Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(symplectic topology). Showing records 1 – 30 of 44 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

Country

▼ Search Limiters


University of Minnesota

1. Wu, Weiwei. Lagrangian spheres, symplectic surfaces and the symplectic mapping class group.

Degree: PhD, Mathematics, 2012, University of Minnesota

 Given a Lagrangian sphere in a symplectic 4-manifold (M, &omega) with b=1, we find embedded symplectic surfaces intersecting it minimally. When the Kodaira dimension &kappa… (more)

Subjects/Keywords: Isotopy; Lagrangian; Symplectic topology; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wu, W. (2012). Lagrangian spheres, symplectic surfaces and the symplectic mapping class group. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/135850

Chicago Manual of Style (16th Edition):

Wu, Weiwei. “Lagrangian spheres, symplectic surfaces and the symplectic mapping class group.” 2012. Doctoral Dissertation, University of Minnesota. Accessed March 08, 2021. http://purl.umn.edu/135850.

MLA Handbook (7th Edition):

Wu, Weiwei. “Lagrangian spheres, symplectic surfaces and the symplectic mapping class group.” 2012. Web. 08 Mar 2021.

Vancouver:

Wu W. Lagrangian spheres, symplectic surfaces and the symplectic mapping class group. [Internet] [Doctoral dissertation]. University of Minnesota; 2012. [cited 2021 Mar 08]. Available from: http://purl.umn.edu/135850.

Council of Science Editors:

Wu W. Lagrangian spheres, symplectic surfaces and the symplectic mapping class group. [Doctoral Dissertation]. University of Minnesota; 2012. Available from: http://purl.umn.edu/135850


Cornell University

2. Pendleton, Ian Alexander. The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds.

Degree: PhD, Mathematics, 2019, Cornell University

 This is a collection of algebraic topological results for toric origami manifolds, mostly in dimension 4. Using a known formula for the fundamental group of… (more)

Subjects/Keywords: algebraic topology; toric origami; toric symplectic; Mathematics; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pendleton, I. A. (2019). The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/67332

Chicago Manual of Style (16th Edition):

Pendleton, Ian Alexander. “The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds.” 2019. Doctoral Dissertation, Cornell University. Accessed March 08, 2021. http://hdl.handle.net/1813/67332.

MLA Handbook (7th Edition):

Pendleton, Ian Alexander. “The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds.” 2019. Web. 08 Mar 2021.

Vancouver:

Pendleton IA. The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds. [Internet] [Doctoral dissertation]. Cornell University; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1813/67332.

Council of Science Editors:

Pendleton IA. The Fundamental Group, Homology, and Cohomology of Toric Origami 4-Manifolds. [Doctoral Dissertation]. Cornell University; 2019. Available from: http://hdl.handle.net/1813/67332


University of Colorado

3. Nita, Alexander. Essential Self-Adjointness of the Symplectic Dirac Operators.

Degree: PhD, Mathematics, 2016, University of Colorado

  The main problem we consider in this thesis is the essential self-adjointness of the symplectic Dirac operators D and ~D constructed by Katharina Habermann… (more)

Subjects/Keywords: Dirac operator; functional analysis; self-adjointness; symplectic geometry; symplectic topology; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nita, A. (2016). Essential Self-Adjointness of the Symplectic Dirac Operators. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/45

Chicago Manual of Style (16th Edition):

Nita, Alexander. “Essential Self-Adjointness of the Symplectic Dirac Operators.” 2016. Doctoral Dissertation, University of Colorado. Accessed March 08, 2021. https://scholar.colorado.edu/math_gradetds/45.

MLA Handbook (7th Edition):

Nita, Alexander. “Essential Self-Adjointness of the Symplectic Dirac Operators.” 2016. Web. 08 Mar 2021.

Vancouver:

Nita A. Essential Self-Adjointness of the Symplectic Dirac Operators. [Internet] [Doctoral dissertation]. University of Colorado; 2016. [cited 2021 Mar 08]. Available from: https://scholar.colorado.edu/math_gradetds/45.

Council of Science Editors:

Nita A. Essential Self-Adjointness of the Symplectic Dirac Operators. [Doctoral Dissertation]. University of Colorado; 2016. Available from: https://scholar.colorado.edu/math_gradetds/45


University of Minnesota

4. Sakalli, Sumeyra. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.

Degree: PhD, Mathematics, 2018, University of Minnesota

 The focus of this thesis is twofold. First one is the geography problem of symplectic and smooth 4-manifolds with nonnegative signatures. We construct new non-spin,… (more)

Subjects/Keywords: Symplectic topology; 4-manifolds; Exotic Structures

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sakalli, S. (2018). New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/201114

Chicago Manual of Style (16th Edition):

Sakalli, Sumeyra. “New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.” 2018. Doctoral Dissertation, University of Minnesota. Accessed March 08, 2021. http://hdl.handle.net/11299/201114.

