Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(symplectic manifolds)`

.
Showing records 1 – 30 of
47 total matches.

▼ Search Limiters

Rutgers University

1.
Schultz, Douglas, 1986-.
Lagrangian Floer theory in *symplectic* fibrations.

Degree: PhD, Mathematics, 2016, Rutgers University

URL: https://rucore.libraries.rutgers.edu/rutgers-lib/55679/

►

Consider a fibration of compact *symplectic* *manifolds* F → E → B with a compatible *symplectic* form on E, and an induced fibration of Lagrangian…
(more)

Subjects/Keywords: Symplectic manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Schultz, Douglas, 1. (2016). Lagrangian Floer theory in symplectic fibrations. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/55679/

Chicago Manual of Style (16^{th} Edition):

Schultz, Douglas, 1986-. “Lagrangian Floer theory in symplectic fibrations.” 2016. Doctoral Dissertation, Rutgers University. Accessed January 18, 2021. https://rucore.libraries.rutgers.edu/rutgers-lib/55679/.

MLA Handbook (7^{th} Edition):

Schultz, Douglas, 1986-. “Lagrangian Floer theory in symplectic fibrations.” 2016. Web. 18 Jan 2021.

Vancouver:

Schultz, Douglas 1. Lagrangian Floer theory in symplectic fibrations. [Internet] [Doctoral dissertation]. Rutgers University; 2016. [cited 2021 Jan 18]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/55679/.

Council of Science Editors:

Schultz, Douglas 1. Lagrangian Floer theory in symplectic fibrations. [Doctoral Dissertation]. Rutgers University; 2016. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/55679/

Michigan State University

2.
Hays, Christopher.
Constructing *symplectic* 4-* manifolds*.

Degree: 2013, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:2066

►

Thesis Ph. D. Michigan State University. Mathematics 2013.

This thesis introduces a new technique for constructing symplectic4-*manifolds*, generalizing the 3- and 4-fold sums introduced bySymington,…
(more)

Subjects/Keywords: Symplectic manifolds; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hays, C. (2013). Constructing symplectic 4-manifolds. (Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:2066

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hays, Christopher. “Constructing symplectic 4-manifolds.” 2013. Thesis, Michigan State University. Accessed January 18, 2021. http://etd.lib.msu.edu/islandora/object/etd:2066.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hays, Christopher. “Constructing symplectic 4-manifolds.” 2013. Web. 18 Jan 2021.

Vancouver:

Hays C. Constructing symplectic 4-manifolds. [Internet] [Thesis]. Michigan State University; 2013. [cited 2021 Jan 18]. Available from: http://etd.lib.msu.edu/islandora/object/etd:2066.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hays C. Constructing symplectic 4-manifolds. [Thesis]. Michigan State University; 2013. Available from: http://etd.lib.msu.edu/islandora/object/etd:2066

Not specified: Masters Thesis or Doctoral Dissertation

Michigan State University

3.
Draghici, Tedi C.
Special metrics on *symplectic* * manifolds*.

Degree: PhD, Department of Mathematics, 1997, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:26653

Subjects/Keywords: Symplectic manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Draghici, T. C. (1997). Special metrics on symplectic manifolds. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:26653

Chicago Manual of Style (16^{th} Edition):

Draghici, Tedi C. “Special metrics on symplectic manifolds.” 1997. Doctoral Dissertation, Michigan State University. Accessed January 18, 2021. http://etd.lib.msu.edu/islandora/object/etd:26653.

MLA Handbook (7^{th} Edition):

Draghici, Tedi C. “Special metrics on symplectic manifolds.” 1997. Web. 18 Jan 2021.

Vancouver:

Draghici TC. Special metrics on symplectic manifolds. [Internet] [Doctoral dissertation]. Michigan State University; 1997. [cited 2021 Jan 18]. Available from: http://etd.lib.msu.edu/islandora/object/etd:26653.

Council of Science Editors:

Draghici TC. Special metrics on symplectic manifolds. [Doctoral Dissertation]. Michigan State University; 1997. Available from: http://etd.lib.msu.edu/islandora/object/etd:26653

University of Minnesota

4.
Sakalli, Sumeyra.
New Exotic *Symplectic* 4-*Manifolds* with Nonnegative Signatures and Exotic Smooth Structures on Small 4-* Manifolds*.

Degree: PhD, Mathematics, 2018, University of Minnesota

URL: http://hdl.handle.net/11299/201114

► The focus of this thesis is twofold. First one is the geography problem of *symplectic* and smooth 4-*manifolds* with nonnegative signatures. We construct new non-spin,…
(more)

Subjects/Keywords: Symplectic topology; 4-manifolds; Exotic Structures

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sakalli, S. (2018). New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/201114

Chicago Manual of Style (16^{th} Edition):

Sakalli, Sumeyra. “New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.” 2018. Doctoral Dissertation, University of Minnesota. Accessed January 18, 2021. http://hdl.handle.net/11299/201114.

MLA Handbook (7^{th} Edition):

Sakalli, Sumeyra. “New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds.” 2018. Web. 18 Jan 2021.

Vancouver:

Sakalli S. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. [Internet] [Doctoral dissertation]. University of Minnesota; 2018. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/11299/201114.

