Advanced search options
You searched for subject:(symplectic topology)
.
Showing records 1 – 30 of
44 total matches.
Search Limiters
Dates
Country
▼ Search Limiters
University of Minnesota
1. Wu, Weiwei. Lagrangian spheres, symplectic surfaces and the symplectic mapping class group.
Degree: PhD, Mathematics, 2012, University of Minnesota
URL: http://purl.umn.edu/135850
Subjects/Keywords: Isotopy; Lagrangian; Symplectic topology; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Wu, W. (2012). Lagrangian spheres, symplectic surfaces and the symplectic mapping class group. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/135850
Chicago Manual of Style (16th Edition):
Wu, Weiwei. “Lagrangian spheres, symplectic surfaces and the symplectic mapping class group.” 2012. Doctoral Dissertation, University of Minnesota. Accessed March 08, 2021. http://purl.umn.edu/135850.
MLA Handbook (7th Edition):
Wu, Weiwei. “Lagrangian spheres, symplectic surfaces and the symplectic mapping class group.” 2012. Web. 08 Mar 2021.
Vancouver:
Wu W. Lagrangian spheres, symplectic surfaces and the symplectic mapping class group. [Internet] [Doctoral dissertation]. University of Minnesota; 2012. [cited 2021 Mar 08]. Available from: http://purl.umn.edu/135850.
Council of Science Editors:
Wu W. Lagrangian spheres, symplectic surfaces and the symplectic mapping class group. [Doctoral Dissertation]. University of Minnesota; 2012. Available from: http://purl.umn.edu/135850
Cornell University
2.
Pendleton, Ian Alexander.
The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds.
Degree: PhD, Mathematics, 2019, Cornell University
URL: http://hdl.handle.net/1813/67332
Subjects/Keywords: algebraic topology; toric origami; toric symplectic; Mathematics; symplectic geometry
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Pendleton, I. A. (2019). The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/67332
Chicago Manual of Style (16th Edition):
Pendleton, Ian Alexander. “The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds.” 2019. Doctoral Dissertation, Cornell University. Accessed March 08, 2021. http://hdl.handle.net/1813/67332.
MLA Handbook (7th Edition):
Pendleton, Ian Alexander. “The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds.” 2019. Web. 08 Mar 2021.
Vancouver:
Pendleton IA. The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds. [Internet] [Doctoral dissertation]. Cornell University; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1813/67332.
Council of Science Editors:
Pendleton IA. The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds. [Doctoral Dissertation]. Cornell University; 2019. Available from: http://hdl.handle.net/1813/67332
University of Colorado
3. Nita, Alexander. Essential Self-Adjointness of the Symplectic Dirac Operators.
Degree: PhD, Mathematics, 2016, University of Colorado
URL: https://scholar.colorado.edu/math_gradetds/45
Subjects/Keywords: Dirac operator; functional analysis; self-adjointness; symplectic geometry; symplectic topology; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Nita, A. (2016). Essential Self-Adjointness of the Symplectic Dirac Operators. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/45
Chicago Manual of Style (16th Edition):
Nita, Alexander. “Essential Self-Adjointness of the Symplectic Dirac Operators.” 2016. Doctoral Dissertation, University of Colorado. Accessed March 08, 2021. https://scholar.colorado.edu/math_gradetds/45.
MLA Handbook (7th Edition):
Nita, Alexander. “Essential Self-Adjointness of the Symplectic Dirac Operators.” 2016. Web. 08 Mar 2021.
Vancouver:
Nita A. Essential Self-Adjointness of the Symplectic Dirac Operators. [Internet] [Doctoral dissertation]. University of Colorado; 2016. [cited 2021 Mar 08]. Available from: https://scholar.colorado.edu/math_gradetds/45.
Council of Science Editors:
Nita A. Essential Self-Adjointness of the Symplectic Dirac Operators. [Doctoral Dissertation]. University of Colorado; 2016. Available from: https://scholar.colorado.edu/math_gradetds/45
University of Minnesota
4. Sakalli, Sumeyra. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.
Degree: PhD, Mathematics, 2018, University of Minnesota
URL: http://hdl.handle.net/11299/201114
Subjects/Keywords: Symplectic topology; 4-manifolds; Exotic Structures
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Sakalli, S. (2018). New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/201114
Chicago Manual of Style (16th Edition):
Sakalli, Sumeyra. “New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.” 2018. Doctoral Dissertation, University of Minnesota. Accessed March 08, 2021. http://hdl.handle.net/11299/201114.