MLA Handbook (7th Edition):

Sakalli, Sumeyra. “New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.” 2018. Web. 08 Mar 2021.

Vancouver:

Sakalli S. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. [Internet] [Doctoral dissertation]. University of Minnesota; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/11299/201114.

Council of Science Editors:

Sakalli S. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. [Doctoral Dissertation]. University of Minnesota; 2018. Available from: http://hdl.handle.net/11299/201114


Louisiana State University

5. Lambert-Cole, Peter. Invariants of Legendrian products.

Degree: PhD, Applied Mathematics, 2014, Louisiana State University

This thesis investigates a construction in contact topology of Legendrian submanifolds called the Legendrian product. We investigate and compute invariants for these Legendrian submanifolds, including the Thurston-Bennequin invariant and Maslov class; Legendrian contact homology for the product of two Legendrian knots; and generating family homology.

Subjects/Keywords: low-dimensional topology; Contact geometry; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lambert-Cole, P. (2014). Invariants of Legendrian products. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909

Chicago Manual of Style (16th Edition):

Lambert-Cole, Peter. “Invariants of Legendrian products.” 2014. Doctoral Dissertation, Louisiana State University. Accessed March 08, 2021. etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909.

MLA Handbook (7th Edition):

Lambert-Cole, Peter. “Invariants of Legendrian products.” 2014. Web. 08 Mar 2021.

Vancouver:

Lambert-Cole P. Invariants of Legendrian products. [Internet] [Doctoral dissertation]. Louisiana State University; 2014. [cited 2021 Mar 08]. Available from: etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909.

Council of Science Editors:

Lambert-Cole P. Invariants of Legendrian products. [Doctoral Dissertation]. Louisiana State University; 2014. Available from: etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909


University of California – Berkeley

6. Farris, David Michael. The embedded contact homology of nontrivial circle bundles over Riemann surfaces.

Degree: Mathematics, 2011, University of California – Berkeley

The embedded contact homology (ECH) of a 3-manifold Y is a topological invariant defined using a contact form on Y which counts certain pseudoholomorphic curves in its symplectization. We compute the ECH of nontrivial circle bundles over Riemann surfaces.

Subjects/Keywords: Mathematics; Theoretical mathematics; contact; Floer; geometry; pseudoholomorphic; symplectic; topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Farris, D. M. (2011). The embedded contact homology of nontrivial circle bundles over Riemann surfaces. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/94r885pf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Farris, David Michael. “The embedded contact homology of nontrivial circle bundles over Riemann surfaces.” 2011. Thesis, University of California – Berkeley. Accessed March 08, 2021. http://www.escholarship.org/uc/item/94r885pf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Farris, David Michael. “The embedded contact homology of nontrivial circle bundles over Riemann surfaces.” 2011. Web. 08 Mar 2021.

Vancouver:

Farris DM. The embedded contact homology of nontrivial circle bundles over Riemann surfaces. [Internet] [Thesis]. University of California – Berkeley; 2011. [cited 2021 Mar 08]. Available from: http://www.escholarship.org/uc/item/94r885pf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Farris DM. The embedded contact homology of nontrivial circle bundles over Riemann surfaces. [Thesis]. University of California – Berkeley; 2011. Available from: http://www.escholarship.org/uc/item/94r885pf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Smith, Jack Edward. Symmetry in monotone Lagrangian Floer theory.

Degree: PhD, 2017, University of Cambridge

 In this thesis we study the self-Floer theory of a monotone Lagrangian submanifold L of a closed symplectic manifold X in the presence of various… (more)

Subjects/Keywords: symplectic topology; Lagrangian submanifold; Floer cohomology; holomorphic disc

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smith, J. E. (2017). Symmetry in monotone Lagrangian Floer theory. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/267745

Chicago Manual of Style (16th Edition):

Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Doctoral Dissertation, University of Cambridge. Accessed March 08, 2021. https://www.repository.cam.ac.uk/handle/1810/267745.

MLA Handbook (7th Edition):

Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Web. 08 Mar 2021.

