Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(symplectic topology)`

.
Showing records 1 – 30 of
44 total matches.

Search Limiters

Dates

- 2017 – 2021 (13)
- 2012 – 2016 (18)
- 2007 – 2011 (10)

Country

- Switzerland (14)
- US (13)

▼ Search Limiters

University of Minnesota

1.
Wu, Weiwei.
Lagrangian spheres, *symplectic* surfaces and the *symplectic* mapping class group.

Degree: PhD, Mathematics, 2012, University of Minnesota

URL: http://purl.umn.edu/135850

► Given a Lagrangian sphere in a *symplectic* 4-manifold (M, &omega) with b=1, we find embedded *symplectic* surfaces intersecting it minimally. When the Kodaira dimension &kappa…
(more)

Subjects/Keywords: Isotopy; Lagrangian; Symplectic topology; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wu, W. (2012). Lagrangian spheres, symplectic surfaces and the symplectic mapping class group. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/135850

Chicago Manual of Style (16^{th} Edition):

Wu, Weiwei. “Lagrangian spheres, symplectic surfaces and the symplectic mapping class group.” 2012. Doctoral Dissertation, University of Minnesota. Accessed March 08, 2021. http://purl.umn.edu/135850.

MLA Handbook (7^{th} Edition):

Wu, Weiwei. “Lagrangian spheres, symplectic surfaces and the symplectic mapping class group.” 2012. Web. 08 Mar 2021.

Vancouver:

Wu W. Lagrangian spheres, symplectic surfaces and the symplectic mapping class group. [Internet] [Doctoral dissertation]. University of Minnesota; 2012. [cited 2021 Mar 08]. Available from: http://purl.umn.edu/135850.

Council of Science Editors:

Wu W. Lagrangian spheres, symplectic surfaces and the symplectic mapping class group. [Doctoral Dissertation]. University of Minnesota; 2012. Available from: http://purl.umn.edu/135850

Cornell University

2. Pendleton, Ian Alexander. The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds.

Degree: PhD, Mathematics, 2019, Cornell University

URL: http://hdl.handle.net/1813/67332

► This is a collection of algebraic topological results for toric origami manifolds, mostly in dimension 4. Using a known formula for the fundamental group of…
(more)

Subjects/Keywords: algebraic topology; toric origami; toric symplectic; Mathematics; symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pendleton, I. A. (2019). The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/67332

Chicago Manual of Style (16^{th} Edition):

Pendleton, Ian Alexander. “The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds.” 2019. Doctoral Dissertation, Cornell University. Accessed March 08, 2021. http://hdl.handle.net/1813/67332.

MLA Handbook (7^{th} Edition):

Pendleton, Ian Alexander. “The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds.” 2019. Web. 08 Mar 2021.

Vancouver:

Pendleton IA. The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds. [Internet] [Doctoral dissertation]. Cornell University; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1813/67332.

Council of Science Editors:

Pendleton IA. The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds. [Doctoral Dissertation]. Cornell University; 2019. Available from: http://hdl.handle.net/1813/67332

University of Colorado

3.
Nita, Alexander.
Essential Self-Adjointness of the *Symplectic* Dirac Operators.

Degree: PhD, Mathematics, 2016, University of Colorado

URL: https://scholar.colorado.edu/math_gradetds/45

► The main problem we consider in this thesis is the essential self-adjointness of the *symplectic* Dirac operators D and ~D constructed by Katharina Habermann…
(more)

Subjects/Keywords: Dirac operator; functional analysis; self-adjointness; symplectic geometry; symplectic topology; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nita, A. (2016). Essential Self-Adjointness of the Symplectic Dirac Operators. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/45

Chicago Manual of Style (16^{th} Edition):

Nita, Alexander. “Essential Self-Adjointness of the Symplectic Dirac Operators.” 2016. Doctoral Dissertation, University of Colorado. Accessed March 08, 2021. https://scholar.colorado.edu/math_gradetds/45.

MLA Handbook (7^{th} Edition):

Nita, Alexander. “Essential Self-Adjointness of the Symplectic Dirac Operators.” 2016. Web. 08 Mar 2021.

Vancouver:

Nita A. Essential Self-Adjointness of the Symplectic Dirac Operators. [Internet] [Doctoral dissertation]. University of Colorado; 2016. [cited 2021 Mar 08]. Available from: https://scholar.colorado.edu/math_gradetds/45.

