handbook (7th Edition):

Hoder, Krystof. “Practical aspects of automated first-order reasoning.” 2012. Web. 05 Mar 2021.

Vancouver:

Hoder K. Practical aspects of automated first-order reasoning. [Internet] [Doctoral dissertation]. University of Manchester; 2012. [cited 2021 Mar 05]. Available from: https://www.research.manchester.ac.uk/portal/en/theses/practical-aspects-of-automated-firstorder-reasoning(1331ec1f-802c-4aeb-9265-1248d8db2a8e).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558052.

Council of Science Editors:

Hoder K. Practical aspects of automated first-order reasoning. [Doctoral Dissertation]. University of Manchester; 2012. Available from: https://www.research.manchester.ac.uk/portal/en/theses/practical-aspects-of-automated-firstorder-reasoning(1331ec1f-802c-4aeb-9265-1248d8db2a8e).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558052

4. Meikle, Laura Isabel. Intuition in formal proof : a novel framework for combining mathematical tools.

Degree: PhD, 2014, University of Edinburgh

 This doctoral thesis addresses one major difficulty in formal proof: removing obstructions to intuition which hamper the proof endeavour. We investigate this in the context… (more)

Subjects/Keywords: 006.3; theorem proving; automated reasoning; computational geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meikle, L. I. (2014). Intuition in formal proof : a novel framework for combining mathematical tools. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/9663

Chicago Manual of Style (16th Edition):

Meikle, Laura Isabel. “Intuition in formal proof : a novel framework for combining mathematical tools.” 2014. Doctoral Dissertation, University of Edinburgh. Accessed March 05, 2021. http://hdl.handle.net/1842/9663.

MLA Handbook (7th Edition):

Meikle, Laura Isabel. “Intuition in formal proof : a novel framework for combining mathematical tools.” 2014. Web. 05 Mar 2021.

Vancouver:

Meikle LI. Intuition in formal proof : a novel framework for combining mathematical tools. [Internet] [Doctoral dissertation]. University of Edinburgh; 2014. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1842/9663.

Council of Science Editors:

Meikle LI. Intuition in formal proof : a novel framework for combining mathematical tools. [Doctoral Dissertation]. University of Edinburgh; 2014. Available from: http://hdl.handle.net/1842/9663


Loughborough University

5. Okoli, Ifeyinwa. A novel term rewriting strategy for certain hierarchical AC-algebraic systems.

Degree: PhD, 1989, Loughborough University

Subjects/Keywords: 510; Theorem proving

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Okoli, I. (1989). A novel term rewriting strategy for certain hierarchical AC-algebraic systems. (Doctoral Dissertation). Loughborough University. Retrieved from http://hdl.handle.net/2134/10641

Chicago Manual of Style (16th Edition):

Okoli, Ifeyinwa. “A novel term rewriting strategy for certain hierarchical AC-algebraic systems.” 1989. Doctoral Dissertation, Loughborough University. Accessed March 05, 2021. http://hdl.handle.net/2134/10641.

MLA Handbook (7th Edition):

Okoli, Ifeyinwa. “A novel term rewriting strategy for certain hierarchical AC-algebraic systems.” 1989. Web. 05 Mar 2021.

Vancouver:

Okoli I. A novel term rewriting strategy for certain hierarchical AC-algebraic systems. [Internet] [Doctoral dissertation]. Loughborough University; 1989. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2134/10641.

Council of Science Editors:

Okoli I. A novel term rewriting strategy for certain hierarchical AC-algebraic systems. [Doctoral Dissertation]. Loughborough University; 1989. Available from: http://hdl.handle.net/2134/10641


University of British Columbia

6. LeQuesne, Peter Neave. A unit resolution theorem proving system.

Degree: MS- MSc, Computer Science, 1972, University of British Columbia

A unit resolution theorem proving system is developed and compared with the previous work of C.L. Chang. This thesis includes a description of a particular approach to unit resolution and a description of the resulting program and its effectiveness.

Subjects/Keywords: Automatic theorem proving.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

LeQuesne, P. N. (1972). A unit resolution theorem proving system. (Masters Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/33349

Chicago Manual of Style (16th Edition):

LeQuesne, Peter Neave. “A unit resolution theorem proving system.” 1972. Masters Thesis, University of British Columbia. Accessed March 05, 2021. http://hdl.handle.net/2429/33349.

MLA Handbook (7th Edition):

LeQuesne, Peter Neave. “A unit resolution theorem proving system.” 1972. Web. 05 Mar 2021.

Vancouver:

LeQuesne PN. A unit resolution theorem proving system. [Internet] [Masters thesis]. University of British Columbia; 1972. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2429/33349.