Vancouver:

Smith JE. Symmetry in monotone Lagrangian Floer theory. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2021 Mar 08]. Available from: https://www.repository.cam.ac.uk/handle/1810/267745.

Council of Science Editors:

Smith JE. Symmetry in monotone Lagrangian Floer theory. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://www.repository.cam.ac.uk/handle/1810/267745


ETH Zürich

8. Singer, Berit. Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants.

Degree: 2019, ETH Zürich

 In this thesis we study Lagrangian cobordisms with the tools provided by Lagrangian quantum homology. In particular, we develop the theory for the setting of… (more)

Subjects/Keywords: Symplectic topology;

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Singer, B. (2019). Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/414580

Chicago Manual of Style (16th Edition):

Singer, Berit. “Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants.” 2019. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/414580.

MLA Handbook (7th Edition):

Singer, Berit. “Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants.” 2019. Web. 08 Mar 2021.

Vancouver:

Singer B. Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants. [Internet] [Doctoral dissertation]. ETH Zürich; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/414580.

Council of Science Editors:

Singer B. Lagrangian cobordisms, Lefschetz Fibrations and Quantum Invariants. [Doctoral Dissertation]. ETH Zürich; 2019. Available from: http://hdl.handle.net/20.500.11850/414580


University of Notre Dame

9. James Benn. The L^2 Geometry of the Symplectomorphism Group</h1>.

Degree: Mathematics, 2015, University of Notre Dame

  In this thesis we study the geometry of the group of Symplectic diffeomorphisms of a closed Symplectic manifold M, equipped with the L2 weak… (more)

Subjects/Keywords: Diffeomorphism Groups; Hilbert Manifold; Euler equations; Symplectic Topology; Conjugate Points

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Benn, J. (2015). The L^2 Geometry of the Symplectomorphism Group</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/zs25x636101

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Benn, James. “The L^2 Geometry of the Symplectomorphism Group</h1>.” 2015. Thesis, University of Notre Dame. Accessed March 08, 2021. https://curate.nd.edu/show/zs25x636101.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Benn, James. “The L^2 Geometry of the Symplectomorphism Group</h1>.” 2015. Web. 08 Mar 2021.

Vancouver:

Benn J. The L^2 Geometry of the Symplectomorphism Group</h1>. [Internet] [Thesis]. University of Notre Dame; 2015. [cited 2021 Mar 08]. Available from: https://curate.nd.edu/show/zs25x636101.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Benn J. The L^2 Geometry of the Symplectomorphism Group</h1>. [Thesis]. University of Notre Dame; 2015. Available from: https://curate.nd.edu/show/zs25x636101

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

10. Zoghi, Masrour. The Gromov Width of Coadjoint Orbits of Compact Lie Groups.

Degree: 2010, University of Toronto

The first part of this thesis investigates the Gromov width of maximal dimensional coadjoint orbits of compact simple Lie groups. An upper bound for the… (more)

Subjects/Keywords: Symplectic Topology; Lie Theory; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zoghi, M. (2010). The Gromov Width of Coadjoint Orbits of Compact Lie Groups. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/26269

Chicago Manual of Style (16th Edition):

Zoghi, Masrour. “The Gromov Width of Coadjoint Orbits of Compact Lie Groups.” 2010. Doctoral Dissertation, University of Toronto. Accessed March 08, 2021. http://hdl.handle.net/1807/26269.

MLA Handbook (7th Edition):

Zoghi, Masrour. “The Gromov Width of Coadjoint Orbits of Compact Lie Groups.” 2010. Web. 08 Mar 2021.

Vancouver:

Zoghi M. The Gromov Width of Coadjoint Orbits of Compact Lie Groups. [Internet] [Doctoral dissertation]. University of Toronto; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1807/26269.

Council of Science Editors:

Zoghi M. The Gromov Width of Coadjoint Orbits of Compact Lie Groups. [Doctoral Dissertation]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/26269

11. Smith, Jack Edward. Symmetry in monotone Lagrangian Floer theory.

Degree: PhD, 2017, University of Cambridge

 In this thesis we study the self-Floer theory of a monotone Lagrangian submanifold L of a closed symplectic manifold X in the presence of various… (more)

Subjects/Keywords: 514; symplectic topology; Lagrangian submanifold; Floer cohomology; holomorphic disc

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smith, J. E. (2017). Symmetry in monotone Lagrangian Floer theory. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533

Chicago Manual of Style (16th Edition):

Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Doctoral Dissertation, University of Cambridge. Accessed March 08, 2021. https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533.