Council of Science Editors:

Nita A. Essential Self-Adjointness of the Symplectic Dirac Operators. [Doctoral Dissertation]. University of Colorado; 2016. Available from: https://scholar.colorado.edu/math_gradetds/45

University of Minnesota

4.
Sakalli, Sumeyra.
New Exotic *Symplectic* 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.

Degree: PhD, Mathematics, 2018, University of Minnesota

URL: http://hdl.handle.net/11299/201114

► The focus of this thesis is twofold. First one is the geography problem of *symplectic* and smooth 4-manifolds with nonnegative signatures. We construct new non-spin,…
(more)

Subjects/Keywords: Symplectic topology; 4-manifolds; Exotic Structures

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sakalli, S. (2018). New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/201114

Chicago Manual of Style (16^{th} Edition):

Sakalli, Sumeyra. “New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.” 2018. Doctoral Dissertation, University of Minnesota. Accessed March 08, 2021. http://hdl.handle.net/11299/201114.

MLA Handbook (7^{th} Edition):

Sakalli, Sumeyra. “New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.” 2018. Web. 08 Mar 2021.

Vancouver:

Sakalli S. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. [Internet] [Doctoral dissertation]. University of Minnesota; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/11299/201114.

Council of Science Editors:

Sakalli S. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. [Doctoral Dissertation]. University of Minnesota; 2018. Available from: http://hdl.handle.net/11299/201114

Louisiana State University

5. Lambert-Cole, Peter. Invariants of Legendrian products.

Degree: PhD, Applied Mathematics, 2014, Louisiana State University

URL: etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909

This thesis investigates a construction in contact topology of Legendrian submanifolds called the Legendrian product. We investigate and compute invariants for these Legendrian submanifolds, including the Thurston-Bennequin invariant and Maslov class; Legendrian contact homology for the product of two Legendrian knots; and generating family homology.

Subjects/Keywords: low-dimensional topology; Contact geometry; symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lambert-Cole, P. (2014). Invariants of Legendrian products. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909

Chicago Manual of Style (16^{th} Edition):

Lambert-Cole, Peter. “Invariants of Legendrian products.” 2014. Doctoral Dissertation, Louisiana State University. Accessed March 08, 2021. etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909.

MLA Handbook (7^{th} Edition):

Lambert-Cole, Peter. “Invariants of Legendrian products.” 2014. Web. 08 Mar 2021.

Vancouver:

Lambert-Cole P. Invariants of Legendrian products. [Internet] [Doctoral dissertation]. Louisiana State University; 2014. [cited 2021 Mar 08]. Available from: etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909.

Council of Science Editors:

Lambert-Cole P. Invariants of Legendrian products. [Doctoral Dissertation]. Louisiana State University; 2014. Available from: etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909

University of California – Berkeley

6. Farris, David Michael. The embedded contact homology of nontrivial circle bundles over Riemann surfaces.

Degree: Mathematics, 2011, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/94r885pf

The embedded contact homology (ECH) of a 3-manifold Y is a topological invariant defined using a contact form on Y which counts certain pseudoholomorphic curves in its symplectization. We compute the ECH of nontrivial circle bundles over Riemann surfaces.

Subjects/Keywords: Mathematics; Theoretical mathematics; contact; Floer; geometry; pseudoholomorphic; symplectic; topology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Farris, D. M. (2011). The embedded contact homology of nontrivial circle bundles over Riemann surfaces. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/94r885pf

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Farris, David Michael. “The embedded contact homology of nontrivial circle bundles over Riemann surfaces.” 2011. Thesis, University of California – Berkeley. Accessed March 08, 2021. http://www.escholarship.org/uc/item/94r885pf.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Farris, David Michael. “The embedded contact homology of nontrivial circle bundles over Riemann surfaces.” 2011. Web. 08 Mar 2021.

Vancouver:

Farris DM. The embedded contact homology of nontrivial circle bundles over Riemann surfaces. [Internet] [Thesis]. University of California – Berkeley; 2011. [cited 2021 Mar 08]. Available from: http://www.escholarship.org/uc/item/94r885pf.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Farris DM. The embedded contact homology of nontrivial circle bundles over Riemann surfaces. [Thesis]. University of California – Berkeley; 2011. Available from: http://www.escholarship.org/uc/item/94r885pf

Not specified: Masters Thesis or Doctoral Dissertation

7. Smith, Jack Edward. Symmetry in monotone Lagrangian Floer theory.

Degree: PhD, 2017, University of Cambridge

URL: https://www.repository.cam.ac.uk/handle/1810/267745

► In this thesis we study the self-Floer theory of a monotone Lagrangian submanifold L of a closed *symplectic* manifold X in the presence of various…
(more)

Subjects/Keywords: symplectic topology; Lagrangian submanifold; Floer cohomology; holomorphic disc

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Smith, J. E. (2017). Symmetry in monotone Lagrangian Floer theory. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/267745

Chicago Manual of Style (16^{th} Edition):

Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Doctoral Dissertation, University of Cambridge. Accessed March 08, 2021. https://www.repository.cam.ac.uk/handle/1810/267745.

MLA Handbook (7^{th} Edition):

Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Web. 08 Mar 2021.

