Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(symplectic integrator). Showing records 1 – 8 of 8 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Alberta

1. Deng, Jian. Uncertainty Quantification of Dynamical Systems and Stochastic Symplectic Schemes.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2013, University of Alberta

 It has been known that for some physical problems, a small change in the system parameters or in the initial/boundary conditions could leas to a… (more)

Subjects/Keywords: stochastic symplectic integrator; Uncertainty Quantification; Stochastic differential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Deng, J. (2013). Uncertainty Quantification of Dynamical Systems and Stochastic Symplectic Schemes. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/n583xv59r

Chicago Manual of Style (16th Edition):

Deng, Jian. “Uncertainty Quantification of Dynamical Systems and Stochastic Symplectic Schemes.” 2013. Doctoral Dissertation, University of Alberta. Accessed December 04, 2020. https://era.library.ualberta.ca/files/n583xv59r.

MLA Handbook (7th Edition):

Deng, Jian. “Uncertainty Quantification of Dynamical Systems and Stochastic Symplectic Schemes.” 2013. Web. 04 Dec 2020.

Vancouver:

Deng J. Uncertainty Quantification of Dynamical Systems and Stochastic Symplectic Schemes. [Internet] [Doctoral dissertation]. University of Alberta; 2013. [cited 2020 Dec 04]. Available from: https://era.library.ualberta.ca/files/n583xv59r.

Council of Science Editors:

Deng J. Uncertainty Quantification of Dynamical Systems and Stochastic Symplectic Schemes. [Doctoral Dissertation]. University of Alberta; 2013. Available from: https://era.library.ualberta.ca/files/n583xv59r


Brunel University

2. Giboudot, Yoel. Study of beam dynamics in NS-FFAG EMMA with dynamical map.

Degree: PhD, 2011, Brunel University

 Dynamical maps for magnetic components are fundamental to studies of beam dynamics in accelerators. However, it is usually not possible to write down maps in… (more)

Subjects/Keywords: 531.16; Magnetic fieldmap; Symplectic integrator; Non linear dynamics; Paraxial approximation; Generating function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Giboudot, Y. (2011). Study of beam dynamics in NS-FFAG EMMA with dynamical map. (Doctoral Dissertation). Brunel University. Retrieved from http://bura.brunel.ac.uk/handle/2438/5947 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540753

Chicago Manual of Style (16th Edition):

Giboudot, Yoel. “Study of beam dynamics in NS-FFAG EMMA with dynamical map.” 2011. Doctoral Dissertation, Brunel University. Accessed December 04, 2020. http://bura.brunel.ac.uk/handle/2438/5947 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540753.

MLA Handbook (7th Edition):

Giboudot, Yoel. “Study of beam dynamics in NS-FFAG EMMA with dynamical map.” 2011. Web. 04 Dec 2020.

Vancouver:

Giboudot Y. Study of beam dynamics in NS-FFAG EMMA with dynamical map. [Internet] [Doctoral dissertation]. Brunel University; 2011. [cited 2020 Dec 04]. Available from: http://bura.brunel.ac.uk/handle/2438/5947 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540753.

Council of Science Editors:

Giboudot Y. Study of beam dynamics in NS-FFAG EMMA with dynamical map. [Doctoral Dissertation]. Brunel University; 2011. Available from: http://bura.brunel.ac.uk/handle/2438/5947 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540753


Delft University of Technology

3. Kleinschneider, A.M. (author). Modelling the orbital-tidal evolution of the Galilean moon Io.

Degree: 2016, Delft University of Technology

Io, the innermost Galilean moon of Jupiter, is the most volcanically active body in the Solar System. Its volcanism is driven by tidal foces, which… (more)

Subjects/Keywords: Io; Jupiter; tides; orbital evolution; orbital stability symplectic integrator; Love number; quality factor

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kleinschneider, A. M. (. (2016). Modelling the orbital-tidal evolution of the Galilean moon Io. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:573de551-1ee3-4fbb-bb40-6a1fb21d4b61

Chicago Manual of Style (16th Edition):

Kleinschneider, A M (author). “Modelling the orbital-tidal evolution of the Galilean moon Io.” 2016. Masters Thesis, Delft University of Technology. Accessed December 04, 2020. http://resolver.tudelft.nl/uuid:573de551-1ee3-4fbb-bb40-6a1fb21d4b61.

MLA Handbook (7th Edition):

Kleinschneider, A M (author). “Modelling the orbital-tidal evolution of the Galilean moon Io.” 2016. Web. 04 Dec 2020.

Vancouver:

Kleinschneider AM(. Modelling the orbital-tidal evolution of the Galilean moon Io. [Internet] [Masters thesis]. Delft University of Technology; 2016. [cited 2020 Dec 04]. Available from: http://resolver.tudelft.nl/uuid:573de551-1ee3-4fbb-bb40-6a1fb21d4b61.