MLA Handbook (7th Edition):

Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Web. 08 Mar 2021.

Vancouver:

Smith JE. Symmetry in monotone Lagrangian Floer theory. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2021 Mar 08]. Available from: https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533.

Council of Science Editors:

Smith JE. Symmetry in monotone Lagrangian Floer theory. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://doi.org/10.17863/CAM.13678 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533

12. Monzner, Alexandra. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.

Degree: 2012, Technische Universität Dortmund

Subjects/Keywords: Quasi-morphisms; Special invariants; Symplectic homogenization; Symplectic topology; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Monzner, A. (2012). Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/29650

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Monzner, Alexandra. “Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.” 2012. Thesis, Technische Universität Dortmund. Accessed March 08, 2021. http://hdl.handle.net/2003/29650.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Monzner, Alexandra. “Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.” 2012. Web. 08 Mar 2021.

Vancouver:

Monzner A. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. [Internet] [Thesis]. Technische Universität Dortmund; 2012. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2003/29650.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Monzner A. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. [Thesis]. Technische Universität Dortmund; 2012. Available from: http://hdl.handle.net/2003/29650

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Monzner, Alexandra. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.

Degree: 2012, Technische Universität Dortmund

Subjects/Keywords: Quasi-morphisms; Special invariants; Symplectic homogenization; Symplectic topology; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Monzner, A. (2012). Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-5393

Chicago Manual of Style (16th Edition):

Monzner, Alexandra. “Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.” 2012. Doctoral Dissertation, Technische Universität Dortmund. Accessed March 08, 2021. http://dx.doi.org/10.17877/DE290R-5393.

MLA Handbook (7th Edition):

Monzner, Alexandra. “Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles.” 2012. Web. 08 Mar 2021.

Vancouver:

Monzner A. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2012. [cited 2021 Mar 08]. Available from: http://dx.doi.org/10.17877/DE290R-5393.

Council of Science Editors:

Monzner A. Partial quasi-morphisms and symplectic quasi-integrals on cotangent bundles. [Doctoral Dissertation]. Technische Universität Dortmund; 2012. Available from: http://dx.doi.org/10.17877/DE290R-5393


Indian Institute of Science

14. Kulkarni, Dheeraj. Relative Symplectic Caps, Fibered Knots And 4-Genus.

Degree: PhD, Faculty of Science, 2014, Indian Institute of Science

 The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the… (more)

Subjects/Keywords: Symplectic Geometry; Symplectic Capping Theorem; Symlpectic Manifolds; Fibered Knots; 4-Genus Knots; Symplectic Caps; Knot Theory; Contact Geometry; Contact Manifolds; Quasipositive Knots; Symplectic Convexity; Topology; Symplectic Neighborhood Theorem; Seifert Surfaces; Riemann Surface; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kulkarni, D. (2014). Relative Symplectic Caps, Fibered Knots And 4-Genus. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2285

Chicago Manual of Style (16th Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Doctoral Dissertation, Indian Institute of Science. Accessed March 08, 2021. http://etd.iisc.ac.in/handle/2005/2285.

MLA Handbook (7th Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Web. 08 Mar 2021.

Vancouver:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2014. [cited 2021 Mar 08]. Available from: http://etd.iisc.ac.in/handle/2005/2285.

Council of Science Editors:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Doctoral Dissertation]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2285


University of Western Ontario

15. VanHoof, Martin L. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.

Degree: 2013, University of Western Ontario

 In this thesis, we study 4-dimensional weighted projective spaces and homotopy properties of their symplectomorphism groups. Using these computations, we also investigate some homotopy theoretic… (more)

Subjects/Keywords: symplectic orbifold; weighted projective space; symplectomorphism group; toric orbifold; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

VanHoof, M. L. (2013). Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/1868

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

VanHoof, Martin L. “Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.” 2013. Thesis, University of Western Ontario. Accessed March 08, 2021. https://ir.lib.uwo.ca/etd/1868.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

VanHoof, Martin L. “Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces.” 2013. Web. 08 Mar 2021.