Vancouver:

Smith JE. Symmetry in monotone Lagrangian Floer theory. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2021 Mar 08]. Available from: https://www.repository.cam.ac.uk/handle/1810/267745.

Council of Science Editors:

Smith JE. Symmetry in monotone Lagrangian Floer theory. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://www.repository.cam.ac.uk/handle/1810/267745

ETH Zürich

8. Singer, Berit. Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants.

Degree: 2019, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/414580

► In this thesis we study Lagrangian cobordisms with the tools provided by Lagrangian quantum homology. In particular, we develop the theory for the setting of…
(more)

Subjects/Keywords: Symplectic topology;

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Singer, B. (2019). Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/414580

Chicago Manual of Style (16^{th} Edition):

Singer, Berit. “Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants.” 2019. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/414580.

MLA Handbook (7^{th} Edition):

Singer, Berit. “Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants.” 2019. Web. 08 Mar 2021.

Vancouver:

Singer B. Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants. [Internet] [Doctoral dissertation]. ETH Zürich; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/414580.

Council of Science Editors:

Singer B. Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants. [Doctoral Dissertation]. ETH Zürich; 2019. Available from: http://hdl.handle.net/20.500.11850/414580

University of Notre Dame

9. James Benn. The L^2 Geometry of the Symplectomorphism Group</h1>.

Degree: Mathematics, 2015, University of Notre Dame

URL: https://curate.nd.edu/show/zs25x636101

► In this thesis we study the geometry of the group of *Symplectic* diffeomorphisms of a closed *Symplectic* manifold M, equipped with the L^{2} weak…
(more)

Subjects/Keywords: Diffeomorphism Groups; Hilbert Manifold; Euler equations; Symplectic Topology; Conjugate Points

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Benn, J. (2015). The L^2 Geometry of the Symplectomorphism Group</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/zs25x636101

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Benn, James. “The L^2 Geometry of the Symplectomorphism Group</h1>.” 2015. Thesis, University of Notre Dame. Accessed March 08, 2021. https://curate.nd.edu/show/zs25x636101.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Benn, James. “The L^2 Geometry of the Symplectomorphism Group</h1>.” 2015. Web. 08 Mar 2021.

Vancouver:

Benn J. The L^2 Geometry of the Symplectomorphism Group</h1>. [Internet] [Thesis]. University of Notre Dame; 2015. [cited 2021 Mar 08]. Available from: https://curate.nd.edu/show/zs25x636101.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Benn J. The L^2 Geometry of the Symplectomorphism Group</h1>. [Thesis]. University of Notre Dame; 2015. Available from: https://curate.nd.edu/show/zs25x636101

Not specified: Masters Thesis or Doctoral Dissertation

University of Toronto

10. Zoghi, Masrour. The Gromov Width of Coadjoint Orbits of Compact Lie Groups.

Degree: 2010, University of Toronto

URL: http://hdl.handle.net/1807/26269

►

The ﬁrst part of this thesis investigates the Gromov width of maximal dimensional coadjoint orbits of compact simple Lie groups. An upper bound for the… (more)

Subjects/Keywords: Symplectic Topology; Lie Theory; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zoghi, M. (2010). The Gromov Width of Coadjoint Orbits of Compact Lie Groups. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/26269

Chicago Manual of Style (16^{th} Edition):

Zoghi, Masrour. “The Gromov Width of Coadjoint Orbits of Compact Lie Groups.” 2010. Doctoral Dissertation, University of Toronto. Accessed March 08, 2021. http://hdl.handle.net/1807/26269.

MLA Handbook (7^{th} Edition):

Zoghi, Masrour. “The Gromov Width of Coadjoint Orbits of Compact Lie Groups.” 2010. Web. 08 Mar 2021.

Vancouver:

Zoghi M. The Gromov Width of Coadjoint Orbits of Compact Lie Groups. [Internet] [Doctoral dissertation]. University of Toronto; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1807/26269.

Council of Science Editors:

Zoghi M. The Gromov Width of Coadjoint Orbits of Compact Lie Groups. [Doctoral Dissertation]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/26269

11. Smith, Jack Edward. Symmetry in monotone Lagrangian Floer theory.

Degree: PhD, 2017, University of Cambridge

URL: https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533

► In this thesis we study the self-Floer theory of a monotone Lagrangian submanifold L of a closed *symplectic* manifold X in the presence of various…
(more)

Subjects/Keywords: 514; symplectic topology; Lagrangian submanifold; Floer cohomology; holomorphic disc

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Smith, J. E. (2017). Symmetry in monotone Lagrangian Floer theory. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533

Chicago Manual of Style (16^{th} Edition):

Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Doctoral Dissertation, University of Cambridge. Accessed March 08, 2021. https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533.

MLA Handbook (7^{th} Edition):

Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Web. 08 Mar 2021.