Council of Science Editors:

Kleinschneider AM(. Modelling the orbital-tidal evolution of the Galilean moon Io. [Masters Thesis]. Delft University of Technology; 2016. Available from: http://resolver.tudelft.nl/uuid:573de551-1ee3-4fbb-bb40-6a1fb21d4b61


University of Illinois – Urbana-Champaign

4. Burkhardt, Paul. Explicit, multi-map symplectic integrator for three-body classical trajectory studies in hyperspherical coordinates.

Degree: PhD, Chemistry, 2004, University of Illinois – Urbana-Champaign

Symplectic integrators are well known for preserving the phase space volume in Hamiltonian dynamics and are particularly suited for problems that require long integration times.… (more)

Subjects/Keywords: Chemistry; Symplectic integrator; Three-body classical trajectory; Hyperspherical coordinates; Classical mechanics; Hamiltonian dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Burkhardt, P. (2004). Explicit, multi-map symplectic integrator for three-body classical trajectory studies in hyperspherical coordinates. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/17345

Chicago Manual of Style (16th Edition):

Burkhardt, Paul. “Explicit, multi-map symplectic integrator for three-body classical trajectory studies in hyperspherical coordinates.” 2004. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed December 04, 2020. http://hdl.handle.net/2142/17345.

MLA Handbook (7th Edition):

Burkhardt, Paul. “Explicit, multi-map symplectic integrator for three-body classical trajectory studies in hyperspherical coordinates.” 2004. Web. 04 Dec 2020.

Vancouver:

Burkhardt P. Explicit, multi-map symplectic integrator for three-body classical trajectory studies in hyperspherical coordinates. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2004. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/2142/17345.

Council of Science Editors:

Burkhardt P. Explicit, multi-map symplectic integrator for three-body classical trajectory studies in hyperspherical coordinates. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2004. Available from: http://hdl.handle.net/2142/17345

5. Liu, Jian-Long. Preservation of Periodicity in Variational Integrators.

Degree: MS, Mathematics, 2015, San Jose State University

  Classical numerical integrators do not preserve symplecticity, a structure inherent in Hamiltonian systems. Thus, the trajectories they produce cannot be expected to possess the… (more)

Subjects/Keywords: hamiltonian system; kam theory; periodicity; perturbation theory; symplectic integrator; variational integrator

…return map produced by the variational integrator . . . . . . . . . . . . . 44 5.4 Return… …maps of the pendulum produced by the variational integrator . . . . 47 5.5 Phase space of… …the pendulum produced by the variational integrator . . . . . 48 vii 1 CHAPTER 1… …ask whether the corresponding discrete set of points produced by the numerical integrator is… …concluding with the results of applying the variational integrator to them. We first explore most… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, J. (2015). Preservation of Periodicity in Variational Integrators. (Masters Thesis). San Jose State University. Retrieved from https://doi.org/10.31979/etd.c4z9-y9yp ; https://scholarworks.sjsu.edu/etd_theses/4596

Chicago Manual of Style (16th Edition):

Liu, Jian-Long. “Preservation of Periodicity in Variational Integrators.” 2015. Masters Thesis, San Jose State University. Accessed December 04, 2020. https://doi.org/10.31979/etd.c4z9-y9yp ; https://scholarworks.sjsu.edu/etd_theses/4596.

MLA Handbook (7th Edition):

Liu, Jian-Long. “Preservation of Periodicity in Variational Integrators.” 2015. Web. 04 Dec 2020.

Vancouver:

Liu J. Preservation of Periodicity in Variational Integrators. [Internet] [Masters thesis]. San Jose State University; 2015. [cited 2020 Dec 04]. Available from: https://doi.org/10.31979/etd.c4z9-y9yp ; https://scholarworks.sjsu.edu/etd_theses/4596.

Council of Science Editors:

Liu J. Preservation of Periodicity in Variational Integrators. [Masters Thesis]. San Jose State University; 2015. Available from: https://doi.org/10.31979/etd.c4z9-y9yp ; https://scholarworks.sjsu.edu/etd_theses/4596

6. Shen, Xuefeng. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.

Degree: Mathematics, 2019, University of California – San Diego

 The main idea of a geometric integrator is to adopt a geometric viewpoint of the problem and to construct integrators that preserve the geometric properties… (more)

Subjects/Keywords: Mathematics; geometric reduction; kalman filter; lie group; stiff system; symplectic integrator; variational integrator

…3.3 Lie group variational integrator… …3.3.2 Variational integrator on the Lagrangian side… …3.3.3 Variational integrator on the Hamiltonian side… …61 61 64 64 66 68 68 71 74 75 77 79 High-Order Symplectic Lie Group Methods on SO(n… …93 Hamiltonian variational integrator on the rotation group SO(n)… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shen, X. (2019). Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/9g2730gd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Shen, Xuefeng. “Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.” 2019. Thesis, University of California – San Diego. Accessed December 04, 2020. http://www.escholarship.org/uc/item/9g2730gd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Shen, Xuefeng. “Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.” 2019. Web. 04 Dec 2020.