Vancouver:

VanHoof ML. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. [Internet] [Thesis]. University of Western Ontario; 2013. [cited 2021 Mar 08]. Available from: https://ir.lib.uwo.ca/etd/1868.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

VanHoof ML. Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces. [Thesis]. University of Western Ontario; 2013. Available from: https://ir.lib.uwo.ca/etd/1868

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

16. Khodorovskiy, Tatyana. Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls.

Degree: PhD, Mathematics, 2012, Harvard University

We define the symplectic rational blow-up operation, for a family of rational homology balls (Bn), which appeared in Fintushel and Stern's rational blow-down construction. We… (more)

Subjects/Keywords: embeddings; rational homology balls; symplectic; topology; mathematics

…complex structures. For a full exposition of symplectic geometry and topology, we refer the… …contact topology, as well as Stein surfaces. 11 2.2.1. Symplectic structures. We will discuss… …performed in the symplectic category. More precisely, she showed that if in a symplectic 4… …manifold (M, ω) there is a symplectic embedding of a configuration Cn of symplectic… …spheres, then there exists a symplectic model for Bn such that the rational blow-down of (M… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khodorovskiy, T. (2012). Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269

Chicago Manual of Style (16th Edition):

Khodorovskiy, Tatyana. “Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls.” 2012. Doctoral Dissertation, Harvard University. Accessed March 08, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269.

MLA Handbook (7th Edition):

Khodorovskiy, Tatyana. “Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls.” 2012. Web. 08 Mar 2021.

Vancouver:

Khodorovskiy T. Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls. [Internet] [Doctoral dissertation]. Harvard University; 2012. [cited 2021 Mar 08]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269.

Council of Science Editors:

Khodorovskiy T. Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls. [Doctoral Dissertation]. Harvard University; 2012. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9572269


Michigan State University

17. Baykur, Refik İnanç. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.

Degree: PhD, Department of Mathematics, 2007, Michigan State University

Subjects/Keywords: Symplectic manifolds; Four-manifolds (Topology); Invariant manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baykur, R. I. (2007). Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:38642

Chicago Manual of Style (16th Edition):

Baykur, Refik İnanç. “Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.” 2007. Doctoral Dissertation, Michigan State University. Accessed March 08, 2021. http://etd.lib.msu.edu/islandora/object/etd:38642.

MLA Handbook (7th Edition):

Baykur, Refik İnanç. “Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.” 2007. Web. 08 Mar 2021.

Vancouver:

Baykur RI. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. [Internet] [Doctoral dissertation]. Michigan State University; 2007. [cited 2021 Mar 08]. Available from: http://etd.lib.msu.edu/islandora/object/etd:38642.

Council of Science Editors:

Baykur RI. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. [Doctoral Dissertation]. Michigan State University; 2007. Available from: http://etd.lib.msu.edu/islandora/object/etd:38642


The Ohio State University

18. Kennedy, Chris A. Construction of Maps by Postnikov Towers.

Degree: PhD, Mathematics, 2018, The Ohio State University

 Using Postnikov towers, we investigate the possible degrees of self-maps of variousspaces, including SU(3), Sp(2), SU(4), and the principal Sp(1)-bundles over S7. Thisinvestigation requires determining… (more)

Subjects/Keywords: Mathematics; algebraic topology; Postnikov towers; secondary cohomology operations; higher cohomology operations; special unitary group; symplectic group; H-spaces; fiber bundles

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kennedy, C. A. (2018). Construction of Maps by Postnikov Towers. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461

Chicago Manual of Style (16th Edition):

Kennedy, Chris A. “Construction of Maps by Postnikov Towers.” 2018. Doctoral Dissertation, The Ohio State University. Accessed March 08, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461.

MLA Handbook (7th Edition):

Kennedy, Chris A. “Construction of Maps by Postnikov Towers.” 2018. Web. 08 Mar 2021.

Vancouver:

Kennedy CA. Construction of Maps by Postnikov Towers. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2021 Mar 08]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461.

Council of Science Editors:

Kennedy CA. Construction of Maps by Postnikov Towers. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1533034197206461

19. Alves, Marcelo Ribeiro de Resende. Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows.

Degree: Docteur es, Mathématiques fondamentales, 2015, Université Paris-Saclay (ComUE)

L'objectif de cette thèse est d'investiguer les relations entre les propriétés topologiques d'une variété de contact et la dynamique des flots de Reeb dans la… (more)

Subjects/Keywords: Topologie symplectique et de contact; Champs de Reeb; Entropie topologique; Systèmes hamiltoniens; Symplectic and contact topology; Reeb flows; Topological entropy; Hamiltonian systems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alves, M. R. d. R. (2015). Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2015SACLS084

Chicago Manual of Style (16th Edition):

Alves, Marcelo Ribeiro de Resende. “Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows.” 2015. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed March 08, 2021. http://www.theses.fr/2015SACLS084.

MLA Handbook (7th Edition):

Alves, Marcelo Ribeiro de Resende. “Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows.” 2015. Web. 08 Mar 2021.