Council of Science Editors:

Sakalli S. New Exotic Symplectic 4-Manifolds with Nonnegative Signatures and Exotic Smooth Structures on Small 4-Manifolds. [Doctoral Dissertation]. University of Minnesota; 2018. Available from: http://hdl.handle.net/11299/201114

Michigan State University

5.
Bergmann, Jens von.
Pseudo-holomorphic maps in folded *symplectic* * manifolds*.

Degree: PhD, Department of Mathematics, 2005, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:33651

Subjects/Keywords: Holomorphic mappings; Symplectic manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bergmann, J. v. (2005). Pseudo-holomorphic maps in folded symplectic manifolds. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:33651

Chicago Manual of Style (16^{th} Edition):

Bergmann, Jens von. “Pseudo-holomorphic maps in folded symplectic manifolds.” 2005. Doctoral Dissertation, Michigan State University. Accessed January 18, 2021. http://etd.lib.msu.edu/islandora/object/etd:33651.

MLA Handbook (7^{th} Edition):

Bergmann, Jens von. “Pseudo-holomorphic maps in folded symplectic manifolds.” 2005. Web. 18 Jan 2021.

Vancouver:

Bergmann Jv. Pseudo-holomorphic maps in folded symplectic manifolds. [Internet] [Doctoral dissertation]. Michigan State University; 2005. [cited 2021 Jan 18]. Available from: http://etd.lib.msu.edu/islandora/object/etd:33651.

Council of Science Editors:

Bergmann Jv. Pseudo-holomorphic maps in folded symplectic manifolds. [Doctoral Dissertation]. Michigan State University; 2005. Available from: http://etd.lib.msu.edu/islandora/object/etd:33651

University of Illinois – Urbana-Champaign

6.
Hockensmith, Daniel Lawrence.
A classification of toric, folded-*symplectic* * manifolds*.

Degree: PhD, Mathematics, 2015, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/88015

► Given a G-toric, folded-*symplectic* manifold with co-orientable folding hypersurface, we show that its orbit space is naturally a manifold with corners W equipped with a…
(more)

Subjects/Keywords: folded-symplectic; toric; Delzant; origami manifolds; classification; completely integrable system

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hockensmith, D. L. (2015). A classification of toric, folded-symplectic manifolds. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/88015

Chicago Manual of Style (16^{th} Edition):

Hockensmith, Daniel Lawrence. “A classification of toric, folded-symplectic manifolds.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed January 18, 2021. http://hdl.handle.net/2142/88015.

MLA Handbook (7^{th} Edition):

Hockensmith, Daniel Lawrence. “A classification of toric, folded-symplectic manifolds.” 2015. Web. 18 Jan 2021.

Vancouver:

Hockensmith DL. A classification of toric, folded-symplectic manifolds. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2142/88015.

Council of Science Editors:

Hockensmith DL. A classification of toric, folded-symplectic manifolds. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/88015

7. Villatoro, Joel David. Stacks in Poisson geometry.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/101537

► This thesis is divided into four chapters. The first chapter discusses the relationship between stacks on a site and groupoids internal to the site. It…
(more)

Subjects/Keywords: Stacks; Differential Manifolds; Poisson Manifolds; Symplectic Manifolds.

…up to Morita
equivalence, for a special class of Poisson *manifolds* called b-*symplectic*. We… …x28;possibly singular) foliation of the manifold by pre-*symplectic* *manifolds*. Although… …behavior. The category Poisson *manifolds* is rather poorly behaved and a *symplectic* groupoid is… …up to Morita
equivalence, a special class of Poisson *manifolds* called b-*symplectic* (or… …singularity along a prescribed hypersurface. The relative tameness of
b-*symplectic* *manifolds* means…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Villatoro, J. D. (2018). Stacks in Poisson geometry. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101537

Chicago Manual of Style (16^{th} Edition):

Villatoro, Joel David. “Stacks in Poisson geometry.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed January 18, 2021. http://hdl.handle.net/2142/101537.

MLA Handbook (7^{th} Edition):

Villatoro, Joel David. “Stacks in Poisson geometry.” 2018. Web. 18 Jan 2021.

Vancouver:

Villatoro JD. Stacks in Poisson geometry. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2142/101537.

Council of Science Editors:

Villatoro JD. Stacks in Poisson geometry. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101537

Michigan State University

8.
Baykur, Refik İnanç.
* Symplectic* structures, Lefschetz fibrations and their generalizations on smooth four-

Degree: PhD, Department of Mathematics, 2007, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:38642

Subjects/Keywords: Symplectic manifolds; Four-manifolds (Topology); Invariant manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Baykur, R. I. (2007). Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:38642

Chicago Manual of Style (16^{th} Edition):

Baykur, Refik İnanç. “Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.” 2007. Doctoral Dissertation, Michigan State University. Accessed January 18, 2021. http://etd.lib.msu.edu/islandora/object/etd:38642.

MLA Handbook (7^{th} Edition):

Baykur, Refik İnanç. “Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds.” 2007. Web. 18 Jan 2021.

Vancouver:

Baykur RI. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. [Internet] [Doctoral dissertation]. Michigan State University; 2007. [cited 2021 Jan 18]. Available from: http://etd.lib.msu.edu/islandora/object/etd:38642.