MLA Handbook (7th Edition):
Sakalli, Sumeyra. “New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.” 2018. Web. 08 Mar 2021.
Vancouver:
Sakalli S. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. [Internet] [Doctoral dissertation]. University of Minnesota; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/11299/201114.
Council of Science Editors:
Sakalli S. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. [Doctoral Dissertation]. University of Minnesota; 2018. Available from: http://hdl.handle.net/11299/201114
Louisiana State University
5. Lambert-Cole, Peter. Invariants of Legendrian products.
Degree: PhD, Applied Mathematics, 2014, Louisiana State University
URL: etd-07142014-122759
;
https://digitalcommons.lsu.edu/gradschool_dissertations/2909
Subjects/Keywords: low-dimensional topology; Contact geometry; symplectic geometry
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Lambert-Cole, P. (2014). Invariants of Legendrian products. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909
Chicago Manual of Style (16th Edition):
Lambert-Cole, Peter. “Invariants of Legendrian products.” 2014. Doctoral Dissertation, Louisiana State University. Accessed March 08, 2021. etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909.
MLA Handbook (7th Edition):
Lambert-Cole, Peter. “Invariants of Legendrian products.” 2014. Web. 08 Mar 2021.
Vancouver:
Lambert-Cole P. Invariants of Legendrian products. [Internet] [Doctoral dissertation]. Louisiana State University; 2014. [cited 2021 Mar 08]. Available from: etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909.
Council of Science Editors:
Lambert-Cole P. Invariants of Legendrian products. [Doctoral Dissertation]. Louisiana State University; 2014. Available from: etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909
University of California – Berkeley
6. Farris, David Michael. The embedded contact homology of nontrivial circle bundles over Riemann surfaces.
Degree: Mathematics, 2011, University of California – Berkeley
URL: http://www.escholarship.org/uc/item/94r885pf
Subjects/Keywords: Mathematics; Theoretical mathematics; contact; Floer; geometry; pseudoholomorphic; symplectic; topology
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Farris, D. M. (2011). The embedded contact homology of nontrivial circle bundles over Riemann surfaces. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/94r885pf
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Farris, David Michael. “The embedded contact homology of nontrivial circle bundles over Riemann surfaces.” 2011. Thesis, University of California – Berkeley. Accessed March 08, 2021. http://www.escholarship.org/uc/item/94r885pf.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Farris, David Michael. “The embedded contact homology of nontrivial circle bundles over Riemann surfaces.” 2011. Web. 08 Mar 2021.
Vancouver:
Farris DM. The embedded contact homology of nontrivial circle bundles over Riemann surfaces. [Internet] [Thesis]. University of California – Berkeley; 2011. [cited 2021 Mar 08]. Available from: http://www.escholarship.org/uc/item/94r885pf.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Farris DM. The embedded contact homology of nontrivial circle bundles over Riemann surfaces. [Thesis]. University of California – Berkeley; 2011. Available from: http://www.escholarship.org/uc/item/94r885pf
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
7. Smith, Jack Edward. Symmetry in monotone Lagrangian Floer theory.
Degree: PhD, 2017, University of Cambridge
URL: https://www.repository.cam.ac.uk/handle/1810/267745
Subjects/Keywords: symplectic topology; Lagrangian submanifold; Floer cohomology; holomorphic disc
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Smith, J. E. (2017). Symmetry in monotone Lagrangian Floer theory. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/267745
Chicago Manual of Style (16th Edition):
Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Doctoral Dissertation, University of Cambridge. Accessed March 08, 2021. https://www.repository.cam.ac.uk/handle/1810/267745.
MLA Handbook (7th Edition):
Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Web. 08 Mar 2021.
Vancouver:
Smith JE. Symmetry in monotone Lagrangian Floer theory. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2021 Mar 08]. Available from: https://www.repository.cam.ac.uk/handle/1810/267745.