Vancouver:

Alves MRdR. Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2015. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2015SACLS084.

Council of Science Editors:

Alves MRdR. Sur les relations entre la topologie de contact et la dynamique de champs de Reeb : On the relationship between contact topology and the dynamics of Reeb flows. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2015. Available from: http://www.theses.fr/2015SACLS084


University of New Mexico

20. Pati, Justin. Contact homology of toric contact manifolds of Reeb type.

Degree: Mathematics & Statistics, 2010, University of New Mexico

 We use contact homology to distinguish contact structures on various manifolds. We are primarily interested in contact manifolds which admit an action of Reeb type… (more)

Subjects/Keywords: Contact manifolds; Symplectic and contact topology; Toric varieties; Orbifolds; Homology theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pati, J. (2010). Contact homology of toric contact manifolds of Reeb type. (Doctoral Dissertation). University of New Mexico. Retrieved from http://hdl.handle.net/1928/11193

Chicago Manual of Style (16th Edition):

Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Doctoral Dissertation, University of New Mexico. Accessed March 08, 2021. http://hdl.handle.net/1928/11193.

MLA Handbook (7th Edition):

Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Web. 08 Mar 2021.

Vancouver:

Pati J. Contact homology of toric contact manifolds of Reeb type. [Internet] [Doctoral dissertation]. University of New Mexico; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1928/11193.

Council of Science Editors:

Pati J. Contact homology of toric contact manifolds of Reeb type. [Doctoral Dissertation]. University of New Mexico; 2010. Available from: http://hdl.handle.net/1928/11193


University of Texas – Austin

21. Williams, Jonathan Dunklin. Broken Lefschetz fibrations on smooth four-manifolds.

Degree: PhD, Mathematics, 2010, University of Texas – Austin

 It is known that an arbitrary smooth, oriented four-manifold admits the structure of what is called a broken Lefschetz fibration. Given a broken Lefschetz fibration,… (more)

Subjects/Keywords: Manifold; 4-manifold; topology; Lefschetz; fibration; Broken; Symplectic; Smooth; singularity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Williams, J. D. (2010). Broken Lefschetz fibrations on smooth four-manifolds. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-841

Chicago Manual of Style (16th Edition):

Williams, Jonathan Dunklin. “Broken Lefschetz fibrations on smooth four-manifolds.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed March 08, 2021. http://hdl.handle.net/2152/ETD-UT-2010-05-841.

MLA Handbook (7th Edition):

Williams, Jonathan Dunklin. “Broken Lefschetz fibrations on smooth four-manifolds.” 2010. Web. 08 Mar 2021.

Vancouver:

Williams JD. Broken Lefschetz fibrations on smooth four-manifolds. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-841.

Council of Science Editors:

Williams JD. Broken Lefschetz fibrations on smooth four-manifolds. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-841


Université de Montréal

22. Rathel-Fournier, Dominique. Rigidité du crochet de Poisson en topologie symplectique.

Degree: 2018, Université de Montréal

Subjects/Keywords: Topologie symplectique; Crochet de Poisson; Dynamique hamiltonienne; Géométrie d'Hofer; Rigidité symplectique; Symplectic topology; Poisson bracket; Hamiltonian dynamics; Hofer geometry; Symplectic rigidity; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rathel-Fournier, D. (2018). Rigidité du crochet de Poisson en topologie symplectique. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/20208

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rathel-Fournier, Dominique. “Rigidité du crochet de Poisson en topologie symplectique.” 2018. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/20208.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rathel-Fournier, Dominique. “Rigidité du crochet de Poisson en topologie symplectique.” 2018. Web. 08 Mar 2021.

Vancouver:

Rathel-Fournier D. Rigidité du crochet de Poisson en topologie symplectique. [Internet] [Thesis]. Université de Montréal; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/20208.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rathel-Fournier D. Rigidité du crochet de Poisson en topologie symplectique. [Thesis]. Université de Montréal; 2018. Available from: http://hdl.handle.net/1866/20208

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Montréal

23. Ngô, Fabien. Structures quantiques de certaines sous-variétés lagrangiennes non-monotones.

Degree: 2010, Université de Montréal

Subjects/Keywords: Topologie symplectique; Symplectic topology; Sous-variétés lagrangiennes; Lagrangian submanifold; Homologie quantique; Quantum homology; Homologie des perles; Pearl homology; capacité symplectique; symplectic capacity; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ngô, F. (2010). Structures quantiques de certaines sous-variétés lagrangiennes non-monotones. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/4526

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ngô, Fabien. “Structures quantiques de certaines sous-variétés lagrangiennes non-monotones.” 2010. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/4526.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ngô, Fabien. “Structures quantiques de certaines sous-variétés lagrangiennes non-monotones.” 2010. Web. 08 Mar 2021.

