Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(symplectic numerical integration). Showing records 1 – 10 of 10 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. ΧΑΤΖΗΦΩΤΕΙΝΟΥ, ΑΙΚΑΤΕΡΙΝΗ. ΤΡΙΔΙΑΣΤΑΤΑ ΑΡΙΘΜΗΤΙΚΑ ΜΟΝΤΕΛΑ ΟΛΟΚΛΗΡΩΣΗΣ ΠΛΑΝΗΤΙΚΩΝ ΚΑΙ ΔΟΡΥΦΟΡΙΚΩΝ ΤΡΟΧΙΩΝ.

Degree: 1998, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH)

Η ΠΑΡΟΥΣΑ ΔΙΑΤΡΙΒΗ ΕΧΕΙ ΩΣ ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΝ ΑΝΑΠΤΥΞΗ ΑΡΙΘΜΗΤΙΚΩΝ ΚΑΙ ΗΜΙ-ΑΝΑΛΥΤΙΚΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΣΥΓΧΡΟΝΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΟΥΡΑΝΙΑΣ ΜΗΧΑΝΙΚΗΣ. ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΣΣΕΤΑΙ ΜΙΑ ΝΕΑ… (more)

Subjects/Keywords: CELESTIAL MECHANICS; Chaos; Numerical integration; Numerical methods; ORBITAL STABILITY; PLANETARY ORBITS; SATELLITE ORBITS; SYMPLECTIC MAPPINGS; Αριθμητικές μέθοδοι; Αριθμητική ολοκλήρωση; ΔΟΡΥΦΟΡΙΚΕΣ ΤΡΟΧΙΕΣ; ΕΥΣΤΑΘΕΙΑ ΤΡΟΧΙΩΝ; Ουράνια μηχανική; ΠΛΑΝΗΤΙΚΕΣ ΤΡΟΧΙΕΣ; Συμπλεκτικές απεικονίσεις; Χάος

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

ΧΑΤΖΗΦΩΤΕΙΝΟΥ, . (1998). ΤΡΙΔΙΑΣΤΑΤΑ ΑΡΙΘΜΗΤΙΚΑ ΜΟΝΤΕΛΑ ΟΛΟΚΛΗΡΩΣΗΣ ΠΛΑΝΗΤΙΚΩΝ ΚΑΙ ΔΟΡΥΦΟΡΙΚΩΝ ΤΡΟΧΙΩΝ. (Thesis). Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH). Retrieved from http://hdl.handle.net/10442/hedi/10666

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

ΧΑΤΖΗΦΩΤΕΙΝΟΥ, ΑΙΚΑΤΕΡΙΝΗ. “ΤΡΙΔΙΑΣΤΑΤΑ ΑΡΙΘΜΗΤΙΚΑ ΜΟΝΤΕΛΑ ΟΛΟΚΛΗΡΩΣΗΣ ΠΛΑΝΗΤΙΚΩΝ ΚΑΙ ΔΟΡΥΦΟΡΙΚΩΝ ΤΡΟΧΙΩΝ.” 1998. Thesis, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH). Accessed October 31, 2020. http://hdl.handle.net/10442/hedi/10666.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

ΧΑΤΖΗΦΩΤΕΙΝΟΥ, ΑΙΚΑΤΕΡΙΝΗ. “ΤΡΙΔΙΑΣΤΑΤΑ ΑΡΙΘΜΗΤΙΚΑ ΜΟΝΤΕΛΑ ΟΛΟΚΛΗΡΩΣΗΣ ΠΛΑΝΗΤΙΚΩΝ ΚΑΙ ΔΟΡΥΦΟΡΙΚΩΝ ΤΡΟΧΙΩΝ.” 1998. Web. 31 Oct 2020.

Vancouver:

ΧΑΤΖΗΦΩΤΕΙΝΟΥ . ΤΡΙΔΙΑΣΤΑΤΑ ΑΡΙΘΜΗΤΙΚΑ ΜΟΝΤΕΛΑ ΟΛΟΚΛΗΡΩΣΗΣ ΠΛΑΝΗΤΙΚΩΝ ΚΑΙ ΔΟΡΥΦΟΡΙΚΩΝ ΤΡΟΧΙΩΝ. [Internet] [Thesis]. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH); 1998. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10442/hedi/10666.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

ΧΑΤΖΗΦΩΤΕΙΝΟΥ . ΤΡΙΔΙΑΣΤΑΤΑ ΑΡΙΘΜΗΤΙΚΑ ΜΟΝΤΕΛΑ ΟΛΟΚΛΗΡΩΣΗΣ ΠΛΑΝΗΤΙΚΩΝ ΚΑΙ ΔΟΡΥΦΟΡΙΚΩΝ ΤΡΟΧΙΩΝ. [Thesis]. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH); 1998. Available from: http://hdl.handle.net/10442/hedi/10666

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Τσέλιος, Κωνσταντίνος. Αριθμητική επίλυση της εξίσωσης του Schrodinger και προβλήματα ακουστικής.