Council of Science Editors:

LeQuesne PN. A unit resolution theorem proving system. [Masters Thesis]. University of British Columbia; 1972. Available from: http://hdl.handle.net/2429/33349


University of British Columbia

7. Minicozzi, Eliana. On the completeness of linear strategies in automatic consequence finding.

Degree: MS- MSc, Computer Science, 1972, University of British Columbia

 The problem of the automatic generation of logical consequences of a set of axioms is examined. The merging subsumption linear strategy has been shown complete… (more)

Subjects/Keywords: Automatic theorem proving.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Minicozzi, E. (1972). On the completeness of linear strategies in automatic consequence finding. (Masters Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/33572

Chicago Manual of Style (16th Edition):

Minicozzi, Eliana. “On the completeness of linear strategies in automatic consequence finding.” 1972. Masters Thesis, University of British Columbia. Accessed March 05, 2021. http://hdl.handle.net/2429/33572.

MLA Handbook (7th Edition):

Minicozzi, Eliana. “On the completeness of linear strategies in automatic consequence finding.” 1972. Web. 05 Mar 2021.

Vancouver:

Minicozzi E. On the completeness of linear strategies in automatic consequence finding. [Internet] [Masters thesis]. University of British Columbia; 1972. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2429/33572.

Council of Science Editors:

Minicozzi E. On the completeness of linear strategies in automatic consequence finding. [Masters Thesis]. University of British Columbia; 1972. Available from: http://hdl.handle.net/2429/33572


University of New South Wales

8. Greenaway, David. Automated proof-producing abstraction of C code.

Degree: Computer Science & Engineering, 2014, University of New South Wales

 Before software can be formally reasoned about, it must first be represented in some form of logic. There are two approaches to carrying out this… (more)

Subjects/Keywords: Interactive Theorem Proving; Formal Verification; Program Verification

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Greenaway, D. (2014). Automated proof-producing abstraction of C code. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/54260 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:13743/SOURCE02?view=true

Chicago Manual of Style (16th Edition):

Greenaway, David. “Automated proof-producing abstraction of C code.” 2014. Doctoral Dissertation, University of New South Wales. Accessed March 05, 2021. http://handle.unsw.edu.au/1959.4/54260 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:13743/SOURCE02?view=true.

MLA Handbook (7th Edition):

Greenaway, David. “Automated proof-producing abstraction of C code.” 2014. Web. 05 Mar 2021.

Vancouver:

Greenaway D. Automated proof-producing abstraction of C code. [Internet] [Doctoral dissertation]. University of New South Wales; 2014. [cited 2021 Mar 05]. Available from: http://handle.unsw.edu.au/1959.4/54260 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:13743/SOURCE02?view=true.

Council of Science Editors:

Greenaway D. Automated proof-producing abstraction of C code. [Doctoral Dissertation]. University of New South Wales; 2014. Available from: http://handle.unsw.edu.au/1959.4/54260 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:13743/SOURCE02?view=true


University of Oklahoma

9. Ralston, Ryan. Translating Clojure to ACL2 for Verification.

Degree: PhD, 2016, University of Oklahoma

 Software spends a significant portion of its life-cycle in the maintenance phase and over 20% of the maintenance effort is fixing defects. Formal methods, including… (more)

Subjects/Keywords: Software Verification; Formal Methods; Theorem Proving

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ralston, R. (2016). Translating Clojure to ACL2 for Verification. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/42982

Chicago Manual of Style (16th Edition):

Ralston, Ryan. “Translating Clojure to ACL2 for Verification.” 2016. Doctoral Dissertation, University of Oklahoma. Accessed March 05, 2021. http://hdl.handle.net/11244/42982.

MLA Handbook (7th Edition):

Ralston, Ryan. “Translating Clojure to ACL2 for Verification.” 2016. Web. 05 Mar 2021.

Vancouver:

Ralston R. Translating Clojure to ACL2 for Verification. [Internet] [Doctoral dissertation]. University of Oklahoma; 2016. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/11244/42982.

Council of Science Editors:

Ralston R. Translating Clojure to ACL2 for Verification. [Doctoral Dissertation]. University of Oklahoma; 2016. Available from: http://hdl.handle.net/11244/42982


Univerzitet u Beogradu

10. Stojanović, Sana. 1981-. Формализација и аутоматско доказивање теорема еуклидске геометрије.

Degree: Matematički fakultet, 2018, Univerzitet u Beogradu

Рачунарство - Вештачка интелигенција / Computer Science - Artificial intelligence

Напредак геометрије кроз векове се може разматрати кроз развој различитих аксиоматских система који је описују.… (more)

Subjects/Keywords: coherent logic; formalization of geometry; automated theorem proving; interactive theorem proving; automated generation of readable proofs

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stojanović, S. 1. (2018). Формализација и аутоматско доказивање теорема еуклидске геометрије. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:15164/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Stojanović, Sana 1981-. “Формализација и аутоматско доказивање теорема еуклидске геометрије.” 2018. Thesis, Univerzitet u Beogradu. Accessed March 05, 2021. https://fedorabg.bg.ac.rs/fedora/get/o:15164/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Stojanović, Sana 1981-. “Формализација и аутоматско доказивање теорема еуклидске геометрије.” 2018. Web. 05 Mar 2021.