Vancouver:

Ngô F. Structures quantiques de certaines sous-variétés lagrangiennes non-monotones. [Internet] [Thesis]. Université de Montréal; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/4526.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ngô F. Structures quantiques de certaines sous-variétés lagrangiennes non-monotones. [Thesis]. Université de Montréal; 2010. Available from: http://hdl.handle.net/1866/4526

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

24. Lee, Sangjin. Towards a higher dimensional construction of stable/unstable Lagrangian laminations.

Degree: Mathematics, 2019, UCLA

 We generalize some properties of surface automorphisms of pseudo-Anosov type.First, we generalize the Penner construction of a pseudo-Anosov homeomorphismand show that a symplectic automorphism which… (more)

Subjects/Keywords: Mathematics; Lagrangian branched submanifold; Lagrangian Floer homology; Lagrangian lamination; pseudo-Anosov; Symplectic Topology

…n ≥ 2, then specific choices of plumbing points do not change the symplectic topology of P… …dimensional lamination L on a symplectic manifold (M 2n , ω) is a Lagrangian lamination if… …One of them is to find a symplectic automorphism ψ on a symplectic manifold M of dimension… …slightly weaker version of the question is to define a symplectic automorphism ψ with invariant… …1.5, which answer the latter question. ∼ Theorem 1.2. Let M be a symplectic manifold and… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, S. (2019). Towards a higher dimensional construction of stable/unstable Lagrangian laminations. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/95q4165w

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lee, Sangjin. “Towards a higher dimensional construction of stable/unstable Lagrangian laminations.” 2019. Thesis, UCLA. Accessed March 08, 2021. http://www.escholarship.org/uc/item/95q4165w.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lee, Sangjin. “Towards a higher dimensional construction of stable/unstable Lagrangian laminations.” 2019. Web. 08 Mar 2021.

Vancouver:

Lee S. Towards a higher dimensional construction of stable/unstable Lagrangian laminations. [Internet] [Thesis]. UCLA; 2019. [cited 2021 Mar 08]. Available from: http://www.escholarship.org/uc/item/95q4165w.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lee S. Towards a higher dimensional construction of stable/unstable Lagrangian laminations. [Thesis]. UCLA; 2019. Available from: http://www.escholarship.org/uc/item/95q4165w

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

25. Bisgaard, Mads R. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.

Degree: 2018, ETH Zürich

Subjects/Keywords: Symplectic topology;

…Modern symplectic topology/geometry studies (among other things) topological and… …exhibited by Lagrangian cobordisms. At its early stages, symplectic topology was mostly developed… …symplectic topology has a quantitative side to it. Later such phenomena were formalized by Ekeland… …quantitative story of symplectic topology arose when Hofer [48] asked the question "… …x29; Hamiltonian systems using tools coming from symplectic topology. The first part of the… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bisgaard, M. R. (2018). Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/315031

Chicago Manual of Style (16th Edition):

Bisgaard, Mads R. “Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.” 2018. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/315031.

MLA Handbook (7th Edition):

Bisgaard, Mads R. “Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.” 2018. Web. 08 Mar 2021.

Vancouver:

Bisgaard MR. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/315031.

Council of Science Editors:

Bisgaard MR. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/315031

26. Cazassus, Guillem. Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms.

Degree: Docteur es, Mathématiques fondamentales, 2016, Université Toulouse III – Paul Sabatier

L'homologie instanton-symplectique est un invariant associé à une variété de dimension trois close orientée, qui a été dé?ni par Manolescu et Woodward, et qui correspond… (more)

Subjects/Keywords: Topologie de basse dimension; Chirurgie de Dehn; Géométrie symplectique; Homologie de Floer; Courbes pseudo-holomorphes; Théorie de jauge; Espace des modules de connexions; Low-dimensional topology; Dehn surgery; Symplectic geometry; Floer homology; Pseudo-holomorphic curves; Gauge theory; Moduli spaces of connections

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cazassus, G. (2016). Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2016TOU30043

Chicago Manual of Style (16th Edition):

Cazassus, Guillem. “Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms.” 2016. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed March 08, 2021. http://www.theses.fr/2016TOU30043.