Vancouver:

Shen X. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. [Internet] [Thesis]. University of California – San Diego; 2019. [cited 2020 Dec 04]. Available from: http://www.escholarship.org/uc/item/9g2730gd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shen X. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. [Thesis]. University of California – San Diego; 2019. Available from: http://www.escholarship.org/uc/item/9g2730gd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Horsin, Romain. Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques : Long time behavior of certain Vlasov equations : mathematics and numerics.

Degree: Docteur es, Mathématiques et Applications, 2017, Rennes 1

Cette thèse porte sur le comportement en temps long de solutions d’équations de type Vlasov, principalement le modèle Vlasov-HMF. On s’intéresse en particulier au phénomène… (more)

Subjects/Keywords: Équations de type Vlasov; Équations d’Euler; Équations de transport; Amortissement Landau; État stationnaire; Méthodes de splitting; Méthodes semi-Lagrangiennes; Intégrateur symplectique; Intégrateur de Crouch-Grossman; Analyse d’erreur rétrograde; Systèmes hamiltoniens; Coordonnées action-angle; Vlasov equations; Euler equations; Transport equations; Landau damping; Stationary state; Splitting methods; Semi-Lagrangian methods; Symplectic integrator; Crouch-Grossman integrator; Backward error analysis; Hamiltonian systems; Angle-action variables

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Horsin, R. (2017). Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques : Long time behavior of certain Vlasov equations : mathematics and numerics. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2017REN1S062

Chicago Manual of Style (16th Edition):

Horsin, Romain. “Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques : Long time behavior of certain Vlasov equations : mathematics and numerics.” 2017. Doctoral Dissertation, Rennes 1. Accessed December 04, 2020. http://www.theses.fr/2017REN1S062.

MLA Handbook (7th Edition):

Horsin, Romain. “Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques : Long time behavior of certain Vlasov equations : mathematics and numerics.” 2017. Web. 04 Dec 2020.

Vancouver:

Horsin R. Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques : Long time behavior of certain Vlasov equations : mathematics and numerics. [Internet] [Doctoral dissertation]. Rennes 1; 2017. [cited 2020 Dec 04]. Available from: http://www.theses.fr/2017REN1S062.

Council of Science Editors:

Horsin R. Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques : Long time behavior of certain Vlasov equations : mathematics and numerics. [Doctoral Dissertation]. Rennes 1; 2017. Available from: http://www.theses.fr/2017REN1S062


Universitat Politècnica de València

8. Kopylov, Nikita. Magnus-based geometric integrators for dynamical systems with time-dependent potentials .

Degree: 2019, Universitat Politècnica de València

 [ES] Esta tesis trata sobre la integración numérica de sistemas hamiltonianos con potenciales explícitamente dependientes del tiempo. Los problemas de este tipo son comunes en… (more)

Subjects/Keywords: Numerical analysis; Geometric numerical integration; Symplectic integrator; Structure preservation; Differential equations; Time-dependent; Non-autonomous; Magnus expansion; Splitting methods; Composition methods; Schrödinger equation; Wave equation; Hill equation; Mathieu equation; Kepler problem; Quasi-commutator-free; Quasi-Magnus; Magnus-splitting

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kopylov, N. (2019). Magnus-based geometric integrators for dynamical systems with time-dependent potentials . (Doctoral Dissertation). Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/118798

Chicago Manual of Style (16th Edition):

Kopylov, Nikita. “Magnus-based geometric integrators for dynamical systems with time-dependent potentials .” 2019. Doctoral Dissertation, Universitat Politècnica de València. Accessed December 04, 2020. http://hdl.handle.net/10251/118798.

MLA Handbook (7th Edition):

Kopylov, Nikita. “Magnus-based geometric integrators for dynamical systems with time-dependent potentials .” 2019. Web. 04 Dec 2020.

Vancouver:

Kopylov N. Magnus-based geometric integrators for dynamical systems with time-dependent potentials . [Internet] [Doctoral dissertation]. Universitat Politècnica de València; 2019. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/10251/118798.

Council of Science Editors:

Kopylov N. Magnus-based geometric integrators for dynamical systems with time-dependent potentials . [Doctoral Dissertation]. Universitat Politècnica de València; 2019. Available from: http://hdl.handle.net/10251/118798

.