Vancouver:

Stojanović S1. Формализација и аутоматско доказивање теорема еуклидске геометрије. [Internet] [Thesis]. Univerzitet u Beogradu; 2018. [cited 2021 Mar 05]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:15164/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Stojanović S1. Формализација и аутоматско доказивање теорема еуклидске геометрије. [Thesis]. Univerzitet u Beogradu; 2018. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:15164/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universiteit Utrecht

11. Bitane, Y. On Formalizing Decreasing Proof Orders.

Degree: 2015, Universiteit Utrecht

 Confluence is an important property of term rewriting systems. Since any algorithm can be modelled as such, the decreasing diagrams technique is very useful for… (more)

Subjects/Keywords: term rewriting; coq; automated theorem proving; decreasing diagrams

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bitane, Y. (2015). On Formalizing Decreasing Proof Orders. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/321339

Chicago Manual of Style (16th Edition):

Bitane, Y. “On Formalizing Decreasing Proof Orders.” 2015. Masters Thesis, Universiteit Utrecht. Accessed March 05, 2021. http://dspace.library.uu.nl:8080/handle/1874/321339.

MLA Handbook (7th Edition):

Bitane, Y. “On Formalizing Decreasing Proof Orders.” 2015. Web. 05 Mar 2021.

Vancouver:

Bitane Y. On Formalizing Decreasing Proof Orders. [Internet] [Masters thesis]. Universiteit Utrecht; 2015. [cited 2021 Mar 05]. Available from: http://dspace.library.uu.nl:8080/handle/1874/321339.

Council of Science Editors:

Bitane Y. On Formalizing Decreasing Proof Orders. [Masters Thesis]. Universiteit Utrecht; 2015. Available from: http://dspace.library.uu.nl:8080/handle/1874/321339


University of Tasmania

12. Stokes, T E(Timothy Edward). On the algebraic and algorithmic properties of some generalised algebras.

Degree: 1990, University of Tasmania

Subjects/Keywords: Geometry; Algebraic; Automatic theorem proving

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stokes, T. E. E. (1990). On the algebraic and algorithmic properties of some generalised algebras. (Thesis). University of Tasmania. Retrieved from https://eprints.utas.edu.au/21929/1/whole_StokesTimothyEdward1991_thesis.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Stokes, T E(Timothy Edward). “On the algebraic and algorithmic properties of some generalised algebras.” 1990. Thesis, University of Tasmania. Accessed March 05, 2021. https://eprints.utas.edu.au/21929/1/whole_StokesTimothyEdward1991_thesis.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Stokes, T E(Timothy Edward). “On the algebraic and algorithmic properties of some generalised algebras.” 1990. Web. 05 Mar 2021.

Vancouver:

Stokes TEE. On the algebraic and algorithmic properties of some generalised algebras. [Internet] [Thesis]. University of Tasmania; 1990. [cited 2021 Mar 05]. Available from: https://eprints.utas.edu.au/21929/1/whole_StokesTimothyEdward1991_thesis.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Stokes TEE. On the algebraic and algorithmic properties of some generalised algebras. [Thesis]. University of Tasmania; 1990. Available from: https://eprints.utas.edu.au/21929/1/whole_StokesTimothyEdward1991_thesis.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Univerzitet u Beogradu

13. Nikolić, Mladen S. Usmeravanje pretrage u automatskom dokazivanju teorema.

Degree: Matematički fakultet, 2015, Univerzitet u Beogradu

Računarstvo-Automatsko dokazivanje teorema / computer science-Automated theorem proving

U ovom radu se razmatra problem usmeravanja pretrage u automatskom dokazivanju teorema. Rad se sastoji od dva… (more)

Subjects/Keywords: automated theorem proving; search; SAT solvers; coherent logic; data mining

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nikolić, M. S. (2015). Usmeravanje pretrage u automatskom dokazivanju teorema. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:8050/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Nikolić, Mladen S. “Usmeravanje pretrage u automatskom dokazivanju teorema.” 2015. Thesis, Univerzitet u Beogradu. Accessed March 05, 2021. https://fedorabg.bg.ac.rs/fedora/get/o:8050/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Nikolić, Mladen S. “Usmeravanje pretrage u automatskom dokazivanju teorema.” 2015. Web. 05 Mar 2021.

Vancouver:

Nikolić MS. Usmeravanje pretrage u automatskom dokazivanju teorema. [Internet] [Thesis]. Univerzitet u Beogradu; 2015. [cited 2021 Mar 05]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:8050/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Nikolić MS. Usmeravanje pretrage u automatskom dokazivanju teorema. [Thesis]. Univerzitet u Beogradu; 2015. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:8050/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Cambridge

14. Li, Wenda. Towards justifying computer algebra algorithms in Isabelle/HOL.

Degree: PhD, 2019, University of Cambridge

 As verification efforts using interactive theorem proving grow, we are in need of certified algorithms in computer algebra to tackle problems over the real numbers.… (more)

Subjects/Keywords: formal verification; theorem proving; Isabelle/HOL; computer algebra; cylindrical algebraic decomposition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, W. (2019). Towards justifying computer algebra algorithms in Isabelle/HOL. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/289389

Chicago Manual of Style (16th Edition):

Li, Wenda. “Towards justifying computer algebra algorithms in Isabelle/HOL.” 2019. Doctoral Dissertation, University of Cambridge. Accessed March 05, 2021. https://www.repository.cam.ac.uk/handle/1810/289389.