Council of Science Editors:

Baykur RI. Symplectic structures, Lefschetz fibrations and their generalizations on smooth four-manifolds. [Doctoral Dissertation]. Michigan State University; 2007. Available from: http://etd.lib.msu.edu/islandora/object/etd:38642

Indian Institute of Science

9.
Kulkarni, Dheeraj.
Relative *Symplectic* Caps, Fibered Knots And 4-Genus.

Degree: PhD, Faculty of Science, 2014, Indian Institute of Science

URL: http://etd.iisc.ac.in/handle/2005/2285

► The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the…
(more)

Subjects/Keywords: Symplectic Geometry; Symplectic Capping Theorem; Symlpectic Manifolds; Fibered Knots; 4-Genus Knots; Symplectic Caps; Knot Theory; Contact Geometry; Contact Manifolds; Quasipositive Knots; Symplectic Convexity; Topology; Symplectic Neighborhood Theorem; Seifert Surfaces; Riemann Surface; Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kulkarni, D. (2014). Relative Symplectic Caps, Fibered Knots And 4-Genus. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2285

Chicago Manual of Style (16^{th} Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Doctoral Dissertation, Indian Institute of Science. Accessed January 18, 2021. http://etd.iisc.ac.in/handle/2005/2285.

MLA Handbook (7^{th} Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Web. 18 Jan 2021.

Vancouver:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2014. [cited 2021 Jan 18]. Available from: http://etd.iisc.ac.in/handle/2005/2285.

Council of Science Editors:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Doctoral Dissertation]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2285

Northeastern University

10.
Gamse, Elisheva Adina.
Two explorations in *symplectic* geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on *symplectic* * manifolds*.

Degree: PhD, Department of Mathematics, 2016, Northeastern University

URL: http://hdl.handle.net/2047/D20211399

► In Part I we study the moduli space of holomorphic parabolic vector bundles over a curve, using combinatorial techniques to obtain information about the structure…
(more)

Subjects/Keywords: moduli space; geometric quantisation; Lie group actions; Symplectic geometry; Symplectic manifolds; Vector bundles; Moduli theory; Rings (Algebra); Lie groups; Quantum theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gamse, E. A. (2016). Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20211399

Chicago Manual of Style (16^{th} Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Doctoral Dissertation, Northeastern University. Accessed January 18, 2021. http://hdl.handle.net/2047/D20211399.

MLA Handbook (7^{th} Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Web. 18 Jan 2021.

Vancouver:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Internet] [Doctoral dissertation]. Northeastern University; 2016. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2047/D20211399.

Council of Science Editors:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Doctoral Dissertation]. Northeastern University; 2016. Available from: http://hdl.handle.net/2047/D20211399

11.
Hoai, Bich Thuan Vong.
On *Symplectic* Invariants Associated to Zoll *Manifolds*.

Degree: PhD, Mathematics, 2014, University of Michigan

URL: http://hdl.handle.net/2027.42/108954

► In this thesis, we provide a partial classification for M. Audin’s polarized *symplectic* *manifolds*, which are smooth *symplectic* *manifolds* endowed with a Morse-Bott function having…
(more)

Subjects/Keywords: Zoll Manifolds; Polarized Symplectic Manifolds; Mathematics; Science

…ABSTRACT
On *Symplectic* Invariants Associated to Zoll *Manifolds*
by
Bich T. Hoai
Chair… …polarized *symplectic* *manifolds*, which are smooth *symplectic* *manifolds* endowed with a MorseBott… …polarized *symplectic* *manifolds* introduced by Audin in [2] and [3], which are… …polarized *symplectic* *manifolds*, are defined in Chapter 3, and some known examples are given… …*symplectic*
*manifolds* contain a CROSS as the minimal submanifold?” There are partial results
in this…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hoai, B. T. V. (2014). On Symplectic Invariants Associated to Zoll Manifolds. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/108954

Chicago Manual of Style (16^{th} Edition):

Hoai, Bich Thuan Vong. “On Symplectic Invariants Associated to Zoll Manifolds.” 2014. Doctoral Dissertation, University of Michigan. Accessed January 18, 2021. http://hdl.handle.net/2027.42/108954.

MLA Handbook (7^{th} Edition):

Hoai, Bich Thuan Vong. “On Symplectic Invariants Associated to Zoll Manifolds.” 2014. Web. 18 Jan 2021.

Vancouver:

Hoai BTV. On Symplectic Invariants Associated to Zoll Manifolds. [Internet] [Doctoral dissertation]. University of Michigan; 2014. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2027.42/108954.

Council of Science Editors:

Hoai BTV. On Symplectic Invariants Associated to Zoll Manifolds. [Doctoral Dissertation]. University of Michigan; 2014. Available from: http://hdl.handle.net/2027.42/108954

12.
Morton, Daniel.
GKM *manifolds* with low Betti numbers.

Degree: PhD, 0439, 2012, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/29636

► A GKM manifold is a *symplectic* manifold with a torus action such that the fixed points are isolated and the isotropy weights at the fixed…
(more)

Subjects/Keywords: GKM Manifolds; GKM Graphs; Symplectic Geometry; Symplectic Manifolds; Torus Actions

…x5D;.
Classification becomes harder in the case of 2n-dimensional *symplectic* *manifolds* with… …in some
of the same ways that we use polytopes to study *symplectic* toric *manifolds*… …x29; → H ∗ (M ) is a surjection. That *symplectic* *manifolds* with
Hamiltonian torus… …This is well-defined since all *symplectic* *manifolds* have
almost complex structures and the… …*symplectic* *manifolds*. There is also a way to
define abstract GKM graphs without any notion of GKM…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Morton, D. (2012). GKM manifolds with low Betti numbers. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/29636

Chicago Manual of Style (16^{th} Edition):

Morton, Daniel. “GKM manifolds with low Betti numbers.” 2012. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed January 18, 2021. http://hdl.handle.net/2142/29636.