Vancouver:

Smith JE. Symmetry in monotone Lagrangian Floer theory. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2021 Mar 08]. Available from: https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533.

Council of Science Editors:

Smith JE. Symmetry in monotone Lagrangian Floer theory. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533

12.
Monzner, Alexandra.
Partial quasi-morphisms and
*symplectic* quasi-integrals on cotangent bundles.

Degree: 2012, Technische Universität Dortmund

URL: http://hdl.handle.net/2003/29650

Subjects/Keywords: Quasi-morphisms; Special invariants; Symplectic homogenization; Symplectic topology; 510

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Monzner, A. (2012). Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/29650

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Monzner, Alexandra. “Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.” 2012. Thesis, Technische Universität Dortmund. Accessed March 08, 2021. http://hdl.handle.net/2003/29650.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Monzner, Alexandra. “Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.” 2012. Web. 08 Mar 2021.

Vancouver:

Monzner A. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. [Internet] [Thesis]. Technische Universität Dortmund; 2012. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2003/29650.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Monzner A. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. [Thesis]. Technische Universität Dortmund; 2012. Available from: http://hdl.handle.net/2003/29650

Not specified: Masters Thesis or Doctoral Dissertation

13.
Monzner, Alexandra.
Partial quasi-morphisms and *symplectic* quasi-integrals on cotangent bundles.

Degree: 2012, Technische Universität Dortmund

URL: http://dx.doi.org/10.17877/DE290R-5393

Subjects/Keywords: Quasi-morphisms; Special invariants; Symplectic homogenization; Symplectic topology; 510

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Monzner, A. (2012). Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-5393

Chicago Manual of Style (16^{th} Edition):

Monzner, Alexandra. “Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.” 2012. Doctoral Dissertation, Technische Universität Dortmund. Accessed March 08, 2021. http://dx.doi.org/10.17877/DE290R-5393.

MLA Handbook (7^{th} Edition):

Monzner, Alexandra. “Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.” 2012. Web. 08 Mar 2021.

Vancouver:

Monzner A. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2012. [cited 2021 Mar 08]. Available from: http://dx.doi.org/10.17877/DE290R-5393.

Council of Science Editors:

Monzner A. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. [Doctoral Dissertation]. Technische Universität Dortmund; 2012. Available from: http://dx.doi.org/10.17877/DE290R-5393

Indian Institute of Science

14.
Kulkarni, Dheeraj.
Relative *Symplectic* Caps, Fibered Knots And 4-Genus.

Degree: PhD, Faculty of Science, 2014, Indian Institute of Science

URL: http://etd.iisc.ac.in/handle/2005/2285

► The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the…
(more)

Subjects/Keywords: Symplectic Geometry; Symplectic Capping Theorem; Symlpectic Manifolds; Fibered Knots; 4-Genus Knots; Symplectic Caps; Knot Theory; Contact Geometry; Contact Manifolds; Quasipositive Knots; Symplectic Convexity; Topology; Symplectic Neighborhood Theorem; Seifert Surfaces; Riemann Surface; Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kulkarni, D. (2014). Relative Symplectic Caps, Fibered Knots And 4-Genus. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2285

Chicago Manual of Style (16^{th} Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Doctoral Dissertation, Indian Institute of Science. Accessed March 08, 2021. http://etd.iisc.ac.in/handle/2005/2285.

MLA Handbook (7^{th} Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Web. 08 Mar 2021.

Vancouver:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2014. [cited 2021 Mar 08]. Available from: http://etd.iisc.ac.in/handle/2005/2285.

Council of Science Editors:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Doctoral Dissertation]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2285

University of Western Ontario

15. VanHoof, Martin L. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.

Degree: 2013, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/1868

► In this thesis, we study 4-dimensional weighted projective spaces and homotopy properties of their symplectomorphism groups. Using these computations, we also investigate some homotopy theoretic…
(more)

Subjects/Keywords: symplectic orbifold; weighted projective space; symplectomorphism group; toric orbifold; Geometry and Topology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

VanHoof, M. L. (2013). Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/1868

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

VanHoof, Martin L. “Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.” 2013. Thesis, University of Western Ontario. Accessed March 08, 2021. https://ir.lib.uwo.ca/etd/1868.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

VanHoof, Martin L. “Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.” 2013. Web. 08 Mar 2021.