MLA Handbook (7th Edition):

Li, Wenda. “Towards justifying computer algebra algorithms in Isabelle/HOL.” 2019. Web. 05 Mar 2021.

Vancouver:

Li W. Towards justifying computer algebra algorithms in Isabelle/HOL. [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2021 Mar 05]. Available from: https://www.repository.cam.ac.uk/handle/1810/289389.

Council of Science Editors:

Li W. Towards justifying computer algebra algorithms in Isabelle/HOL. [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://www.repository.cam.ac.uk/handle/1810/289389


University of Oxford

15. Boehm, Peter. Incremental modelling for verified communication architectures.

Degree: PhD, 2011, University of Oxford

 Modern computer systems are advancing from multi-core to many-core designs and System-on-chips (SoC) are becoming increasingly complex while integrating a great variety of components, thus… (more)

Subjects/Keywords: 004.62; Theory and automated verification; communication protocols; verification; theorem proving

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Boehm, P. (2011). Incremental modelling for verified communication architectures. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:ec6c9e06-7395-4af4-b961-b2ed837fda89 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559739

Chicago Manual of Style (16th Edition):

Boehm, Peter. “Incremental modelling for verified communication architectures.” 2011. Doctoral Dissertation, University of Oxford. Accessed March 05, 2021. http://ora.ox.ac.uk/objects/uuid:ec6c9e06-7395-4af4-b961-b2ed837fda89 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559739.

MLA Handbook (7th Edition):

Boehm, Peter. “Incremental modelling for verified communication architectures.” 2011. Web. 05 Mar 2021.

Vancouver:

Boehm P. Incremental modelling for verified communication architectures. [Internet] [Doctoral dissertation]. University of Oxford; 2011. [cited 2021 Mar 05]. Available from: http://ora.ox.ac.uk/objects/uuid:ec6c9e06-7395-4af4-b961-b2ed837fda89 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559739.

Council of Science Editors:

Boehm P. Incremental modelling for verified communication architectures. [Doctoral Dissertation]. University of Oxford; 2011. Available from: http://ora.ox.ac.uk/objects/uuid:ec6c9e06-7395-4af4-b961-b2ed837fda89 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559739


University of Edinburgh

16. Duncan, Hazel. The use of data-mining for the automatic formation of tactics.

Degree: PhD, 2007, University of Edinburgh

 As functions which further the state of a proof in automated theorem proving, tactics are an important development in automated deduction. This thesis describes a… (more)

Subjects/Keywords: 005.3; Tactics; Theorem Proving

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Duncan, H. (2007). The use of data-mining for the automatic formation of tactics. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/1768

Chicago Manual of Style (16th Edition):

Duncan, Hazel. “The use of data-mining for the automatic formation of tactics.” 2007. Doctoral Dissertation, University of Edinburgh. Accessed March 05, 2021. http://hdl.handle.net/1842/1768.

MLA Handbook (7th Edition):

Duncan, Hazel. “The use of data-mining for the automatic formation of tactics.” 2007. Web. 05 Mar 2021.

Vancouver:

Duncan H. The use of data-mining for the automatic formation of tactics. [Internet] [Doctoral dissertation]. University of Edinburgh; 2007. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1842/1768.

Council of Science Editors:

Duncan H. The use of data-mining for the automatic formation of tactics. [Doctoral Dissertation]. University of Edinburgh; 2007. Available from: http://hdl.handle.net/1842/1768


University of Edinburgh

17. Raggi, Daniel. Searching the space of representations : reasoning through transformations for mathematical problem solving.

Degree: PhD, 2016, University of Edinburgh

 The role of representation in reasoning has been long and widely regarded as crucial. It has remained one of the fundamental considerations in the design… (more)

Subjects/Keywords: 511; automated reasoning; representation; transformation; interactive theorem proving

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Raggi, D. (2016). Searching the space of representations : reasoning through transformations for mathematical problem solving. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/22936

Chicago Manual of Style (16th Edition):

Raggi, Daniel. “Searching the space of representations : reasoning through transformations for mathematical problem solving.” 2016. Doctoral Dissertation, University of Edinburgh. Accessed March 05, 2021. http://hdl.handle.net/1842/22936.

MLA Handbook (7th Edition):

Raggi, Daniel. “Searching the space of representations : reasoning through transformations for mathematical problem solving.” 2016. Web. 05 Mar 2021.