MLA Handbook (7^{th} Edition):

Morton, Daniel. “GKM manifolds with low Betti numbers.” 2012. Web. 18 Jan 2021.

Vancouver:

Morton D. GKM manifolds with low Betti numbers. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2012. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2142/29636.

Council of Science Editors:

Morton D. GKM manifolds with low Betti numbers. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2012. Available from: http://hdl.handle.net/2142/29636

University of Michigan

13.
Korpas, Levente.
Quantization of *symplectic* cobordisms.

Degree: PhD, Pure Sciences, 1999, University of Michigan

URL: http://hdl.handle.net/2027.42/131922

► In this work we construct a unitary operator acting between Spin^{ c} quantizations of compact integral *symplectic* *manifolds* which are symplectically cobordant. The construction is…
(more)

Subjects/Keywords: Cobordisms; Dirac Operators; Quantization; Symplectic Manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Korpas, L. (1999). Quantization of symplectic cobordisms. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/131922

Chicago Manual of Style (16^{th} Edition):

Korpas, Levente. “Quantization of symplectic cobordisms.” 1999. Doctoral Dissertation, University of Michigan. Accessed January 18, 2021. http://hdl.handle.net/2027.42/131922.

MLA Handbook (7^{th} Edition):

Korpas, Levente. “Quantization of symplectic cobordisms.” 1999. Web. 18 Jan 2021.

Vancouver:

Korpas L. Quantization of symplectic cobordisms. [Internet] [Doctoral dissertation]. University of Michigan; 1999. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2027.42/131922.

Council of Science Editors:

Korpas L. Quantization of symplectic cobordisms. [Doctoral Dissertation]. University of Michigan; 1999. Available from: http://hdl.handle.net/2027.42/131922

14.
Fazeela, K.
Momentum maps on *Symplectic* *manifolds*;.

Degree: Mathematics, 2008, University of Calicut

URL: http://shodhganga.inflibnet.ac.in/handle/10603/5669

Subjects/Keywords: Mathematics; Standard Momentum Map; Symplectic Manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fazeela, K. (2008). Momentum maps on Symplectic manifolds;. (Thesis). University of Calicut. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/5669

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Fazeela, K. “Momentum maps on Symplectic manifolds;.” 2008. Thesis, University of Calicut. Accessed January 18, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/5669.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Fazeela, K. “Momentum maps on Symplectic manifolds;.” 2008. Web. 18 Jan 2021.

Vancouver:

Fazeela K. Momentum maps on Symplectic manifolds;. [Internet] [Thesis]. University of Calicut; 2008. [cited 2021 Jan 18]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/5669.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fazeela K. Momentum maps on Symplectic manifolds;. [Thesis]. University of Calicut; 2008. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/5669

Not specified: Masters Thesis or Doctoral Dissertation

Penn State University

15. Hong, Wei. Some problems in Poisson geometry.

Degree: 2013, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/17480

► Two main topics are discussed in this dissertation. In the first part (see Chapter 3), I compute the Poisson cohomology of Poisson del Pezzo surfaces.…
(more)

Subjects/Keywords: (holomorphic) Poisson manifolds; Poisson cohomology; Courant algebroid; hypercomplex structure; holomorphic symplectic structure

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hong, W. (2013). Some problems in Poisson geometry. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/17480

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hong, Wei. “Some problems in Poisson geometry.” 2013. Thesis, Penn State University. Accessed January 18, 2021. https://submit-etda.libraries.psu.edu/catalog/17480.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hong, Wei. “Some problems in Poisson geometry.” 2013. Web. 18 Jan 2021.

Vancouver:

Hong W. Some problems in Poisson geometry. [Internet] [Thesis]. Penn State University; 2013. [cited 2021 Jan 18]. Available from: https://submit-etda.libraries.psu.edu/catalog/17480.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hong W. Some problems in Poisson geometry. [Thesis]. Penn State University; 2013. Available from: https://submit-etda.libraries.psu.edu/catalog/17480

Not specified: Masters Thesis or Doctoral Dissertation

16. Keddari, Nassima. Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds.

Degree: Docteur es, Mathématiques, 2018, Université de Strasbourg

URL: http://www.theses.fr/2018STRAD030

►

Dans la première partie de cette thèse, on donne, sous certaines hypothèses, une minoration du nombre de points d’intersections d’une sous-variété Lagrangienne monotone L avec… (more)

Subjects/Keywords: Dynamique Hamiltonienne; Homologie de Floer; Variétés symplectiques; Monotone Lagrangian submanifolds; Floer homology; Symplectic manifolds; 516.36

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Keddari, N. (2018). Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2018STRAD030

Chicago Manual of Style (16^{th} Edition):

Keddari, Nassima. “Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds.” 2018. Doctoral Dissertation, Université de Strasbourg. Accessed January 18, 2021. http://www.theses.fr/2018STRAD030.

