Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(symplectic geometry)`

.
Showing records 1 – 30 of
98 total matches.

Search Limiters

Dates

- 2015 – 2019 (45)
- 2010 – 2014 (35)
- 2005 – 2009 (14)

Country

- US (36)
- Switzerland (16)
- Netherlands (11)

▼ Search Limiters

University of Illinois – Urbana-Champaign

1.
Wolbert, Seth P.
* Symplectic* toric stratified spaces with isolated singularities.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/98085

► We provide a classification of two types of toric objects: *symplectic* toric cones and *symplectic* toric stratified spaces with isolated singularities. Both types of object…
(more)

Subjects/Keywords: Symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wolbert, S. P. (2017). Symplectic toric stratified spaces with isolated singularities. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/98085

Chicago Manual of Style (16^{th} Edition):

Wolbert, Seth P. “Symplectic toric stratified spaces with isolated singularities.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 20, 2019. http://hdl.handle.net/2142/98085.

MLA Handbook (7^{th} Edition):

Wolbert, Seth P. “Symplectic toric stratified spaces with isolated singularities.” 2017. Web. 20 Jul 2019.

Vancouver:

Wolbert SP. Symplectic toric stratified spaces with isolated singularities. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/2142/98085.

Council of Science Editors:

Wolbert SP. Symplectic toric stratified spaces with isolated singularities. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/98085

University of California – Berkeley

2. McMillan, Aaron Fraenkel. On Embedding Singular Poisson Spaces.

Degree: Mathematics, 2011, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/6xz306q4

► This dissertation investigates the problem of locally embedding singular Poisson spaces. Specifically, it seeks to understand when a singular *symplectic* quotient V/G of a *symplectic*…
(more)

Subjects/Keywords: Mathematics; Poisson geometry; Symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

McMillan, A. F. (2011). On Embedding Singular Poisson Spaces. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/6xz306q4

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

McMillan, Aaron Fraenkel. “On Embedding Singular Poisson Spaces.” 2011. Thesis, University of California – Berkeley. Accessed July 20, 2019. http://www.escholarship.org/uc/item/6xz306q4.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

McMillan, Aaron Fraenkel. “On Embedding Singular Poisson Spaces.” 2011. Web. 20 Jul 2019.

Vancouver:

McMillan AF. On Embedding Singular Poisson Spaces. [Internet] [Thesis]. University of California – Berkeley; 2011. [cited 2019 Jul 20]. Available from: http://www.escholarship.org/uc/item/6xz306q4.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McMillan AF. On Embedding Singular Poisson Spaces. [Thesis]. University of California – Berkeley; 2011. Available from: http://www.escholarship.org/uc/item/6xz306q4

Not specified: Masters Thesis or Doctoral Dissertation

University of Rochester

3. Cho, Hyunjoo. Existence of almost contact structures on manifolds with G2-structures and generalizations.

Degree: PhD, 2012, University of Rochester

URL: http://hdl.handle.net/1802/21273

► This dissertation consists of two main results. First, we investigate the relationship between almost contact structures and G2-structures on seven-dimensional Riemannian manifolds: we show that…
(more)

Subjects/Keywords: Differential geometry; Symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cho, H. (2012). Existence of almost contact structures on manifolds with G2-structures and generalizations. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/21273

Chicago Manual of Style (16^{th} Edition):

Cho, Hyunjoo. “Existence of almost contact structures on manifolds with G2-structures and generalizations.” 2012. Doctoral Dissertation, University of Rochester. Accessed July 20, 2019. http://hdl.handle.net/1802/21273.

MLA Handbook (7^{th} Edition):

Cho, Hyunjoo. “Existence of almost contact structures on manifolds with G2-structures and generalizations.” 2012. Web. 20 Jul 2019.

Vancouver:

Cho H. Existence of almost contact structures on manifolds with G2-structures and generalizations. [Internet] [Doctoral dissertation]. University of Rochester; 2012. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/1802/21273.