Vancouver:

Raggi D. Searching the space of representations : reasoning through transformations for mathematical problem solving. [Internet] [Doctoral dissertation]. University of Edinburgh; 2016. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1842/22936.

Council of Science Editors:

Raggi D. Searching the space of representations : reasoning through transformations for mathematical problem solving. [Doctoral Dissertation]. University of Edinburgh; 2016. Available from: http://hdl.handle.net/1842/22936


Hong Kong University of Science and Technology

18. Wang, Jianwei CSE. Find closed form solutions to recurrences using theorem discovery.

Degree: 2019, Hong Kong University of Science and Technology

 Recent years, program verification has become a more and more key problem in computer science. Solving recurrences, as a vital part of program verification system,… (more)

Subjects/Keywords: Automatic theorem proving ; Computer programs ; Verification ; Machine learning ; Computer algorithms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, J. C. (2019). Find closed form solutions to recurrences using theorem discovery. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-100110 ; https://doi.org/10.14711/thesis-991012730263703412 ; http://repository.ust.hk/ir/bitstream/1783.1-100110/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wang, Jianwei CSE. “Find closed form solutions to recurrences using theorem discovery.” 2019. Thesis, Hong Kong University of Science and Technology. Accessed March 05, 2021. http://repository.ust.hk/ir/Record/1783.1-100110 ; https://doi.org/10.14711/thesis-991012730263703412 ; http://repository.ust.hk/ir/bitstream/1783.1-100110/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wang, Jianwei CSE. “Find closed form solutions to recurrences using theorem discovery.” 2019. Web. 05 Mar 2021.

Vancouver:

Wang JC. Find closed form solutions to recurrences using theorem discovery. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2019. [cited 2021 Mar 05]. Available from: http://repository.ust.hk/ir/Record/1783.1-100110 ; https://doi.org/10.14711/thesis-991012730263703412 ; http://repository.ust.hk/ir/bitstream/1783.1-100110/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang JC. Find closed form solutions to recurrences using theorem discovery. [Thesis]. Hong Kong University of Science and Technology; 2019. Available from: http://repository.ust.hk/ir/Record/1783.1-100110 ; https://doi.org/10.14711/thesis-991012730263703412 ; http://repository.ust.hk/ir/bitstream/1783.1-100110/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Georgia Tech

19. Goble, Tiffany Danielle. Automate Reasoning: Computer Assisted Proofs in Set Theory Using Godel's Algorithm for Class Formation.

Degree: MS, Mathematics, 2004, Georgia Tech

 Automated reasoning, and in particular automated theorem proving, has become a very important research field within the world of mathematics. Besides being used to verify… (more)

Subjects/Keywords: Automated reasoning; Automated theorem proving

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Goble, T. D. (2004). Automate Reasoning: Computer Assisted Proofs in Set Theory Using Godel's Algorithm for Class Formation. (Masters Thesis). Georgia Tech. Retrieved from http://hdl.handle.net/1853/4767

Chicago Manual of Style (16th Edition):

Goble, Tiffany Danielle. “Automate Reasoning: Computer Assisted Proofs in Set Theory Using Godel's Algorithm for Class Formation.” 2004. Masters Thesis, Georgia Tech. Accessed March 05, 2021. http://hdl.handle.net/1853/4767.

MLA Handbook (7th Edition):

Goble, Tiffany Danielle. “Automate Reasoning: Computer Assisted Proofs in Set Theory Using Godel's Algorithm for Class Formation.” 2004. Web. 05 Mar 2021.

Vancouver:

Goble TD. Automate Reasoning: Computer Assisted Proofs in Set Theory Using Godel's Algorithm for Class Formation. [Internet] [Masters thesis]. Georgia Tech; 2004. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1853/4767.

Council of Science Editors:

Goble TD. Automate Reasoning: Computer Assisted Proofs in Set Theory Using Godel's Algorithm for Class Formation. [Masters Thesis]. Georgia Tech; 2004. Available from: http://hdl.handle.net/1853/4767


University of Illinois – Urbana-Champaign

20. Popescu, Andrei. Contributions to the theory of syntax with bindings and to process algebra.

Degree: PhD, 0112, 2011, University of Illinois – Urbana-Champaign

 We develop a theory of syntax with bindings, focusing on: - methodological issues concerning the convenient representation of syntax; - techniques for recursive definitions and… (more)

Subjects/Keywords: Syntax with Bindings; Lambda Calculus; Coinduction; Theorem proving; Isabelle

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Popescu, A. (2011). Contributions to the theory of syntax with bindings and to process algebra. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/18477

Chicago Manual of Style (16th Edition):

Popescu, Andrei. “Contributions to the theory of syntax with bindings and to process algebra.” 2011. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed March 05, 2021. http://hdl.handle.net/2142/18477.

MLA Handbook (7th Edition):

Popescu, Andrei. “Contributions to the theory of syntax with bindings and to process algebra.” 2011. Web. 05 Mar 2021.