Council of Science Editors:
Smith JE. Symmetry in monotone Lagrangian Floer theory. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://www.repository.cam.ac.uk/handle/1810/267745
ETH Zürich
8. Singer, Berit. Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants.
Degree: 2019, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/414580
Subjects/Keywords: Symplectic topology;
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Singer, B. (2019). Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/414580
Chicago Manual of Style (16th Edition):
Singer, Berit. “Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants.” 2019. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/414580.
MLA Handbook (7th Edition):
Singer, Berit. “Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants.” 2019. Web. 08 Mar 2021.
Vancouver:
Singer B. Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants. [Internet] [Doctoral dissertation]. ETH Zürich; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/414580.
Council of Science Editors:
Singer B. Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants. [Doctoral Dissertation]. ETH Zürich; 2019. Available from: http://hdl.handle.net/20.500.11850/414580
University of Notre Dame
9. James Benn. The L^2 Geometry of the Symplectomorphism Group</h1>.
Degree: Mathematics, 2015, University of Notre Dame
URL: https://curate.nd.edu/show/zs25x636101
Subjects/Keywords: Diffeomorphism Groups; Hilbert Manifold; Euler equations; Symplectic Topology; Conjugate Points
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Benn, J. (2015). The L^2 Geometry of the Symplectomorphism Group</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/zs25x636101
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Benn, James. “The L^2 Geometry of the Symplectomorphism Group</h1>.” 2015. Thesis, University of Notre Dame. Accessed March 08, 2021. https://curate.nd.edu/show/zs25x636101.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Benn, James. “The L^2 Geometry of the Symplectomorphism Group</h1>.” 2015. Web. 08 Mar 2021.
Vancouver:
Benn J. The L^2 Geometry of the Symplectomorphism Group</h1>. [Internet] [Thesis]. University of Notre Dame; 2015. [cited 2021 Mar 08]. Available from: https://curate.nd.edu/show/zs25x636101.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Benn J. The L^2 Geometry of the Symplectomorphism Group</h1>. [Thesis]. University of Notre Dame; 2015. Available from: https://curate.nd.edu/show/zs25x636101
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
University of Toronto
10. Zoghi, Masrour. The Gromov Width of Coadjoint Orbits of Compact Lie Groups.
Degree: 2010, University of Toronto
URL: http://hdl.handle.net/1807/26269
Subjects/Keywords: Symplectic Topology; Lie Theory; 0405
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Zoghi, M. (2010). The Gromov Width of Coadjoint Orbits of Compact Lie Groups. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/26269
Chicago Manual of Style (16th Edition):
Zoghi, Masrour. “The Gromov Width of Coadjoint Orbits of Compact Lie Groups.” 2010. Doctoral Dissertation, University of Toronto. Accessed March 08, 2021. http://hdl.handle.net/1807/26269.
MLA Handbook (7th Edition):
Zoghi, Masrour. “The Gromov Width of Coadjoint Orbits of Compact Lie Groups.” 2010. Web. 08 Mar 2021.
Vancouver:
Zoghi M. The Gromov Width of Coadjoint Orbits of Compact Lie Groups. [Internet] [Doctoral dissertation]. University of Toronto; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1807/26269.
Council of Science Editors:
Zoghi M. The Gromov Width of Coadjoint Orbits of Compact Lie Groups. [Doctoral Dissertation]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/26269
11. Smith, Jack Edward. Symmetry in monotone Lagrangian Floer theory.
Degree: PhD, 2017, University of Cambridge
URL: https://doi.org/10.17863/CAM.13678
;
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533
Subjects/Keywords: 514; symplectic topology; Lagrangian submanifold; Floer cohomology; holomorphic disc
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Smith, J. E. (2017). Symmetry in monotone Lagrangian Floer theory. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533
Chicago Manual of Style (16th Edition):
Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Doctoral Dissertation, University of Cambridge. Accessed March 08, 2021. https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533.
MLA Handbook (7th Edition):
Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Web. 08 Mar 2021.
Vancouver:
Smith JE. Symmetry in monotone Lagrangian Floer theory. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2021 Mar 08]. Available from: https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533.