Degree: 2007, University of Peloponesse; Πανεπιστήμιο Πελοποννήσου

In the first part of the present doctoral thesis we study the numerical solution of the Hamiltonian problems with the use of symplectic integrators. More… (more)

Subjects/Keywords: Αριθμητική ολοκλήρωση; Διαφορικές εξισώσεις; Εξίσωση schrodinger; Χαμιλτονιανό σύστημα; Συμπλεκτικά σχήματα; Υπολογιστική ακουστική; Ευστάθεια; Ακρίβεια; Διασπορά; Απώλεια; Numerical integration; Differential equations; Schrodinger equation; Hamiltonian systems; Symplectic schemes; Acoustic computation; Stability; Accuracy; Dispersion; Dissipation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Τσέλιος, . . (2007). Αριθμητική επίλυση της εξίσωσης του Schrodinger και προβλήματα ακουστικής. (Thesis). University of Peloponesse; Πανεπιστήμιο Πελοποννήσου. Retrieved from http://hdl.handle.net/10442/hedi/14837

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Τσέλιος, Κωνσταντίνος. “Αριθμητική επίλυση της εξίσωσης του Schrodinger και προβλήματα ακουστικής.” 2007. Thesis, University of Peloponesse; Πανεπιστήμιο Πελοποννήσου. Accessed October 31, 2020. http://hdl.handle.net/10442/hedi/14837.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Τσέλιος, Κωνσταντίνος. “Αριθμητική επίλυση της εξίσωσης του Schrodinger και προβλήματα ακουστικής.” 2007. Web. 31 Oct 2020.

Vancouver:

Τσέλιος . Αριθμητική επίλυση της εξίσωσης του Schrodinger και προβλήματα ακουστικής. [Internet] [Thesis]. University of Peloponesse; Πανεπιστήμιο Πελοποννήσου; 2007. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10442/hedi/14837.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Τσέλιος . Αριθμητική επίλυση της εξίσωσης του Schrodinger και προβλήματα ακουστικής. [Thesis]. University of Peloponesse; Πανεπιστήμιο Πελοποννήσου; 2007. Available from: http://hdl.handle.net/10442/hedi/14837

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade do Rio Grande do Sul

3. Ferrari, Guilherme Gonçalves. Novos mapas simpléticos para integração de sistemas hamiltonianos com múltiplas escalas de tempo : enfoque em sistemas gravitacionais de N-corpos.

Degree: 2015, Universidade do Rio Grande do Sul

Mapas simpléticos são bem conhecidos por preservarem o volume do espaço de fase em dinâmica Hamiltoniana e são particularmente apropriados para problemas que requerem longos… (more)

Subjects/Keywords: Astrofisica; Stellar dynamics; Computação astronômica; N-body simulations; Integração numérica; Symplectic maps; Numerical integration; Sistemas hamiltonianos; Simulação computacional; GPGPU; Ondas gravitacionais; Dinamica estelar

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ferrari, G. G. (2015). Novos mapas simpléticos para integração de sistemas hamiltonianos com múltiplas escalas de tempo : enfoque em sistemas gravitacionais de N-corpos. (Thesis). Universidade do Rio Grande do Sul. Retrieved from http://hdl.handle.net/10183/127985

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ferrari, Guilherme Gonçalves. “Novos mapas simpléticos para integração de sistemas hamiltonianos com múltiplas escalas de tempo : enfoque em sistemas gravitacionais de N-corpos.” 2015. Thesis, Universidade do Rio Grande do Sul. Accessed October 31, 2020. http://hdl.handle.net/10183/127985.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ferrari, Guilherme Gonçalves. “Novos mapas simpléticos para integração de sistemas hamiltonianos com múltiplas escalas de tempo : enfoque em sistemas gravitacionais de N-corpos.” 2015. Web. 31 Oct 2020.