Vancouver:

Popescu A. Contributions to the theory of syntax with bindings and to process algebra. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2011. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2142/18477.

Council of Science Editors:

Popescu A. Contributions to the theory of syntax with bindings and to process algebra. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2011. Available from: http://hdl.handle.net/2142/18477


Georgia Tech

21. Jobredeaux, Romain J. Formal verification of control software.

Degree: PhD, Aerospace Engineering, 2015, Georgia Tech

 In a context of heightened requirements for safety-critical embedded systems and ever-increasing costs of verification and validation, this research proposes to advance the state of… (more)

Subjects/Keywords: Formal methods; LMI; Lyapunov; Static analysis; Control software; Theorem proving

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jobredeaux, R. J. (2015). Formal verification of control software. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/53841

Chicago Manual of Style (16th Edition):

Jobredeaux, Romain J. “Formal verification of control software.” 2015. Doctoral Dissertation, Georgia Tech. Accessed March 05, 2021. http://hdl.handle.net/1853/53841.

MLA Handbook (7th Edition):

Jobredeaux, Romain J. “Formal verification of control software.” 2015. Web. 05 Mar 2021.

Vancouver:

Jobredeaux RJ. Formal verification of control software. [Internet] [Doctoral dissertation]. Georgia Tech; 2015. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1853/53841.

Council of Science Editors:

Jobredeaux RJ. Formal verification of control software. [Doctoral Dissertation]. Georgia Tech; 2015. Available from: http://hdl.handle.net/1853/53841


Louisiana State University

22. Lu, Zheng. Deductive formal verification of embedded systems.

Degree: PhD, Computer Sciences, 2012, Louisiana State University

 <div align = "justify"> We combine static analysis techniques with model-based deductive verification using SMT solvers to provide a framework that, given an analysis aspect… (more)

Subjects/Keywords: Coq; Static Code Analysis; Theorem Proving; Android; Formal Verification; SMT

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lu, Z. (2012). Deductive formal verification of embedded systems. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-11102012-171915 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1525

Chicago Manual of Style (16th Edition):

Lu, Zheng. “Deductive formal verification of embedded systems.” 2012. Doctoral Dissertation, Louisiana State University. Accessed March 05, 2021. etd-11102012-171915 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1525.

MLA Handbook (7th Edition):

Lu, Zheng. “Deductive formal verification of embedded systems.” 2012. Web. 05 Mar 2021.

Vancouver:

Lu Z. Deductive formal verification of embedded systems. [Internet] [Doctoral dissertation]. Louisiana State University; 2012. [cited 2021 Mar 05]. Available from: etd-11102012-171915 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1525.

Council of Science Editors:

Lu Z. Deductive formal verification of embedded systems. [Doctoral Dissertation]. Louisiana State University; 2012. Available from: etd-11102012-171915 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1525

23. RICART, JUAN. Hopster: Automated discovery of mathematical properties in HOL .

Degree: Chalmers tekniska högskola / Institutionen för data och informationsteknik, 2019, Chalmers University of Technology

 A new tactic for HOL is proposed that is suitable for proving equational properties of functional programs. HOL has numerous tactics that automate the process… (more)

Subjects/Keywords: theory exploration; automated theorem proving; hopster; hol; quickspec

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

RICART, J. (2019). Hopster: Automated discovery of mathematical properties in HOL . (Thesis). Chalmers University of Technology. Retrieved from http://hdl.handle.net/20.500.12380/300420

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

RICART, JUAN. “Hopster: Automated discovery of mathematical properties in HOL .” 2019. Thesis, Chalmers University of Technology. Accessed March 05, 2021. http://hdl.handle.net/20.500.12380/300420.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

RICART, JUAN. “Hopster: Automated discovery of mathematical properties in HOL .” 2019. Web. 05 Mar 2021.

Vancouver:

RICART J. Hopster: Automated discovery of mathematical properties in HOL . [Internet] [Thesis]. Chalmers University of Technology; 2019. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/20.500.12380/300420.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

RICART J. Hopster: Automated discovery of mathematical properties in HOL . [Thesis]. Chalmers University of Technology; 2019. Available from: http://hdl.handle.net/20.500.12380/300420

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of New South Wales

24. Syeda, Hira. Low-level program verification under cached address translation.

Degree: Computer Science & Engineering, 2019, University of New South Wales

 Operating system (OS) kernels achieve isolation between user-level processes using multi-level page tables. The hardware-implemented translation lookaside buffer (TLB) caches page table walks, and therefore… (more)

Subjects/Keywords: Theorem proving; Operating system verification; Cached address translation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Syeda, H. (2019). Low-level program verification under cached address translation. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/63277 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:60079/SOURCE02?view=true

Chicago Manual of Style (16th Edition):

Syeda, Hira. “Low-level program verification under cached address translation.” 2019. Doctoral Dissertation, University of New South Wales. Accessed March 05, 2021. http://handle.unsw.edu.au/1959.4/63277 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:60079/SOURCE02?view=true.