Council of Science Editors:
Smith JE. Symmetry in monotone Lagrangian Floer theory. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533
12. Monzner, Alexandra. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.
Degree: 2012, Technische Universität Dortmund
URL: http://hdl.handle.net/2003/29650
Subjects/Keywords: Quasi-morphisms; Special invariants; Symplectic homogenization; Symplectic topology; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Monzner, A. (2012). Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/29650
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Monzner, Alexandra. “Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.” 2012. Thesis, Technische Universität Dortmund. Accessed March 08, 2021. http://hdl.handle.net/2003/29650.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Monzner, Alexandra. “Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.” 2012. Web. 08 Mar 2021.
Vancouver:
Monzner A. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. [Internet] [Thesis]. Technische Universität Dortmund; 2012. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2003/29650.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Monzner A. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. [Thesis]. Technische Universität Dortmund; 2012. Available from: http://hdl.handle.net/2003/29650
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
13. Monzner, Alexandra. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.
Degree: 2012, Technische Universität Dortmund
URL: http://dx.doi.org/10.17877/DE290R-5393
Subjects/Keywords: Quasi-morphisms; Special invariants; Symplectic homogenization; Symplectic topology; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Monzner, A. (2012). Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-5393
Chicago Manual of Style (16th Edition):
Monzner, Alexandra. “Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.” 2012. Doctoral Dissertation, Technische Universität Dortmund. Accessed March 08, 2021. http://dx.doi.org/10.17877/DE290R-5393.
MLA Handbook (7th Edition):
Monzner, Alexandra. “Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.” 2012. Web. 08 Mar 2021.
Vancouver:
Monzner A. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2012. [cited 2021 Mar 08]. Available from: http://dx.doi.org/10.17877/DE290R-5393.
Council of Science Editors:
Monzner A. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. [Doctoral Dissertation]. Technische Universität Dortmund; 2012. Available from: http://dx.doi.org/10.17877/DE290R-5393
Indian Institute of Science
14. Kulkarni, Dheeraj. Relative Symplectic Caps, Fibered Knots And 4-Genus.
Degree: PhD, Faculty of Science, 2014, Indian Institute of Science
URL: http://etd.iisc.ac.in/handle/2005/2285
Subjects/Keywords: Symplectic Geometry; Symplectic Capping Theorem; Symlpectic Manifolds; Fibered Knots; 4-Genus Knots; Symplectic Caps; Knot Theory; Contact Geometry; Contact Manifolds; Quasipositive Knots; Symplectic Convexity; Topology; Symplectic Neighborhood Theorem; Seifert Surfaces; Riemann Surface; Geometry
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kulkarni, D. (2014). Relative Symplectic Caps, Fibered Knots And 4-Genus. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2285
Chicago Manual of Style (16th Edition):
Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Doctoral Dissertation, Indian Institute of Science. Accessed March 08, 2021. http://etd.iisc.ac.in/handle/2005/2285.
MLA Handbook (7th Edition):
Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Web. 08 Mar 2021.
Vancouver:
Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2014. [cited 2021 Mar 08]. Available from: http://etd.iisc.ac.in/handle/2005/2285.
Council of Science Editors:
Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Doctoral Dissertation]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2285
University of Western Ontario
15. VanHoof, Martin L. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.
Degree: 2013, University of Western Ontario
URL: https://ir.lib.uwo.ca/etd/1868
Subjects/Keywords: symplectic orbifold; weighted projective space; symplectomorphism group; toric orbifold; Geometry and Topology
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
VanHoof, M. L. (2013). Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/1868
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
VanHoof, Martin L. “Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.” 2013. Thesis, University of Western Ontario. Accessed March 08, 2021. https://ir.lib.uwo.ca/etd/1868.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
VanHoof, Martin L. “Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.” 2013. Web. 08 Mar 2021.
Vancouver:
VanHoof ML. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. [Internet] [Thesis]. University of Western Ontario; 2013. [cited 2021 Mar 08]. Available from: https://ir.lib.uwo.ca/etd/1868.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
VanHoof ML. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. [Thesis]. University of Western Ontario; 2013. Available from: https://ir.lib.uwo.ca/etd/1868
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
16. Khodorovskiy, Tatyana. Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls.
Degree: PhD, Mathematics, 2012, Harvard University
URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269
Subjects/Keywords: embeddings; rational homology balls; symplectic; topology; mathematics
…complex structures. For a full exposition of symplectic geometry and topology, we refer the… …contact topology, as well as Stein surfaces. 11 2.2.1. Symplectic structures. We will discuss… …performed in the symplectic category. More precisely, she showed that if in a symplectic 4… …manifold (M, ω) there is a symplectic embedding of a configuration Cn of symplectic… …spheres, then there exists a symplectic model for Bn such that the rational blow-down of (M…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Khodorovskiy, T. (2012). Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269
Chicago Manual of Style (16th Edition):
Khodorovskiy, Tatyana. “Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls.” 2012. Doctoral Dissertation, Harvard University. Accessed March 08, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269.