Vancouver:

VanHoof ML. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. [Internet] [Thesis]. University of Western Ontario; 2013. [cited 2021 Mar 08]. Available from: https://ir.lib.uwo.ca/etd/1868.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

VanHoof ML. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. [Thesis]. University of Western Ontario; 2013. Available from: https://ir.lib.uwo.ca/etd/1868

Not specified: Masters Thesis or Doctoral Dissertation

16.
Khodorovskiy, Tatyana.
* Symplectic* Rational Blow-Up and Embeddings of Rational Homology Balls.

Degree: PhD, Mathematics, 2012, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269

►

We define the *symplectic* rational blow-up operation, for a family of rational homology balls (B_{n}), which appeared in Fintushel and Stern's rational blow-down construction. We…
(more)

Subjects/Keywords: embeddings; rational homology balls; symplectic; topology; mathematics

…complex structures. For a full exposition of *symplectic* geometry and *topology*, we refer the… …contact *topology*, as well as Stein surfaces.
11
2.2.1. *Symplectic* structures. We will discuss… …performed in the *symplectic* category.
More precisely, she showed that if in a *symplectic* 4… …manifold (M, ω) there is a *symplectic* embedding of a configuration Cn of *symplectic*… …spheres, then there exists a
*symplectic* model for Bn such that the rational blow-down of (M…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Khodorovskiy, T. (2012). Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269

Chicago Manual of Style (16^{th} Edition):

Khodorovskiy, Tatyana. “Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls.” 2012. Doctoral Dissertation, Harvard University. Accessed March 08, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269.

MLA Handbook (7^{th} Edition):

Khodorovskiy, Tatyana. “Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls.” 2012. Web. 08 Mar 2021.

Vancouver:

Khodorovskiy T. Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls. [Internet] [Doctoral dissertation]. Harvard University; 2012. [cited 2021 Mar 08]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269.

Council of Science Editors:

Khodorovskiy T. Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls. [Doctoral Dissertation]. Harvard University; 2012. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269

Michigan State University

17.
Baykur, Refik İnanç.
* Symplectic* structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.

Degree: PhD, Department of Mathematics, 2007, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:38642

Subjects/Keywords: Symplectic manifolds; Four-manifolds (Topology); Invariant manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Baykur, R. I. (2007). Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:38642

Chicago Manual of Style (16^{th} Edition):

Baykur, Refik İnanç. “Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.” 2007. Doctoral Dissertation, Michigan State University. Accessed March 08, 2021. http://etd.lib.msu.edu/islandora/object/etd:38642.

MLA Handbook (7^{th} Edition):

Baykur, Refik İnanç. “Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.” 2007. Web. 08 Mar 2021.

Vancouver:

Baykur RI. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. [Internet] [Doctoral dissertation]. Michigan State University; 2007. [cited 2021 Mar 08]. Available from: http://etd.lib.msu.edu/islandora/object/etd:38642.

Council of Science Editors:

Baykur RI. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. [Doctoral Dissertation]. Michigan State University; 2007. Available from: http://etd.lib.msu.edu/islandora/object/etd:38642

The Ohio State University

18. Kennedy, Chris A. Construction of Maps by Postnikov Towers.

Degree: PhD, Mathematics, 2018, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461

► Using Postnikov towers, we investigate the possible degrees of self-maps of variousspaces, including SU(3), Sp(2), SU(4), and the principal Sp(1)-bundles over S^{7}. Thisinvestigation requires determining…
(more)

Subjects/Keywords: Mathematics; algebraic topology; Postnikov towers; secondary cohomology operations; higher cohomology operations; special unitary group; symplectic group; H-spaces; fiber bundles

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kennedy, C. A. (2018). Construction of Maps by Postnikov Towers. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461

Chicago Manual of Style (16^{th} Edition):

Kennedy, Chris A. “Construction of Maps by Postnikov Towers.” 2018. Doctoral Dissertation, The Ohio State University. Accessed March 08, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461.

MLA Handbook (7^{th} Edition):

Kennedy, Chris A. “Construction of Maps by Postnikov Towers.” 2018. Web. 08 Mar 2021.

Vancouver:

Kennedy CA. Construction of Maps by Postnikov Towers. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2021 Mar 08]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461.

Council of Science Editors:

Kennedy CA. Construction of Maps by Postnikov Towers. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461

19.
Alves, Marcelo Ribeiro de Resende.
Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact *topology* and the dynamics of Reeb flows.

Degree: Docteur es, Mathématiques fondamentales, 2015, Université Paris-Saclay (ComUE)

URL: http://www.theses.fr/2015SACLS084

►

L'objectif de cette thèse est d'investiguer les relations entre les propriétés topologiques d'une variété de contact et la dynamique des flots de Reeb dans la… (more)

Subjects/Keywords: Topologie symplectique et de contact; Champs de Reeb; Entropie topologique; Systèmes hamiltoniens; Symplectic and contact topology; Reeb flows; Topological entropy; Hamiltonian systems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Alves, M. R. d. R. (2015). Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2015SACLS084

Chicago Manual of Style (16^{th} Edition):

Alves, Marcelo Ribeiro de Resende. “Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows.” 2015. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed March 08, 2021. http://www.theses.fr/2015SACLS084.

MLA Handbook (7^{th} Edition):

Alves, Marcelo Ribeiro de Resende. “Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows.” 2015. Web. 08 Mar 2021.