MLA Handbook (7^{th} Edition):

Keddari, Nassima. “Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds.” 2018. Web. 18 Jan 2021.

Vancouver:

Keddari N. Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2018. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2018STRAD030.

Council of Science Editors:

Keddari N. Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds. [Doctoral Dissertation]. Université de Strasbourg; 2018. Available from: http://www.theses.fr/2018STRAD030

University of Minnesota

17.
Li, Jun.
Symplectomorphism Group of Rational 4-* Manifolds*.

Degree: PhD, Mathematics, 2017, University of Minnesota

URL: http://hdl.handle.net/11299/190537

► We develop techniques for studying the symplectomorphism group of rational 4-*manifolds*. We study the space of tamed almost complex structures \mJ_{\w} using a fine decomposition…
(more)

Subjects/Keywords: almost complex manifold; ball packing; holomorphic curves; rational 4-manifolds; symplectic geometry; symplectomorphism groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Li, J. (2017). Symplectomorphism Group of Rational 4-Manifolds. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/190537

Chicago Manual of Style (16^{th} Edition):

Li, Jun. “Symplectomorphism Group of Rational 4-Manifolds.” 2017. Doctoral Dissertation, University of Minnesota. Accessed January 18, 2021. http://hdl.handle.net/11299/190537.

MLA Handbook (7^{th} Edition):

Li, Jun. “Symplectomorphism Group of Rational 4-Manifolds.” 2017. Web. 18 Jan 2021.

Vancouver:

Li J. Symplectomorphism Group of Rational 4-Manifolds. [Internet] [Doctoral dissertation]. University of Minnesota; 2017. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/11299/190537.

Council of Science Editors:

Li J. Symplectomorphism Group of Rational 4-Manifolds. [Doctoral Dissertation]. University of Minnesota; 2017. Available from: http://hdl.handle.net/11299/190537

University of Waterloo

18.
Hays, Christopher.
Non-Isotopic *Symplectic* Surfaces in Products of Riemann Surfaces.

Degree: 2006, University of Waterloo

URL: http://hdl.handle.net/10012/2917

► <html> <head> <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> </head> Let Σ<em>_{g}</em> be a closed Riemann surface of genus g. Generalizing Ivan Smith's construction, for each g ≥ 1…
(more)

Subjects/Keywords: Mathematics; Symplectic Manifolds; Isotopy Problem; Branched Covers

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hays, C. (2006). Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/2917

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hays, Christopher. “Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces.” 2006. Thesis, University of Waterloo. Accessed January 18, 2021. http://hdl.handle.net/10012/2917.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hays, Christopher. “Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces.” 2006. Web. 18 Jan 2021.

Vancouver:

Hays C. Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces. [Internet] [Thesis]. University of Waterloo; 2006. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/10012/2917.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hays C. Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces. [Thesis]. University of Waterloo; 2006. Available from: http://hdl.handle.net/10012/2917

Not specified: Masters Thesis or Doctoral Dissertation

Michigan State University

19. Lee, Junho. Family Gromov-Witten invariants for Kälher surfaces.

Degree: PhD, Department of Mathematics, 2001, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:30889

Subjects/Keywords: Invariants; Surfaces; Curves on surfaces; Kählerian structures; Symplectic manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, J. (2001). Family Gromov-Witten invariants for Kälher surfaces. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:30889

Chicago Manual of Style (16^{th} Edition):

Lee, Junho. “Family Gromov-Witten invariants for Kälher surfaces.” 2001. Doctoral Dissertation, Michigan State University. Accessed January 18, 2021. http://etd.lib.msu.edu/islandora/object/etd:30889.

MLA Handbook (7^{th} Edition):

Lee, Junho. “Family Gromov-Witten invariants for Kälher surfaces.” 2001. Web. 18 Jan 2021.

Vancouver:

Lee J. Family Gromov-Witten invariants for Kälher surfaces. [Internet] [Doctoral dissertation]. Michigan State University; 2001. [cited 2021 Jan 18]. Available from: http://etd.lib.msu.edu/islandora/object/etd:30889.

Council of Science Editors:

Lee J. Family Gromov-Witten invariants for Kälher surfaces. [Doctoral Dissertation]. Michigan State University; 2001. Available from: http://etd.lib.msu.edu/islandora/object/etd:30889

University of Hong Kong

20.
Mao, Shenggen.
* Symplectic* analysis of
flexible structures by finite elements.

Degree: 1996, University of Hong Kong

URL: http://hdl.handle.net/10722/34771

Subjects/Keywords: Symplectic manifolds.; Finite element method.; Flexible structures.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mao, S. (1996). Symplectic analysis of flexible structures by finite elements. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/34771

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mao, Shenggen. “Symplectic analysis of flexible structures by finite elements.” 1996. Thesis, University of Hong Kong. Accessed January 18, 2021. http://hdl.handle.net/10722/34771.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mao, Shenggen. “Symplectic analysis of flexible structures by finite elements.” 1996. Web. 18 Jan 2021.