MLA Handbook (7th Edition):
Khodorovskiy, Tatyana. “Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls.” 2012. Web. 08 Mar 2021.
Vancouver:
Khodorovskiy T. Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls. [Internet] [Doctoral dissertation]. Harvard University; 2012. [cited 2021 Mar 08]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269.
Council of Science Editors:
Khodorovskiy T. Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls. [Doctoral Dissertation]. Harvard University; 2012. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269
Michigan State University
17. Baykur, Refik İnanç. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.
Degree: PhD, Department of Mathematics, 2007, Michigan State University
URL: http://etd.lib.msu.edu/islandora/object/etd:38642
Subjects/Keywords: Symplectic manifolds; Four-manifolds (Topology); Invariant manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Baykur, R. I. (2007). Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:38642
Chicago Manual of Style (16th Edition):
Baykur, Refik İnanç. “Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.” 2007. Doctoral Dissertation, Michigan State University. Accessed March 08, 2021. http://etd.lib.msu.edu/islandora/object/etd:38642.
MLA Handbook (7th Edition):
Baykur, Refik İnanç. “Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.” 2007. Web. 08 Mar 2021.
Vancouver:
Baykur RI. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. [Internet] [Doctoral dissertation]. Michigan State University; 2007. [cited 2021 Mar 08]. Available from: http://etd.lib.msu.edu/islandora/object/etd:38642.
Council of Science Editors:
Baykur RI. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. [Doctoral Dissertation]. Michigan State University; 2007. Available from: http://etd.lib.msu.edu/islandora/object/etd:38642
The Ohio State University
18. Kennedy, Chris A. Construction of Maps by Postnikov Towers.
Degree: PhD, Mathematics, 2018, The Ohio State University
URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461
Subjects/Keywords: Mathematics; algebraic topology; Postnikov towers; secondary cohomology operations; higher cohomology operations; special unitary group; symplectic group; H-spaces; fiber bundles
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kennedy, C. A. (2018). Construction of Maps by Postnikov Towers. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461
Chicago Manual of Style (16th Edition):
Kennedy, Chris A. “Construction of Maps by Postnikov Towers.” 2018. Doctoral Dissertation, The Ohio State University. Accessed March 08, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461.
MLA Handbook (7th Edition):
Kennedy, Chris A. “Construction of Maps by Postnikov Towers.” 2018. Web. 08 Mar 2021.
Vancouver:
Kennedy CA. Construction of Maps by Postnikov Towers. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2021 Mar 08]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461.
Council of Science Editors:
Kennedy CA. Construction of Maps by Postnikov Towers. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461
19. Alves, Marcelo Ribeiro de Resende. Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows.
Degree: Docteur es, Mathématiques fondamentales, 2015, Université Paris-Saclay (ComUE)
URL: http://www.theses.fr/2015SACLS084
Subjects/Keywords: Topologie symplectique et de contact; Champs de Reeb; Entropie topologique; Systèmes hamiltoniens; Symplectic and contact topology; Reeb flows; Topological entropy; Hamiltonian systems
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Alves, M. R. d. R. (2015). Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2015SACLS084
Chicago Manual of Style (16th Edition):
Alves, Marcelo Ribeiro de Resende. “Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows.” 2015. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed March 08, 2021. http://www.theses.fr/2015SACLS084.
MLA Handbook (7th Edition):
Alves, Marcelo Ribeiro de Resende. “Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows.” 2015. Web. 08 Mar 2021.
Vancouver:
Alves MRdR. Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2015. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2015SACLS084.
Council of Science Editors:
Alves MRdR. Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2015. Available from: http://www.theses.fr/2015SACLS084
University of New Mexico
20. Pati, Justin. Contact homology of toric contact manifolds of Reeb type.
Degree: Mathematics & Statistics, 2010, University of New Mexico
URL: http://hdl.handle.net/1928/11193
Subjects/Keywords: Contact manifolds; Symplectic and contact topology; Toric varieties; Orbifolds; Homology theory.