Vancouver:

Ferrari GG. Novos mapas simpléticos para integração de sistemas hamiltonianos com múltiplas escalas de tempo : enfoque em sistemas gravitacionais de N-corpos. [Internet] [Thesis]. Universidade do Rio Grande do Sul; 2015. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10183/127985.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ferrari GG. Novos mapas simpléticos para integração de sistemas hamiltonianos com múltiplas escalas de tempo : enfoque em sistemas gravitacionais de N-corpos. [Thesis]. Universidade do Rio Grande do Sul; 2015. Available from: http://hdl.handle.net/10183/127985

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


East Tennessee State University

4. Frazier, William. Application of Symplectic Integration on a Dynamical System.

Degree: MS, Mathematical Sciences, 2017, East Tennessee State University

  Molecular Dynamics (MD) is the numerical simulation of a large system of interacting molecules, and one of the key components of a MD simulation… (more)

Subjects/Keywords: Lie algebra; Lie group; symplectic integration; molecular dynamics; Algebra; Dynamic Systems; Non-linear Dynamics; Numerical Analysis and Computation; Ordinary Differential Equations and Applied Dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Frazier, W. (2017). Application of Symplectic Integration on a Dynamical System. (Masters Thesis). East Tennessee State University. Retrieved from https://dc.etsu.edu/etd/3213

Chicago Manual of Style (16th Edition):

Frazier, William. “Application of Symplectic Integration on a Dynamical System.” 2017. Masters Thesis, East Tennessee State University. Accessed October 31, 2020. https://dc.etsu.edu/etd/3213.

MLA Handbook (7th Edition):

Frazier, William. “Application of Symplectic Integration on a Dynamical System.” 2017. Web. 31 Oct 2020.

Vancouver:

Frazier W. Application of Symplectic Integration on a Dynamical System. [Internet] [Masters thesis]. East Tennessee State University; 2017. [cited 2020 Oct 31]. Available from: https://dc.etsu.edu/etd/3213.

Council of Science Editors:

Frazier W. Application of Symplectic Integration on a Dynamical System. [Masters Thesis]. East Tennessee State University; 2017. Available from: https://dc.etsu.edu/etd/3213


Universitat Politècnica de València

5. Kopylov, Nikita. Magnus-based geometric integrators for dynamical systems with time-dependent potentials .

Degree: 2019, Universitat Politècnica de València

 [ES] Esta tesis trata sobre la integración numérica de sistemas hamiltonianos con potenciales explícitamente dependientes del tiempo. Los problemas de este tipo son comunes en… (more)

Subjects/Keywords: Numerical analysis; Geometric numerical integration; Symplectic integrator; Structure preservation; Differential equations; Time-dependent; Non-autonomous; Magnus expansion; Splitting methods; Composition methods; Schrödinger equation; Wave equation; Hill equation; Mathieu equation; Kepler problem; Quasi-commutator-free; Quasi-Magnus; Magnus-splitting

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kopylov, N. (2019). Magnus-based geometric integrators for dynamical systems with time-dependent potentials . (Doctoral Dissertation). Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/118798

Chicago Manual of Style (16th Edition):

Kopylov, Nikita. “Magnus-based geometric integrators for dynamical systems with time-dependent potentials .” 2019. Doctoral Dissertation, Universitat Politècnica de València. Accessed October 31, 2020. http://hdl.handle.net/10251/118798.

MLA Handbook (7th Edition):

Kopylov, Nikita. “Magnus-based geometric integrators for dynamical systems with time-dependent potentials .” 2019. Web. 31 Oct 2020.

Vancouver:

Kopylov N. Magnus-based geometric integrators for dynamical systems with time-dependent potentials . [Internet] [Doctoral dissertation]. Universitat Politècnica de València; 2019. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10251/118798.