Vancouver:

Mao S. Symplectic analysis of flexible structures by finite elements. [Internet] [Thesis]. University of Hong Kong; 1996. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/10722/34771.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mao S. Symplectic analysis of flexible structures by finite elements. [Thesis]. University of Hong Kong; 1996. Available from: http://hdl.handle.net/10722/34771

Not specified: Masters Thesis or Doctoral Dissertation

Université de Lorraine

21.
Gérard, Maxime.
Méthodes de sélection de structures presque complexes dans le cadre symplectique : Methods to select almost complex structures in *symplectic* geometry.

Degree: Docteur es, Mathématiques, 2018, Université de Lorraine

URL: http://www.theses.fr/2018LORR0051

►

Étant donné une variété symplectique (M,ω), il existe toujours des structures presque complexes ω-compatibles positives. La question qui nous intéresse est de trouver des méthodes… (more)

Subjects/Keywords: Variété symplectique; Structures presque complexes; Tenseur de Nijenhuis; Symplectic manifolds; Almost complex structures; Nijenhuis tensor; 516.36; 515.63

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gérard, M. (2018). Méthodes de sélection de structures presque complexes dans le cadre symplectique : Methods to select almost complex structures in symplectic geometry. (Doctoral Dissertation). Université de Lorraine. Retrieved from http://www.theses.fr/2018LORR0051

Chicago Manual of Style (16^{th} Edition):

Gérard, Maxime. “Méthodes de sélection de structures presque complexes dans le cadre symplectique : Methods to select almost complex structures in symplectic geometry.” 2018. Doctoral Dissertation, Université de Lorraine. Accessed January 18, 2021. http://www.theses.fr/2018LORR0051.

MLA Handbook (7^{th} Edition):

Gérard, Maxime. “Méthodes de sélection de structures presque complexes dans le cadre symplectique : Methods to select almost complex structures in symplectic geometry.” 2018. Web. 18 Jan 2021.

Vancouver:

Gérard M. Méthodes de sélection de structures presque complexes dans le cadre symplectique : Methods to select almost complex structures in symplectic geometry. [Internet] [Doctoral dissertation]. Université de Lorraine; 2018. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2018LORR0051.

Council of Science Editors:

Gérard M. Méthodes de sélection de structures presque complexes dans le cadre symplectique : Methods to select almost complex structures in symplectic geometry. [Doctoral Dissertation]. Université de Lorraine; 2018. Available from: http://www.theses.fr/2018LORR0051

22.
Bongers, S.R.
Geometric quantization of *symplectic* and Poisson * manifolds*.

Degree: 2014, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/290019

► The first part of this thesis provides an introduction to recent development in geometric quantization of *symplectic* and Poisson *manifolds*, including modern refinements involving Lie…
(more)

Subjects/Keywords: quantization; geometric quantization; symplectic manifolds; Poisson manifolds; Poisson sigma-model

…0
∇0
where i! = (i∗ )∨ ◦ T h. In the case of *symplectic* *manifolds* we should get… …In chapter 2 we give a review of standard geometric quantization of
*symplectic* *manifolds*… …of *symplectic* *manifolds*, this gives the construction of a prequantum line bundle, which is… …reproduce the geometric quantization of *symplectic* *manifolds* and
give rise to the Moyal… …*Symplectic* *Manifolds*
In this chapter we give a review of standard geometric quantization of…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bongers, S. R. (2014). Geometric quantization of symplectic and Poisson manifolds. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/290019

Chicago Manual of Style (16^{th} Edition):

Bongers, S R. “Geometric quantization of symplectic and Poisson manifolds.” 2014. Masters Thesis, Universiteit Utrecht. Accessed January 18, 2021. http://dspace.library.uu.nl:8080/handle/1874/290019.

MLA Handbook (7^{th} Edition):

Bongers, S R. “Geometric quantization of symplectic and Poisson manifolds.” 2014. Web. 18 Jan 2021.

Vancouver:

Bongers SR. Geometric quantization of symplectic and Poisson manifolds. [Internet] [Masters thesis]. Universiteit Utrecht; 2014. [cited 2021 Jan 18]. Available from: http://dspace.library.uu.nl:8080/handle/1874/290019.

Council of Science Editors:

Bongers SR. Geometric quantization of symplectic and Poisson manifolds. [Masters Thesis]. Universiteit Utrecht; 2014. Available from: http://dspace.library.uu.nl:8080/handle/1874/290019

University of Michigan

23.
Pelayo, Alvaro.
* Symplectic* torus actions.

Degree: PhD, Pure Sciences, 2007, University of Michigan

URL: http://hdl.handle.net/2027.42/126794

► We prove several theorems regarding *symplectic* torus actions and related topics. The thesis consists of four chapters, each of them with an independent abstract and…
(more)

Subjects/Keywords: Classification; Homotopy; Manifolds-4; Manifolds-four; Symplectic Orbits; Toric Ball Packings; Torus Actions

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pelayo, A. (2007). Symplectic torus actions. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126794

Chicago Manual of Style (16^{th} Edition):

Pelayo, Alvaro. “Symplectic torus actions.” 2007. Doctoral Dissertation, University of Michigan. Accessed January 18, 2021. http://hdl.handle.net/2027.42/126794.