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Pati, J. (2010). Contact homology of toric contact manifolds of Reeb type. (Doctoral Dissertation). University of New Mexico. Retrieved from http://hdl.handle.net/1928/11193
Chicago Manual of Style (16th Edition):
Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Doctoral Dissertation, University of New Mexico. Accessed March 08, 2021. http://hdl.handle.net/1928/11193.
MLA Handbook (7th Edition):
Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Web. 08 Mar 2021.
Vancouver:
Pati J. Contact homology of toric contact manifolds of Reeb type. [Internet] [Doctoral dissertation]. University of New Mexico; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1928/11193.
Council of Science Editors:
Pati J. Contact homology of toric contact manifolds of Reeb type. [Doctoral Dissertation]. University of New Mexico; 2010. Available from: http://hdl.handle.net/1928/11193
University of Texas – Austin
21. Williams, Jonathan Dunklin. Broken Lefschetz fibrations on smooth four-manifolds.
Degree: PhD, Mathematics, 2010, University of Texas – Austin
URL: http://hdl.handle.net/2152/ETD-UT-2010-05-841
Subjects/Keywords: Manifold; 4-manifold; topology; Lefschetz; fibration; Broken; Symplectic; Smooth; singularity
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Williams, J. D. (2010). Broken Lefschetz fibrations on smooth four-manifolds. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-841
Chicago Manual of Style (16th Edition):
Williams, Jonathan Dunklin. “Broken Lefschetz fibrations on smooth four-manifolds.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed March 08, 2021. http://hdl.handle.net/2152/ETD-UT-2010-05-841.
MLA Handbook (7th Edition):
Williams, Jonathan Dunklin. “Broken Lefschetz fibrations on smooth four-manifolds.” 2010. Web. 08 Mar 2021.
Vancouver:
Williams JD. Broken Lefschetz fibrations on smooth four-manifolds. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-841.
Council of Science Editors:
Williams JD. Broken Lefschetz fibrations on smooth four-manifolds. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-841
Université de Montréal
22. Rathel-Fournier, Dominique. Rigidité du crochet de Poisson en topologie symplectique.
Degree: 2018, Université de Montréal
URL: http://hdl.handle.net/1866/20208
Subjects/Keywords: Topologie symplectique; Crochet de Poisson; Dynamique hamiltonienne; Géométrie d'Hofer; Rigidité symplectique; Symplectic topology; Poisson bracket; Hamiltonian dynamics; Hofer geometry; Symplectic rigidity; Mathematics / Mathématiques (UMI : 0405)
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Rathel-Fournier, D. (2018). Rigidité du crochet de Poisson en topologie symplectique. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/20208
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Rathel-Fournier, Dominique. “Rigidité du crochet de Poisson en topologie symplectique.” 2018. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/20208.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Rathel-Fournier, Dominique. “Rigidité du crochet de Poisson en topologie symplectique.” 2018. Web. 08 Mar 2021.
Vancouver:
Rathel-Fournier D. Rigidité du crochet de Poisson en topologie symplectique. [Internet] [Thesis]. Université de Montréal; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/20208.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Rathel-Fournier D. Rigidité du crochet de Poisson en topologie symplectique. [Thesis]. Université de Montréal; 2018. Available from: http://hdl.handle.net/1866/20208
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Université de Montréal
23. Ngô, Fabien. Structures quantiques de certaines sous-variétés lagrangiennes non-monotones.
Degree: 2010, Université de Montréal
URL: http://hdl.handle.net/1866/4526
Subjects/Keywords: Topologie symplectique; Symplectic topology; Sous-variétés lagrangiennes; Lagrangian submanifold; Homologie quantique; Quantum homology; Homologie des perles; Pearl homology; capacité symplectique; symplectic capacity; Mathematics / Mathématiques (UMI : 0405)
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ngô, F. (2010). Structures quantiques de certaines sous-variétés lagrangiennes non-monotones. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/4526
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Ngô, Fabien. “Structures quantiques de certaines sous-variétés lagrangiennes non-monotones.” 2010. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/4526.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Ngô, Fabien. “Structures quantiques de certaines sous-variétés lagrangiennes non-monotones.” 2010. Web. 08 Mar 2021.