Council of Science Editors:

Kopylov N. Magnus-based geometric integrators for dynamical systems with time-dependent potentials . [Doctoral Dissertation]. Universitat Politècnica de València; 2019. Available from: http://hdl.handle.net/10251/118798


Penn State University

6. Kuppa, Koundinya. Long-term Orbit Propagation Using Symplectic Integration Algorithms.

Degree: 2016, Penn State University

 Understanding the evolution of satellite orbits in the long-term is of great importance in astrodynamics. In order to achieve this, accurate propagation of the orbital… (more)

Subjects/Keywords: astrodynamics; orbital mechanics; symplectic integration; numerical integration; orbit propagation; spaceflight mechanics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kuppa, K. (2016). Long-term Orbit Propagation Using Symplectic Integration Algorithms. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/29463

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kuppa, Koundinya. “Long-term Orbit Propagation Using Symplectic Integration Algorithms.” 2016. Thesis, Penn State University. Accessed October 31, 2020. https://submit-etda.libraries.psu.edu/catalog/29463.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kuppa, Koundinya. “Long-term Orbit Propagation Using Symplectic Integration Algorithms.” 2016. Web. 31 Oct 2020.

Vancouver:

Kuppa K. Long-term Orbit Propagation Using Symplectic Integration Algorithms. [Internet] [Thesis]. Penn State University; 2016. [cited 2020 Oct 31]. Available from: https://submit-etda.libraries.psu.edu/catalog/29463.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kuppa K. Long-term Orbit Propagation Using Symplectic Integration Algorithms. [Thesis]. Penn State University; 2016. Available from: https://submit-etda.libraries.psu.edu/catalog/29463

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Uniwersytet im. Adama Mickiewicza w Poznaniu

7. Ratkiewicz, Bogusław. Dyskretyzacja niektórych modeli fizycznych: od podejścia standardowego do dyskretyzacji geometrycznej .

Degree: 2011, Uniwersytet im. Adama Mickiewicza w Poznaniu

 Przedmiotem badań pracy są dyskretyzacje wybranych modeli fizycznych, które w większości są jednowymiarowymi układami hamiltonowskimi. , gdzie V(x) jest potencjałem, a kropka i prim oznaczają… (more)

Subjects/Keywords: całkowanie geometryczne; geometric numerical integration; całka energii; energy integral; metoda dyskretnego gradientu; discrete gradient method; lokalnie dokładne schematy numeryczne; locally exact numerical schemes; metody symplektyczne; symplectic integrators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ratkiewicz, B. (2011). Dyskretyzacja niektórych modeli fizycznych: od podejścia standardowego do dyskretyzacji geometrycznej . (Doctoral Dissertation). Uniwersytet im. Adama Mickiewicza w Poznaniu. Retrieved from http://hdl.handle.net/10593/1042

Chicago Manual of Style (16th Edition):

Ratkiewicz, Bogusław. “Dyskretyzacja niektórych modeli fizycznych: od podejścia standardowego do dyskretyzacji geometrycznej .” 2011. Doctoral Dissertation, Uniwersytet im. Adama Mickiewicza w Poznaniu. Accessed October 31, 2020. http://hdl.handle.net/10593/1042.

MLA Handbook (7th Edition):

Ratkiewicz, Bogusław. “Dyskretyzacja niektórych modeli fizycznych: od podejścia standardowego do dyskretyzacji geometrycznej .” 2011. Web. 31 Oct 2020.

Vancouver:

Ratkiewicz B. Dyskretyzacja niektórych modeli fizycznych: od podejścia standardowego do dyskretyzacji geometrycznej . [Internet] [Doctoral dissertation]. Uniwersytet im. Adama Mickiewicza w Poznaniu; 2011. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10593/1042.

Council of Science Editors:

Ratkiewicz B. Dyskretyzacja niektórych modeli fizycznych: od podejścia standardowego do dyskretyzacji geometrycznej . [Doctoral Dissertation]. Uniwersytet im. Adama Mickiewicza w Poznaniu; 2011. Available from: http://hdl.handle.net/10593/1042


University of Sydney

8. Rose, Danya Bensel. Geometric phase and periodic orbits of the equal-mass, planar three-body problem with vanishing angular momentum .

Degree: 2015, University of Sydney

 Geometric phase can explain the rotation of a dynamical system independent of angular momentum. The canonical example of such is a cat (a non-rigid body… (more)

Subjects/Keywords: 3-Body Problem; Geometric Phase; Periodic Orbits; Symplectic Integration; Discrete Symmetry; Numerical Survey

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rose, D. B. (2015). Geometric phase and periodic orbits of the equal-mass, planar three-body problem with vanishing angular momentum . (Thesis). University of Sydney. Retrieved from http://hdl.handle.net/2123/14416

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rose, Danya Bensel. “Geometric phase and periodic orbits of the equal-mass, planar three-body problem with vanishing angular momentum .” 2015. Thesis, University of Sydney. Accessed October 31, 2020. http://hdl.handle.net/2123/14416.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rose, Danya Bensel. “Geometric phase and periodic orbits of the equal-mass, planar three-body problem with vanishing angular momentum .” 2015. Web. 31 Oct 2020.