MLA Handbook (7th Edition):

Syeda, Hira. “Low-level program verification under cached address translation.” 2019. Web. 05 Mar 2021.

Vancouver:

Syeda H. Low-level program verification under cached address translation. [Internet] [Doctoral dissertation]. University of New South Wales; 2019. [cited 2021 Mar 05]. Available from: http://handle.unsw.edu.au/1959.4/63277 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:60079/SOURCE02?view=true.

Council of Science Editors:

Syeda H. Low-level program verification under cached address translation. [Doctoral Dissertation]. University of New South Wales; 2019. Available from: http://handle.unsw.edu.au/1959.4/63277 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:60079/SOURCE02?view=true


University of New South Wales

25. Boyton, Andrew. Secure architectures on a verified microkernel.

Degree: Computer Science & Engineering, 2014, University of New South Wales

 The safety and security of software systems depends on how they are initially configured. Manually writing program codethat establishes such an initial configuration is a… (more)

Subjects/Keywords: Separation logic; Interactive Theorem Proving; Microkernels; Separation logic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Boyton, A. (2014). Secure architectures on a verified microkernel. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/55628 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:38182/SOURCE02?view=true

Chicago Manual of Style (16th Edition):

Boyton, Andrew. “Secure architectures on a verified microkernel.” 2014. Doctoral Dissertation, University of New South Wales. Accessed March 05, 2021. http://handle.unsw.edu.au/1959.4/55628 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:38182/SOURCE02?view=true.

MLA Handbook (7th Edition):

Boyton, Andrew. “Secure architectures on a verified microkernel.” 2014. Web. 05 Mar 2021.

Vancouver:

Boyton A. Secure architectures on a verified microkernel. [Internet] [Doctoral dissertation]. University of New South Wales; 2014. [cited 2021 Mar 05]. Available from: http://handle.unsw.edu.au/1959.4/55628 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:38182/SOURCE02?view=true.

Council of Science Editors:

Boyton A. Secure architectures on a verified microkernel. [Doctoral Dissertation]. University of New South Wales; 2014. Available from: http://handle.unsw.edu.au/1959.4/55628 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:38182/SOURCE02?view=true


University of New South Wales

26. Matichuk, Daniel. Automation for Proof Engineering: Machine-Checked Proofs At Scale.

Degree: Computer Science & Engineering, 2018, University of New South Wales

 Formal proofs, interactively developed and machine-checked, are a means to achieve the highest level of assurance in the correctness of software. In larger verification projects,… (more)

Subjects/Keywords: Automated reasoning; Interactive theorem proving; Proof engineering; Machine-checked proof

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Matichuk, D. (2018). Automation for Proof Engineering: Machine-Checked Proofs At Scale. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/60290 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:51703/SOURCE2?view=true

Chicago Manual of Style (16th Edition):

Matichuk, Daniel. “Automation for Proof Engineering: Machine-Checked Proofs At Scale.” 2018. Doctoral Dissertation, University of New South Wales. Accessed March 05, 2021. http://handle.unsw.edu.au/1959.4/60290 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:51703/SOURCE2?view=true.

MLA Handbook (7th Edition):

Matichuk, Daniel. “Automation for Proof Engineering: Machine-Checked Proofs At Scale.” 2018. Web. 05 Mar 2021.

Vancouver:

Matichuk D. Automation for Proof Engineering: Machine-Checked Proofs At Scale. [Internet] [Doctoral dissertation]. University of New South Wales; 2018. [cited 2021 Mar 05]. Available from: http://handle.unsw.edu.au/1959.4/60290 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:51703/SOURCE2?view=true.

Council of Science Editors:

Matichuk D. Automation for Proof Engineering: Machine-Checked Proofs At Scale. [Doctoral Dissertation]. University of New South Wales; 2018. Available from: http://handle.unsw.edu.au/1959.4/60290 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:51703/SOURCE2?view=true


Simon Fraser University

27. Mitchell, David G. An empirical study of random SAT.

Degree: 1993, Simon Fraser University

Subjects/Keywords: Automatic theorem proving.; Artificial intelligence.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mitchell, D. G. (1993). An empirical study of random SAT. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/5624

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mitchell, David G. “An empirical study of random SAT.” 1993. Thesis, Simon Fraser University. Accessed March 05, 2021. http://summit.sfu.ca/item/5624.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mitchell, David G. “An empirical study of random SAT.” 1993. Web. 05 Mar 2021.