MLA Handbook (7^{th} Edition):

Pelayo, Alvaro. “Symplectic torus actions.” 2007. Web. 18 Jan 2021.

Vancouver:

Pelayo A. Symplectic torus actions. [Internet] [Doctoral dissertation]. University of Michigan; 2007. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2027.42/126794.

Council of Science Editors:

Pelayo A. Symplectic torus actions. [Doctoral Dissertation]. University of Michigan; 2007. Available from: http://hdl.handle.net/2027.42/126794

24.
Courte, Sylvain.
H-cobordismes en géométrie symplectique : H-cobordisms in *symplectic* geometry.

Degree: Docteur es, Mathématiques, 2015, Lyon, École normale supérieure

URL: http://www.theses.fr/2015ENSL0991

►

À toute variété de contact, on peut associer canoniquement une variété symplectique appelée sa symplectisation de sorte que la géométrie de contact peut se reformuler… (more)

Subjects/Keywords: Variétés de contact; Variétés symplectiques; Symplectisation; Cobordismes de Weinstein; H-principe; H-cobordismes; Torsion de Whitehead; Contact manifolds; Symplectic manifolds; Symplectization; Weinstein cobordisms; H-principle; H-cobordisms; Whitehead torsion

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Courte, S. (2015). H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2015ENSL0991

Chicago Manual of Style (16^{th} Edition):

Courte, Sylvain. “H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.” 2015. Doctoral Dissertation, Lyon, École normale supérieure. Accessed January 18, 2021. http://www.theses.fr/2015ENSL0991.

MLA Handbook (7^{th} Edition):

Courte, Sylvain. “H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.” 2015. Web. 18 Jan 2021.

Vancouver:

Courte S. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2015. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2015ENSL0991.

Council of Science Editors:

Courte S. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. [Doctoral Dissertation]. Lyon, École normale supérieure; 2015. Available from: http://www.theses.fr/2015ENSL0991

Rhodes University

25.
Remsing, Claidiu Cristian.
Tangentially *symplectic* foliations.

Degree: Faculty of Science, Mathematics, 1994, Rhodes University

URL: http://hdl.handle.net/10962/d1005233

► This thesis is concerned principally with tangential geometry and the applications of these concepts to tangentially *symplectic* foliations. The *subject* of tangential geometry is still…
(more)

Subjects/Keywords: Geometry Problems, exercises, etc; Geometry, Differential; Symplectic manifolds; Poisson manifolds; Foliations (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Remsing, C. C. (1994). Tangentially symplectic foliations. (Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/d1005233

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Remsing, Claidiu Cristian. “Tangentially symplectic foliations.” 1994. Thesis, Rhodes University. Accessed January 18, 2021. http://hdl.handle.net/10962/d1005233.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Remsing, Claidiu Cristian. “Tangentially symplectic foliations.” 1994. Web. 18 Jan 2021.

Vancouver:

Remsing CC. Tangentially symplectic foliations. [Internet] [Thesis]. Rhodes University; 1994. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/10962/d1005233.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Remsing CC. Tangentially symplectic foliations. [Thesis]. Rhodes University; 1994. Available from: http://hdl.handle.net/10962/d1005233

Not specified: Masters Thesis or Doctoral Dissertation

Universidade Estadual de Campinas

26. Correa, Eder de Moraes, 1986-. Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações.

Degree: 2017, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527

► Abstract: The purpose of this thesis is to study Hamiltonian integrable systems in coadjoint orbits and topics related to its applications. This work is essentially…
(more)

Subjects/Keywords: Lie, Teoria de; Geometria simplética; Sistemas hamiltonianos; Calabi-Yau, Variedades de; Geometria diferencial; Lie theory; Symplectic geometry; Hamiltonian systems; Calabi-Yau manifolds; Differential geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Correa, Eder de Moraes, 1. (2017). Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Correa, Eder de Moraes, 1986-. “Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações.” 2017. Thesis, Universidade Estadual de Campinas. Accessed January 18, 2021. http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Correa, Eder de Moraes, 1986-. “Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações.” 2017. Web. 18 Jan 2021.

Vancouver:

Correa, Eder de Moraes 1. Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações. [Internet] [Thesis]. Universidade Estadual de Campinas; 2017. [cited 2021 Jan 18]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Correa, Eder de Moraes 1. Integrable systems in coadjoint orbits and applications = Sistemas integráveis em órbitas coadjuntas e aplicações: Sistemas integráveis em órbitas coadjuntas e aplicações. [Thesis]. Universidade Estadual de Campinas; 2017. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/325527

Not specified: Masters Thesis or Doctoral Dissertation

Rhodes University

27.
Russell, Neil Eric.
Aspects of the *symplectic* and metric geometry of classical and quantum physics.

Degree: Faculty of Science, Physics and Electronics, 1993, Rhodes University

URL: http://hdl.handle.net/10962/d1005237

► I investigate some algebras and calculi naturally associated with the *symplectic* and metric Clifford algebras. In particular, I reformulate the well known Lepage decomposition for…
(more)

Subjects/Keywords: Symplectic manifolds; Geometry, Differential; Geometric quantization; Quantum theory; Clifford algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Russell, N. E. (1993). Aspects of the symplectic and metric geometry of classical and quantum physics. (Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/d1005237

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Russell, Neil Eric. “Aspects of the symplectic and metric geometry of classical and quantum physics.” 1993. Thesis, Rhodes University. Accessed January 18, 2021. http://hdl.handle.net/10962/d1005237.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Russell, Neil Eric. “Aspects of the symplectic and metric geometry of classical and quantum physics.” 1993. Web. 18 Jan 2021.