Vancouver:

Alves MRdR. Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2015. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2015SACLS084.

Council of Science Editors:

Alves MRdR. Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2015. Available from: http://www.theses.fr/2015SACLS084

University of New Mexico

20. Pati, Justin. Contact homology of toric contact manifolds of Reeb type.

Degree: Mathematics & Statistics, 2010, University of New Mexico

URL: http://hdl.handle.net/1928/11193

► We use contact homology to distinguish contact structures on various manifolds. We are primarily interested in contact manifolds which admit an action of Reeb type…
(more)

Subjects/Keywords: Contact manifolds; Symplectic and contact topology; Toric varieties; Orbifolds; Homology theory.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pati, J. (2010). Contact homology of toric contact manifolds of Reeb type. (Doctoral Dissertation). University of New Mexico. Retrieved from http://hdl.handle.net/1928/11193

Chicago Manual of Style (16^{th} Edition):

Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Doctoral Dissertation, University of New Mexico. Accessed March 08, 2021. http://hdl.handle.net/1928/11193.

MLA Handbook (7^{th} Edition):

Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Web. 08 Mar 2021.

Vancouver:

Pati J. Contact homology of toric contact manifolds of Reeb type. [Internet] [Doctoral dissertation]. University of New Mexico; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1928/11193.

Council of Science Editors:

Pati J. Contact homology of toric contact manifolds of Reeb type. [Doctoral Dissertation]. University of New Mexico; 2010. Available from: http://hdl.handle.net/1928/11193

University of Texas – Austin

21. Williams, Jonathan Dunklin. Broken Lefschetz fibrations on smooth four-manifolds.

Degree: PhD, Mathematics, 2010, University of Texas – Austin

URL: http://hdl.handle.net/2152/ETD-UT-2010-05-841

► It is known that an arbitrary smooth, oriented four-manifold admits the structure of what is called a broken Lefschetz fibration. Given a broken Lefschetz fibration,…
(more)

Subjects/Keywords: Manifold; 4-manifold; topology; Lefschetz; fibration; Broken; Symplectic; Smooth; singularity

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Williams, J. D. (2010). Broken Lefschetz fibrations on smooth four-manifolds. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-841

Chicago Manual of Style (16^{th} Edition):

Williams, Jonathan Dunklin. “Broken Lefschetz fibrations on smooth four-manifolds.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed March 08, 2021. http://hdl.handle.net/2152/ETD-UT-2010-05-841.

MLA Handbook (7^{th} Edition):

Williams, Jonathan Dunklin. “Broken Lefschetz fibrations on smooth four-manifolds.” 2010. Web. 08 Mar 2021.

Vancouver:

Williams JD. Broken Lefschetz fibrations on smooth four-manifolds. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-841.

Council of Science Editors:

Williams JD. Broken Lefschetz fibrations on smooth four-manifolds. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-841

Université de Montréal

22. Rathel-Fournier, Dominique. Rigidité du crochet de Poisson en topologie symplectique.

Degree: 2018, Université de Montréal

URL: http://hdl.handle.net/1866/20208

Subjects/Keywords: Topologie symplectique; Crochet de Poisson; Dynamique hamiltonienne; Géométrie d'Hofer; Rigidité symplectique; Symplectic topology; Poisson bracket; Hamiltonian dynamics; Hofer geometry; Symplectic rigidity; Mathematics / Mathématiques (UMI : 0405)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rathel-Fournier, D. (2018). Rigidité du crochet de Poisson en topologie symplectique. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/20208

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Rathel-Fournier, Dominique. “Rigidité du crochet de Poisson en topologie symplectique.” 2018. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/20208.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Rathel-Fournier, Dominique. “Rigidité du crochet de Poisson en topologie symplectique.” 2018. Web. 08 Mar 2021.

Vancouver:

Rathel-Fournier D. Rigidité du crochet de Poisson en topologie symplectique. [Internet] [Thesis]. Université de Montréal; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/20208.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rathel-Fournier D. Rigidité du crochet de Poisson en topologie symplectique. [Thesis]. Université de Montréal; 2018. Available from: http://hdl.handle.net/1866/20208

Not specified: Masters Thesis or Doctoral Dissertation

Université de Montréal

23. Ngô, Fabien. Structures quantiques de certaines sous-variétés lagrangiennes non-monotones.

Degree: 2010, Université de Montréal

URL: http://hdl.handle.net/1866/4526

Subjects/Keywords: Topologie symplectique; Symplectic topology; Sous-variétés lagrangiennes; Lagrangian submanifold; Homologie quantique; Quantum homology; Homologie des perles; Pearl homology; capacité symplectique; symplectic capacity; Mathematics / Mathématiques (UMI : 0405)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ngô, F. (2010). Structures quantiques de certaines sous-variétés lagrangiennes non-monotones. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/4526

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ngô, Fabien. “Structures quantiques de certaines sous-variétés lagrangiennes non-monotones.” 2010. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/4526.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ngô, Fabien. “Structures quantiques de certaines sous-variétés lagrangiennes non-monotones.” 2010. Web. 08 Mar 2021.