MLA Handbook (7th Edition):

Cazassus, Guillem. “Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms.” 2016. Web. 08 Mar 2021.

Vancouver:

Cazassus G. Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2016. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2016TOU30043.

Council of Science Editors:

Cazassus G. Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2016. Available from: http://www.theses.fr/2016TOU30043


Arizona State University

27. Sanborn, Barbara. Symplectic Topology and Geometric Quantum Mechanics.

Degree: PhD, Mathematics, 2011, Arizona State University

 The theory of geometric quantum mechanics describes a quantum system as a Hamiltonian dynamical system, with a projective Hilbert space regarded as the phase space.… (more)

Subjects/Keywords: Mathematics; Quantum physics; Condensed Matter Physics; adiabatic theorem; geometric quantum mechanics; J-holomorphic curves; mean curvature; symplectic topology; uncertainty principle

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sanborn, B. (2011). Symplectic Topology and Geometric Quantum Mechanics. (Doctoral Dissertation). Arizona State University. Retrieved from http://repository.asu.edu/items/9478

Chicago Manual of Style (16th Edition):

Sanborn, Barbara. “Symplectic Topology and Geometric Quantum Mechanics.” 2011. Doctoral Dissertation, Arizona State University. Accessed March 08, 2021. http://repository.asu.edu/items/9478.

MLA Handbook (7th Edition):

Sanborn, Barbara. “Symplectic Topology and Geometric Quantum Mechanics.” 2011. Web. 08 Mar 2021.

Vancouver:

Sanborn B. Symplectic Topology and Geometric Quantum Mechanics. [Internet] [Doctoral dissertation]. Arizona State University; 2011. [cited 2021 Mar 08]. Available from: http://repository.asu.edu/items/9478.

Council of Science Editors:

Sanborn B. Symplectic Topology and Geometric Quantum Mechanics. [Doctoral Dissertation]. Arizona State University; 2011. Available from: http://repository.asu.edu/items/9478


Université de Montréal

28. Chassé, Jean-Philippe. Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées.

Degree: 2019, Université de Montréal

Subjects/Keywords: Fibrés vectoriels symplectiques; Topologie symplectique; Classes caractéristiques; h-principe; Immersions isotropes; Immersions coisotropes; Symplectic vector bundle; Symplectic topology; Caracteristic classes; h-principle; Isotropic immersions; Coisotropic immersions; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chassé, J. (2019). Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/22134

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chassé, Jean-Philippe. “Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées.” 2019. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/22134.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chassé, Jean-Philippe. “Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées.” 2019. Web. 08 Mar 2021.

Vancouver:

Chassé J. Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées. [Internet] [Thesis]. Université de Montréal; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/22134.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chassé J. Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées. [Thesis]. Université de Montréal; 2019. Available from: http://hdl.handle.net/1866/22134

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

29. Uljarevic, Igor. A symplectic homology theory for automorphisms of Liouville domains.

Degree: 2016, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Uljarevic, I. (2016). A symplectic homology theory for automorphisms of Liouville domains. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/116784

Chicago Manual of Style (16th Edition):

Uljarevic, Igor. “A symplectic homology theory for automorphisms of Liouville domains.” 2016. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/116784.

MLA Handbook (7th Edition):

Uljarevic, Igor. “A symplectic homology theory for automorphisms of Liouville domains.” 2016. Web. 08 Mar 2021.

Vancouver:

Uljarevic I. A symplectic homology theory for automorphisms of Liouville domains. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/116784.

Council of Science Editors:

Uljarevic I. A symplectic homology theory for automorphisms of Liouville domains. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/116784

30. Krom, Robin Sebastian. The Donaldson Geometric Flow.

Degree: 2016, ETH Zürich

Subjects/Keywords: FOUR-DIMENSIONAL MANIFOLDS (TOPOLOGY); VIERDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); FLUSS (DYNAMISCHE SYSTEME); FLOW (DYNAMICAL SYSTEMS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Krom, R. S. (2016). The Donaldson Geometric Flow. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/115920

Chicago Manual of Style (16th Edition):

Krom, Robin Sebastian. “The Donaldson Geometric Flow.” 2016. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/115920.

MLA Handbook (7th Edition):

Krom, Robin Sebastian. “The Donaldson Geometric Flow.” 2016. Web. 08 Mar 2021.

Vancouver:

Krom RS. The Donaldson Geometric Flow. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/115920.

Council of Science Editors:

Krom RS. The Donaldson Geometric Flow. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/115920

[1] [2]

.