Vancouver:

Mitchell DG. An empirical study of random SAT. [Internet] [Thesis]. Simon Fraser University; 1993. [cited 2021 Mar 05]. Available from: http://summit.sfu.ca/item/5624.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mitchell DG. An empirical study of random SAT. [Thesis]. Simon Fraser University; 1993. Available from: http://summit.sfu.ca/item/5624

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Univerzitet u Beogradu

28. Marinković, Vesna, 1982-. Аутоматско решавање конструктивних проблема у геометрији.

Degree: Matematički fakultet, 2016, Univerzitet u Beogradu

Рачунарство - Вештачка интелигенција / Artificial Intelligence

Проблеми геометријских конструкција уз помоћ лењира и шестара представљају један од најстаријих и најизазовнијих проблема у елементарној математици.… (more)

Subjects/Keywords: automated reasoning; automated theorem proving; interactive theorem proving; automated generation of readable proofs; coherent logic; geometry construction problems; constructions by ruler and compass

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marinković, Vesna, 1. (2016). Аутоматско решавање конструктивних проблема у геометрији. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:11479/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Marinković, Vesna, 1982-. “Аутоматско решавање конструктивних проблема у геометрији.” 2016. Thesis, Univerzitet u Beogradu. Accessed March 05, 2021. https://fedorabg.bg.ac.rs/fedora/get/o:11479/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Marinković, Vesna, 1982-. “Аутоматско решавање конструктивних проблема у геометрији.” 2016. Web. 05 Mar 2021.

Vancouver:

Marinković, Vesna 1. Аутоматско решавање конструктивних проблема у геометрији. [Internet] [Thesis]. Univerzitet u Beogradu; 2016. [cited 2021 Mar 05]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11479/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Marinković, Vesna 1. Аутоматско решавање конструктивних проблема у геометрији. [Thesis]. Univerzitet u Beogradu; 2016. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11479/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

29. Prathamesh, Turga Venkata Hanumantha. Mechanising knot Theory.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

 Mechanisation of Mathematics refers to use of computers to generate or check proofs in Mathematics. It involves translation of relevant mathematical theories from one system… (more)

Subjects/Keywords: Knot Theory; Theorem Proving; Formal Theorem Proving; Kauffman Bracket; Link Theory; First Order Logic; Tangles; Matrices; Formalising Knot Theory; Symbolic and Mathematical Logic; Knots; Braids; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prathamesh, T. V. H. (2018). Mechanising knot Theory. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3052

Chicago Manual of Style (16th Edition):

Prathamesh, Turga Venkata Hanumantha. “Mechanising knot Theory.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed March 05, 2021. http://etd.iisc.ac.in/handle/2005/3052.

MLA Handbook (7th Edition):

Prathamesh, Turga Venkata Hanumantha. “Mechanising knot Theory.” 2018. Web. 05 Mar 2021.

Vancouver:

Prathamesh TVH. Mechanising knot Theory. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2021 Mar 05]. Available from: http://etd.iisc.ac.in/handle/2005/3052.

Council of Science Editors:

Prathamesh TVH. Mechanising knot Theory. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3052

30. Mohand Oussaïd, Linda. Conception et vérification formelles des interfaces homme-machine multimodales : applications à la multimodalité en sortie : Formal modelling and verification of multimodal human computer interfaces : output multimodality.

Degree: Docteur es, Informatique et applications, 2014, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique

Les interfaces homme-machine (IHM) multimodales offrent à l’utilisateur la possibilité de combiner les modalités d’interaction afin d’augmenter la robustesse et l’utilisabilité de l’interface utilisateur d’un… (more)

Subjects/Keywords: Multimodalité en sortie; Raffinement; Preuve de théorème; Output multimodality; Refinement; Theorem proving

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mohand Oussaïd, L. (2014). Conception et vérification formelles des interfaces homme-machine multimodales : applications à la multimodalité en sortie : Formal modelling and verification of multimodal human computer interfaces : output multimodality. (Doctoral Dissertation). Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique. Retrieved from http://www.theses.fr/2014ESMA0022

Chicago Manual of Style (16th Edition):

Mohand Oussaïd, Linda. “Conception et vérification formelles des interfaces homme-machine multimodales : applications à la multimodalité en sortie : Formal modelling and verification of multimodal human computer interfaces : output multimodality.” 2014. Doctoral Dissertation, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique. Accessed March 05, 2021. http://www.theses.fr/2014ESMA0022.

MLA Handbook (7th Edition):

Mohand Oussaïd, Linda. “Conception et vérification formelles des interfaces homme-machine multimodales : applications à la multimodalité en sortie : Formal modelling and verification of multimodal human computer interfaces : output multimodality.” 2014. Web. 05 Mar 2021.

Vancouver:

Mohand Oussaïd L. Conception et vérification formelles des interfaces homme-machine multimodales : applications à la multimodalité en sortie : Formal modelling and verification of multimodal human computer interfaces : output multimodality. [Internet] [Doctoral dissertation]. Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique; 2014. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2014ESMA0022.

Council of Science Editors:

Mohand Oussaïd L. Conception et vérification formelles des interfaces homme-machine multimodales : applications à la multimodalité en sortie : Formal modelling and verification of multimodal human computer interfaces : output multimodality. [Doctoral Dissertation]. Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique; 2014. Available from: http://www.theses.fr/2014ESMA0022

[1] [2] [3] [4] [5]

.