Vancouver:

Ngô F. Structures quantiques de certaines sous-variétés lagrangiennes non-monotones. [Internet] [Thesis]. Université de Montréal; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/4526.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ngô F. Structures quantiques de certaines sous-variétés lagrangiennes non-monotones. [Thesis]. Université de Montréal; 2010. Available from: http://hdl.handle.net/1866/4526

Not specified: Masters Thesis or Doctoral Dissertation

24. Lee, Sangjin. Towards a higher dimensional construction of stable/unstable Lagrangian laminations.

Degree: Mathematics, 2019, UCLA

URL: http://www.escholarship.org/uc/item/95q4165w

► We generalize some properties of surface automorphisms of pseudo-Anosov type.First, we generalize the Penner construction of a pseudo-Anosov homeomorphismand show that a *symplectic* automorphism which…
(more)

Subjects/Keywords: Mathematics; Lagrangian branched submanifold; Lagrangian Floer homology; Lagrangian lamination; pseudo-Anosov; Symplectic Topology

…n ≥ 2, then specific choices of plumbing points do not change
the *symplectic* *topology* of P… …dimensional lamination L on a *symplectic* manifold (M 2n , ω) is a Lagrangian lamination if… …One of them is to
find a *symplectic* automorphism ψ on a *symplectic* manifold M of dimension… …slightly weaker version of the question is to define a *symplectic* automorphism ψ with invariant… …1.5, which answer the latter
question.
∼
Theorem 1.2. Let M be a *symplectic* manifold and…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, S. (2019). Towards a higher dimensional construction of stable/unstable Lagrangian laminations. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/95q4165w

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lee, Sangjin. “Towards a higher dimensional construction of stable/unstable Lagrangian laminations.” 2019. Thesis, UCLA. Accessed March 08, 2021. http://www.escholarship.org/uc/item/95q4165w.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lee, Sangjin. “Towards a higher dimensional construction of stable/unstable Lagrangian laminations.” 2019. Web. 08 Mar 2021.

Vancouver:

Lee S. Towards a higher dimensional construction of stable/unstable Lagrangian laminations. [Internet] [Thesis]. UCLA; 2019. [cited 2021 Mar 08]. Available from: http://www.escholarship.org/uc/item/95q4165w.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lee S. Towards a higher dimensional construction of stable/unstable Lagrangian laminations. [Thesis]. UCLA; 2019. Available from: http://www.escholarship.org/uc/item/95q4165w

Not specified: Masters Thesis or Doctoral Dissertation

25. Bisgaard, Mads R. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.

Degree: 2018, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/315031

Subjects/Keywords: Symplectic topology;

…Modern *symplectic* *topology*/geometry studies (among other things) topological and… …exhibited by Lagrangian cobordisms. At its early stages, *symplectic* *topology* was
mostly developed… …*symplectic* *topology* has a quantitative side to it. Later such phenomena were formalized by Ekeland… …quantitative story of *symplectic* *topology* arose when Hofer [48] asked the question "… …x29; Hamiltonian
systems using tools coming from *symplectic* *topology*. The ﬁrst part of the…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bisgaard, M. R. (2018). Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/315031

Chicago Manual of Style (16^{th} Edition):

Bisgaard, Mads R. “Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.” 2018. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/315031.

MLA Handbook (7^{th} Edition):

Bisgaard, Mads R. “Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.” 2018. Web. 08 Mar 2021.

Vancouver:

Bisgaard MR. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/315031.

Council of Science Editors:

Bisgaard MR. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/315031

26.
Cazassus, Guillem.
Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : *Symplectic* instanton homology : connected sum, Dehn surgery, and maps from cobordisms.

Degree: Docteur es, Mathématiques fondamentales, 2016, Université Toulouse III – Paul Sabatier

URL: http://www.theses.fr/2016TOU30043

►

L'homologie instanton-symplectique est un invariant associé à une variété de dimension trois close orientée, qui a été dé?ni par Manolescu et Woodward, et qui correspond… (more)

Subjects/Keywords: Topologie de basse dimension; Chirurgie de Dehn; Géométrie symplectique; Homologie de Floer; Courbes pseudo-holomorphes; Théorie de jauge; Espace des modules de connexions; Low-dimensional topology; Dehn surgery; Symplectic geometry; Floer homology; Pseudo-holomorphic curves; Gauge theory; Moduli spaces of connections

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cazassus, G. (2016). Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2016TOU30043

Chicago Manual of Style (16^{th} Edition):

Cazassus, Guillem. “Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms.” 2016. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed March 08, 2021. http://www.theses.fr/2016TOU30043.