Vancouver:
Ngô F. Structures quantiques de certaines sous-variétés lagrangiennes non-monotones. [Internet] [Thesis]. Université de Montréal; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/4526.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Ngô F. Structures quantiques de certaines sous-variétés lagrangiennes non-monotones. [Thesis]. Université de Montréal; 2010. Available from: http://hdl.handle.net/1866/4526
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
24. Lee, Sangjin. Towards a higher dimensional construction of stable/unstable Lagrangian laminations.
Degree: Mathematics, 2019, UCLA
URL: http://www.escholarship.org/uc/item/95q4165w
Subjects/Keywords: Mathematics; Lagrangian branched submanifold; Lagrangian Floer homology; Lagrangian lamination; pseudo-Anosov; Symplectic Topology
…n ≥ 2, then specific choices of plumbing points do not change the symplectic topology of P… …dimensional lamination L on a symplectic manifold (M 2n , ω) is a Lagrangian lamination if… …One of them is to find a symplectic automorphism ψ on a symplectic manifold M of dimension… …slightly weaker version of the question is to define a symplectic automorphism ψ with invariant… …1.5, which answer the latter question. ∼ Theorem 1.2. Let M be a symplectic manifold and…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Lee, S. (2019). Towards a higher dimensional construction of stable/unstable Lagrangian laminations. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/95q4165w
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Lee, Sangjin. “Towards a higher dimensional construction of stable/unstable Lagrangian laminations.” 2019. Thesis, UCLA. Accessed March 08, 2021. http://www.escholarship.org/uc/item/95q4165w.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Lee, Sangjin. “Towards a higher dimensional construction of stable/unstable Lagrangian laminations.” 2019. Web. 08 Mar 2021.
Vancouver:
Lee S. Towards a higher dimensional construction of stable/unstable Lagrangian laminations. [Internet] [Thesis]. UCLA; 2019. [cited 2021 Mar 08]. Available from: http://www.escholarship.org/uc/item/95q4165w.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Lee S. Towards a higher dimensional construction of stable/unstable Lagrangian laminations. [Thesis]. UCLA; 2019. Available from: http://www.escholarship.org/uc/item/95q4165w
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
25. Bisgaard, Mads R. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.
Degree: 2018, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/315031
Subjects/Keywords: Symplectic topology;
…Modern symplectic topology/geometry studies (among other things) topological and… …exhibited by Lagrangian cobordisms. At its early stages, symplectic topology was mostly developed… …symplectic topology has a quantitative side to it. Later such phenomena were formalized by Ekeland… …quantitative story of symplectic topology arose when Hofer [48] asked the question "… …x29; Hamiltonian systems using tools coming from symplectic topology. The first part of the…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Bisgaard, M. R. (2018). Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/315031
Chicago Manual of Style (16th Edition):
Bisgaard, Mads R. “Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.” 2018. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/315031.
MLA Handbook (7th Edition):
Bisgaard, Mads R. “Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.” 2018. Web. 08 Mar 2021.
Vancouver:
Bisgaard MR. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/315031.
Council of Science Editors:
Bisgaard MR. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/315031
26. Cazassus, Guillem. Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms.
Degree: Docteur es, Mathématiques fondamentales, 2016, Université Toulouse III – Paul Sabatier
URL: http://www.theses.fr/2016TOU30043
Subjects/Keywords: Topologie de basse dimension; Chirurgie de Dehn; Géométrie symplectique; Homologie de Floer; Courbes pseudo-holomorphes; Théorie de jauge; Espace des modules de connexions; Low-dimensional topology; Dehn surgery; Symplectic geometry; Floer homology; Pseudo-holomorphic curves; Gauge theory; Moduli spaces of connections
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Cazassus, G. (2016). Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2016TOU30043
Chicago Manual of Style (16th Edition):
Cazassus, Guillem. “Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms.” 2016. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed March 08, 2021. http://www.theses.fr/2016TOU30043.
MLA Handbook (7th Edition):
Cazassus, Guillem. “Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms.” 2016. Web. 08 Mar 2021.
Vancouver:
Cazassus G. Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2016. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2016TOU30043.