Council of Science Editors:

Cho H. Existence of almost contact structures on manifolds with G2-structures and generalizations. [Doctoral Dissertation]. University of Rochester; 2012. Available from: http://hdl.handle.net/1802/21273

Columbia University

4.
Zhao, Jingyu.
Periodic *symplectic* cohomologies and obstructions to exact Lagrangian immersions.

Degree: 2016, Columbia University

URL: https://doi.org/10.7916/D8V69JMZ

► Given a Liouville manifold, *symplectic* cohomology is defined as the Hamiltonian Floer homology for the *symplectic* action functional on the free loop space. In this…
(more)

Subjects/Keywords: Symplectic geometry; Homology theory; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhao, J. (2016). Periodic symplectic cohomologies and obstructions to exact Lagrangian immersions. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8V69JMZ

Chicago Manual of Style (16^{th} Edition):

Zhao, Jingyu. “Periodic symplectic cohomologies and obstructions to exact Lagrangian immersions.” 2016. Doctoral Dissertation, Columbia University. Accessed July 20, 2019. https://doi.org/10.7916/D8V69JMZ.

MLA Handbook (7^{th} Edition):

Zhao, Jingyu. “Periodic symplectic cohomologies and obstructions to exact Lagrangian immersions.” 2016. Web. 20 Jul 2019.

Vancouver:

Zhao J. Periodic symplectic cohomologies and obstructions to exact Lagrangian immersions. [Internet] [Doctoral dissertation]. Columbia University; 2016. [cited 2019 Jul 20]. Available from: https://doi.org/10.7916/D8V69JMZ.

Council of Science Editors:

Zhao J. Periodic symplectic cohomologies and obstructions to exact Lagrangian immersions. [Doctoral Dissertation]. Columbia University; 2016. Available from: https://doi.org/10.7916/D8V69JMZ

ETH Zürich

5. Naef, Kathrin. Translated Points on Dynamically Convex Contact Manifolds.

Degree: 2018, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/263960

Subjects/Keywords: Symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Naef, K. (2018). Translated Points on Dynamically Convex Contact Manifolds. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/263960

Chicago Manual of Style (16^{th} Edition):

Naef, Kathrin. “Translated Points on Dynamically Convex Contact Manifolds.” 2018. Doctoral Dissertation, ETH Zürich. Accessed July 20, 2019. http://hdl.handle.net/20.500.11850/263960.

MLA Handbook (7^{th} Edition):

Naef, Kathrin. “Translated Points on Dynamically Convex Contact Manifolds.” 2018. Web. 20 Jul 2019.

Vancouver:

Naef K. Translated Points on Dynamically Convex Contact Manifolds. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/20.500.11850/263960.

Council of Science Editors:

Naef K. Translated Points on Dynamically Convex Contact Manifolds. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/263960

Louisiana State University

6. Lambert-Cole, Peter. Invariants of Legendrian products.

Degree: PhD, Applied Mathematics, 2014, Louisiana State University

URL: etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909

This thesis investigates a construction in contact topology of Legendrian submanifolds called the Legendrian product. We investigate and compute invariants for these Legendrian submanifolds, including the Thurston-Bennequin invariant and Maslov class; Legendrian contact homology for the product of two Legendrian knots; and generating family homology.

Subjects/Keywords: low-dimensional topology; Contact geometry; symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lambert-Cole, P. (2014). Invariants of Legendrian products. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909

Chicago Manual of Style (16^{th} Edition):

Lambert-Cole, Peter. “Invariants of Legendrian products.” 2014. Doctoral Dissertation, Louisiana State University. Accessed July 20, 2019. etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909.

MLA Handbook (7^{th} Edition):

Lambert-Cole, Peter. “Invariants of Legendrian products.” 2014. Web. 20 Jul 2019.

Vancouver:

Lambert-Cole P. Invariants of Legendrian products. [Internet] [Doctoral dissertation]. Louisiana State University; 2014. [cited 2019 Jul 20]. Available from: etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909.