MLA Handbook (7^{th} Edition):

Cazassus, Guillem. “Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms.” 2016. Web. 08 Mar 2021.

Vancouver:

Cazassus G. Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2016. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2016TOU30043.

Council of Science Editors:

Cazassus G. Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2016. Available from: http://www.theses.fr/2016TOU30043

Arizona State University

27.
Sanborn, Barbara.
*Symplectic**Topology* and Geometric Quantum Mechanics.

Degree: PhD, Mathematics, 2011, Arizona State University

URL: http://repository.asu.edu/items/9478

► The theory of geometric quantum mechanics describes a quantum system as a Hamiltonian dynamical system, with a projective Hilbert space regarded as the phase space.…
(more)

Subjects/Keywords: Mathematics; Quantum physics; Condensed Matter Physics; adiabatic theorem; geometric quantum mechanics; J-holomorphic curves; mean curvature; symplectic topology; uncertainty principle

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sanborn, B. (2011). Symplectic Topology and Geometric Quantum Mechanics. (Doctoral Dissertation). Arizona State University. Retrieved from http://repository.asu.edu/items/9478

Chicago Manual of Style (16^{th} Edition):

Sanborn, Barbara. “Symplectic Topology and Geometric Quantum Mechanics.” 2011. Doctoral Dissertation, Arizona State University. Accessed March 08, 2021. http://repository.asu.edu/items/9478.

MLA Handbook (7^{th} Edition):

Sanborn, Barbara. “Symplectic Topology and Geometric Quantum Mechanics.” 2011. Web. 08 Mar 2021.

Vancouver:

Sanborn B. Symplectic Topology and Geometric Quantum Mechanics. [Internet] [Doctoral dissertation]. Arizona State University; 2011. [cited 2021 Mar 08]. Available from: http://repository.asu.edu/items/9478.

Council of Science Editors:

Sanborn B. Symplectic Topology and Geometric Quantum Mechanics. [Doctoral Dissertation]. Arizona State University; 2011. Available from: http://repository.asu.edu/items/9478

Université de Montréal

28. Chassé, Jean-Philippe. Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées.

Degree: 2019, Université de Montréal

URL: http://hdl.handle.net/1866/22134

Subjects/Keywords: Fibrés vectoriels symplectiques; Topologie symplectique; Classes caractéristiques; h-principe; Immersions isotropes; Immersions coisotropes; Symplectic vector bundle; Symplectic topology; Caracteristic classes; h-principle; Isotropic immersions; Coisotropic immersions; Mathematics / Mathématiques (UMI : 0405)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chassé, J. (2019). Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/22134

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chassé, Jean-Philippe. “Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées.” 2019. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/22134.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chassé, Jean-Philippe. “Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées.” 2019. Web. 08 Mar 2021.

Vancouver:

Chassé J. Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées. [Internet] [Thesis]. Université de Montréal; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/22134.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chassé J. Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées. [Thesis]. Université de Montréal; 2019. Available from: http://hdl.handle.net/1866/22134

Not specified: Masters Thesis or Doctoral Dissertation

29.
Uljarevic, Igor.
A *symplectic* homology theory for automorphisms of Liouville domains.

Degree: 2016, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/116784

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Uljarevic, I. (2016). A symplectic homology theory for automorphisms of Liouville domains. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/116784

Chicago Manual of Style (16^{th} Edition):

Uljarevic, Igor. “A symplectic homology theory for automorphisms of Liouville domains.” 2016. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/116784.

MLA Handbook (7^{th} Edition):

Uljarevic, Igor. “A symplectic homology theory for automorphisms of Liouville domains.” 2016. Web. 08 Mar 2021.

Vancouver:

Uljarevic I. A symplectic homology theory for automorphisms of Liouville domains. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/116784.

Council of Science Editors:

Uljarevic I. A symplectic homology theory for automorphisms of Liouville domains. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/116784

30. Krom, Robin Sebastian. The Donaldson Geometric Flow.

Degree: 2016, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/115920

Subjects/Keywords: FOUR-DIMENSIONAL MANIFOLDS (TOPOLOGY); VIERDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); FLUSS (DYNAMISCHE SYSTEME); FLOW (DYNAMICAL SYSTEMS); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Krom, R. S. (2016). The Donaldson Geometric Flow. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/115920

Chicago Manual of Style (16^{th} Edition):

Krom, Robin Sebastian. “The Donaldson Geometric Flow.” 2016. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/115920.

MLA Handbook (7^{th} Edition):

Krom, Robin Sebastian. “The Donaldson Geometric Flow.” 2016. Web. 08 Mar 2021.

Vancouver:

Krom RS. The Donaldson Geometric Flow. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/115920.

Council of Science Editors:

Krom RS. The Donaldson Geometric Flow. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/115920