Council of Science Editors:
Cazassus G. Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2016. Available from: http://www.theses.fr/2016TOU30043
Arizona State University
27. Sanborn, Barbara. Symplectic Topology and Geometric Quantum Mechanics.
Degree: PhD, Mathematics, 2011, Arizona State University
URL: http://repository.asu.edu/items/9478
Subjects/Keywords: Mathematics; Quantum physics; Condensed Matter Physics; adiabatic theorem; geometric quantum mechanics; J-holomorphic curves; mean curvature; symplectic topology; uncertainty principle
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Sanborn, B. (2011). Symplectic Topology and Geometric Quantum Mechanics. (Doctoral Dissertation). Arizona State University. Retrieved from http://repository.asu.edu/items/9478
Chicago Manual of Style (16th Edition):
Sanborn, Barbara. “Symplectic Topology and Geometric Quantum Mechanics.” 2011. Doctoral Dissertation, Arizona State University. Accessed March 08, 2021. http://repository.asu.edu/items/9478.
MLA Handbook (7th Edition):
Sanborn, Barbara. “Symplectic Topology and Geometric Quantum Mechanics.” 2011. Web. 08 Mar 2021.
Vancouver:
Sanborn B. Symplectic Topology and Geometric Quantum Mechanics. [Internet] [Doctoral dissertation]. Arizona State University; 2011. [cited 2021 Mar 08]. Available from: http://repository.asu.edu/items/9478.
Council of Science Editors:
Sanborn B. Symplectic Topology and Geometric Quantum Mechanics. [Doctoral Dissertation]. Arizona State University; 2011. Available from: http://repository.asu.edu/items/9478
Université de Montréal
28. Chassé, Jean-Philippe. Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées.
Degree: 2019, Université de Montréal
URL: http://hdl.handle.net/1866/22134
Subjects/Keywords: Fibrés vectoriels symplectiques; Topologie symplectique; Classes caractéristiques; h-principe; Immersions isotropes; Immersions coisotropes; Symplectic vector bundle; Symplectic topology; Caracteristic classes; h-principle; Isotropic immersions; Coisotropic immersions; Mathematics / Mathématiques (UMI : 0405)
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Chassé, J. (2019). Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/22134
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Chassé, Jean-Philippe. “Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées.” 2019. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/22134.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Chassé, Jean-Philippe. “Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées.” 2019. Web. 08 Mar 2021.
Vancouver:
Chassé J. Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées. [Internet] [Thesis]. Université de Montréal; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/22134.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Chassé J. Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées. [Thesis]. Université de Montréal; 2019. Available from: http://hdl.handle.net/1866/22134
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
29. Uljarevic, Igor. A symplectic homology theory for automorphisms of Liouville domains.
Degree: 2016, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/116784
Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Uljarevic, I. (2016). A symplectic homology theory for automorphisms of Liouville domains. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/116784
Chicago Manual of Style (16th Edition):
Uljarevic, Igor. “A symplectic homology theory for automorphisms of Liouville domains.” 2016. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/116784.
MLA Handbook (7th Edition):
Uljarevic, Igor. “A symplectic homology theory for automorphisms of Liouville domains.” 2016. Web. 08 Mar 2021.
Vancouver:
Uljarevic I. A symplectic homology theory for automorphisms of Liouville domains. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/116784.
Council of Science Editors:
Uljarevic I. A symplectic homology theory for automorphisms of Liouville domains. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/116784
30. Krom, Robin Sebastian. The Donaldson Geometric Flow.
Degree: 2016, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/115920
Subjects/Keywords: FOUR-DIMENSIONAL MANIFOLDS (TOPOLOGY); VIERDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); FLUSS (DYNAMISCHE SYSTEME); FLOW (DYNAMICAL SYSTEMS); info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Krom, R. S. (2016). The Donaldson Geometric Flow. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/115920
Chicago Manual of Style (16th Edition):
Krom, Robin Sebastian. “The Donaldson Geometric Flow.” 2016. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/115920.
MLA Handbook (7th Edition):
Krom, Robin Sebastian. “The Donaldson Geometric Flow.” 2016. Web. 08 Mar 2021.
Vancouver:
Krom RS. The Donaldson Geometric Flow. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/115920.
Council of Science Editors:
Krom RS. The Donaldson Geometric Flow. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/115920