Vancouver:

Russell NE. Aspects of the symplectic and metric geometry of classical and quantum physics. [Internet] [Thesis]. Rhodes University; 1993. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/10962/d1005237.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Russell NE. Aspects of the symplectic and metric geometry of classical and quantum physics. [Thesis]. Rhodes University; 1993. Available from: http://hdl.handle.net/10962/d1005237

Not specified: Masters Thesis or Doctoral Dissertation

Universitat de Barcelona

28.
Sáez Calvo, Carles.
Finite groups acting on smooth and *symplectic* 4-* manifolds*.

Degree: Departament de Matemàtiques i Informàtica, 2019, Universitat de Barcelona

URL: http://hdl.handle.net/10803/667781

► En esta tesis se estudian problemas relacionados con acciones de grupos finitos en 4-variedades diferenciables y simplécticas. Se prueba que toda 4-variedad diferenciable cerrada X…
(more)

Subjects/Keywords: Geometria simplèctica; Geometría simpléctica; Symplectic geometry; Grups de transformacions; Grupos de transformaciones; Transformation groups; Varietats diferenciables; Variedades diferenciables; Differentiable manifolds; Ciències Experimentals i Matemàtiques; 51

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sáez Calvo, C. (2019). Finite groups acting on smooth and symplectic 4-manifolds. (Thesis). Universitat de Barcelona. Retrieved from http://hdl.handle.net/10803/667781

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sáez Calvo, Carles. “Finite groups acting on smooth and symplectic 4-manifolds.” 2019. Thesis, Universitat de Barcelona. Accessed January 18, 2021. http://hdl.handle.net/10803/667781.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sáez Calvo, Carles. “Finite groups acting on smooth and symplectic 4-manifolds.” 2019. Web. 18 Jan 2021.

Vancouver:

Sáez Calvo C. Finite groups acting on smooth and symplectic 4-manifolds. [Internet] [Thesis]. Universitat de Barcelona; 2019. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/10803/667781.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sáez Calvo C. Finite groups acting on smooth and symplectic 4-manifolds. [Thesis]. Universitat de Barcelona; 2019. Available from: http://hdl.handle.net/10803/667781

Not specified: Masters Thesis or Doctoral Dissertation

University of New Mexico

29.
Pati, Justin.
Contact homology of toric contact *manifolds* of Reeb type.

Degree: Mathematics & Statistics, 2010, University of New Mexico

URL: http://hdl.handle.net/1928/11193

► We use contact homology to distinguish contact structures on various *manifolds*. We are primarily interested in contact *manifolds* which admit an action of Reeb type…
(more)

Subjects/Keywords: Contact manifolds; Symplectic and contact topology; Toric varieties; Orbifolds; Homology theory.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pati, J. (2010). Contact homology of toric contact manifolds of Reeb type. (Doctoral Dissertation). University of New Mexico. Retrieved from http://hdl.handle.net/1928/11193

Chicago Manual of Style (16^{th} Edition):

Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Doctoral Dissertation, University of New Mexico. Accessed January 18, 2021. http://hdl.handle.net/1928/11193.

MLA Handbook (7^{th} Edition):

Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Web. 18 Jan 2021.

Vancouver:

Pati J. Contact homology of toric contact manifolds of Reeb type. [Internet] [Doctoral dissertation]. University of New Mexico; 2010. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/1928/11193.

Council of Science Editors:

Pati J. Contact homology of toric contact manifolds of Reeb type. [Doctoral Dissertation]. University of New Mexico; 2010. Available from: http://hdl.handle.net/1928/11193

Université de Montréal

30. Rieser, Antonio P. Éclatement et contraction lagrangiens et applications.

Degree: 2010, Université de Montréal

URL: http://hdl.handle.net/1866/4532

Subjects/Keywords: Symplectique; Quatre-variétés; Sous-variété lagrangienne; Packing; Packing relatif; Involution anti-symplectique; Variété réelle; Real symplectic manifolds; Relative packing; Anti-symplectic involution; Four-manifolds; Symplectic; Mathematics / Mathématiques (UMI : 0405)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rieser, A. P. (2010). Éclatement et contraction lagrangiens et applications. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/4532

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Rieser, Antonio P. “Éclatement et contraction lagrangiens et applications.” 2010. Thesis, Université de Montréal. Accessed January 18, 2021. http://hdl.handle.net/1866/4532.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Rieser, Antonio P. “Éclatement et contraction lagrangiens et applications.” 2010. Web. 18 Jan 2021.

Vancouver:

Rieser AP. Éclatement et contraction lagrangiens et applications. [Internet] [Thesis]. Université de Montréal; 2010. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/1866/4532.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rieser AP. Éclatement et contraction lagrangiens et applications. [Thesis]. Université de Montréal; 2010. Available from: http://hdl.handle.net/1866/4532

Not specified: Masters Thesis or Doctoral Dissertation