Vancouver:

Rose DB. Geometric phase and periodic orbits of the equal-mass, planar three-body problem with vanishing angular momentum . [Internet] [Thesis]. University of Sydney; 2015. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2123/14416.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rose DB. Geometric phase and periodic orbits of the equal-mass, planar three-body problem with vanishing angular momentum . [Thesis]. University of Sydney; 2015. Available from: http://hdl.handle.net/2123/14416

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universiteit Utrecht

9. Tuwankotta, J.M. Higher-Order Resonances in Dynamical Systems.

Degree: 2002, Universiteit Utrecht

 This thesis is a collection of studies on higher-order resonances in an important class of dynamical systems called coupled oscillators systems. After giving an overview… (more)

Subjects/Keywords: Wiskunde en Informatica; Hamiltonian mechanics; higher-order resonance; normal forms; symmetry; elastic pendulum; symplectic numerical integration; widely separated frequencies; singular perturbation; bifurcation; coupled oscillators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tuwankotta, J. M. (2002). Higher-Order Resonances in Dynamical Systems. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/877

Chicago Manual of Style (16th Edition):

Tuwankotta, J M. “Higher-Order Resonances in Dynamical Systems.” 2002. Doctoral Dissertation, Universiteit Utrecht. Accessed October 31, 2020. http://dspace.library.uu.nl:8080/handle/1874/877.

MLA Handbook (7th Edition):

Tuwankotta, J M. “Higher-Order Resonances in Dynamical Systems.” 2002. Web. 31 Oct 2020.

Vancouver:

Tuwankotta JM. Higher-Order Resonances in Dynamical Systems. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2002. [cited 2020 Oct 31]. Available from: http://dspace.library.uu.nl:8080/handle/1874/877.

Council of Science Editors:

Tuwankotta JM. Higher-Order Resonances in Dynamical Systems. [Doctoral Dissertation]. Universiteit Utrecht; 2002. Available from: http://dspace.library.uu.nl:8080/handle/1874/877

10. Tuwankotta, J.M. Higher-Order Resonances in Dynamical Systems.

Degree: 2002, University Utrecht

 This thesis is a collection of studies on higher-order resonances in an important class of dynamical systems called coupled oscillators systems. After giving an overview… (more)

Subjects/Keywords: Hamiltonian mechanics; higher-order resonance; normal forms; symmetry; elastic pendulum; symplectic numerical integration; widely separated frequencies; singular perturbation; bifurcation; coupled oscillators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tuwankotta, J. M. (2002). Higher-Order Resonances in Dynamical Systems. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/877 ; URN:NBN:NL:UI:10-1874-877 ; URN:NBN:NL:UI:10-1874-877 ; https://dspace.library.uu.nl/handle/1874/877

Chicago Manual of Style (16th Edition):

Tuwankotta, J M. “Higher-Order Resonances in Dynamical Systems.” 2002. Doctoral Dissertation, University Utrecht. Accessed October 31, 2020. https://dspace.library.uu.nl/handle/1874/877 ; URN:NBN:NL:UI:10-1874-877 ; URN:NBN:NL:UI:10-1874-877 ; https://dspace.library.uu.nl/handle/1874/877.

MLA Handbook (7th Edition):

Tuwankotta, J M. “Higher-Order Resonances in Dynamical Systems.” 2002. Web. 31 Oct 2020.

Vancouver:

Tuwankotta JM. Higher-Order Resonances in Dynamical Systems. [Internet] [Doctoral dissertation]. University Utrecht; 2002. [cited 2020 Oct 31]. Available from: https://dspace.library.uu.nl/handle/1874/877 ; URN:NBN:NL:UI:10-1874-877 ; URN:NBN:NL:UI:10-1874-877 ; https://dspace.library.uu.nl/handle/1874/877.

Council of Science Editors:

Tuwankotta JM. Higher-Order Resonances in Dynamical Systems. [Doctoral Dissertation]. University Utrecht; 2002. Available from: https://dspace.library.uu.nl/handle/1874/877 ; URN:NBN:NL:UI:10-1874-877 ; URN:NBN:NL:UI:10-1874-877 ; https://dspace.library.uu.nl/handle/1874/877

.