Council of Science Editors:

Lambert-Cole P. Invariants of Legendrian products. [Doctoral Dissertation]. Louisiana State University; 2014. Available from: etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909

Uppsala University

7.
Iakovidis, Nikolaos.
* Geometry* of Contact Toric Manifolds in 3D.

Degree: Theoretical Physics, 2016, Uppsala University

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296221

► In this project we present some applications of *symplectic* and contact *geometry* on 3-manifolds. In the first section we introduce the notion of *symplectic*…
(more)

Subjects/Keywords: Symplectic Geometry; Contact Geometry; Lens spaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Iakovidis, N. (2016). Geometry of Contact Toric Manifolds in 3D. (Thesis). Uppsala University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296221

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Iakovidis, Nikolaos. “Geometry of Contact Toric Manifolds in 3D.” 2016. Thesis, Uppsala University. Accessed July 20, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296221.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Iakovidis, Nikolaos. “Geometry of Contact Toric Manifolds in 3D.” 2016. Web. 20 Jul 2019.

Vancouver:

Iakovidis N. Geometry of Contact Toric Manifolds in 3D. [Internet] [Thesis]. Uppsala University; 2016. [cited 2019 Jul 20]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296221.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Iakovidis N. Geometry of Contact Toric Manifolds in 3D. [Thesis]. Uppsala University; 2016. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296221

Not specified: Masters Thesis or Doctoral Dissertation

University of Toronto

8.
Luk, Kevin.
Moduli Space Techniques in Algebraic *Geometry* and *Symplectic* * Geometry*.

Degree: 2012, University of Toronto

URL: http://hdl.handle.net/1807/33298

►

The following is my M.Sc. thesis on moduli space techniques in algebraic and *symplectic* *geometry*. It is divided into the following two parts: the rst…
(more)

Subjects/Keywords: Pure Mathematics; Algebraic Geometry; Symplectic Geometry; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Luk, K. (2012). Moduli Space Techniques in Algebraic Geometry and Symplectic Geometry. (Masters Thesis). University of Toronto. Retrieved from http://hdl.handle.net/1807/33298

Chicago Manual of Style (16^{th} Edition):

Luk, Kevin. “Moduli Space Techniques in Algebraic Geometry and Symplectic Geometry.” 2012. Masters Thesis, University of Toronto. Accessed July 20, 2019. http://hdl.handle.net/1807/33298.

MLA Handbook (7^{th} Edition):

Luk, Kevin. “Moduli Space Techniques in Algebraic Geometry and Symplectic Geometry.” 2012. Web. 20 Jul 2019.

Vancouver:

Luk K. Moduli Space Techniques in Algebraic Geometry and Symplectic Geometry. [Internet] [Masters thesis]. University of Toronto; 2012. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/1807/33298.

Council of Science Editors:

Luk K. Moduli Space Techniques in Algebraic Geometry and Symplectic Geometry. [Masters Thesis]. University of Toronto; 2012. Available from: http://hdl.handle.net/1807/33298

University of Cambridge

9.
Kirchhoff-Lukat, Charlotte Sophie.
Aspects of generalized *geometry* : branes with boundary, blow-ups, brackets and bundles.

Degree: PhD, 2018, University of Cambridge

URL: https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570

► This thesis explores aspects of generalized *geometry*, a geometric framework introduced by Hitchin and Gualtieri in the early 2000s. In the first part, we introduce…
(more)

Subjects/Keywords: differential geometry; generalized complex geometry; Poisson geometry; symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kirchhoff-Lukat, C. S. (2018). Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570

Chicago Manual of Style (16^{th} Edition):

Kirchhoff-Lukat, Charlotte Sophie. “Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.” 2018. Doctoral Dissertation, University of Cambridge. Accessed July 20, 2019. https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570.

MLA Handbook (7^{th} Edition):

Kirchhoff-Lukat, Charlotte Sophie. “Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.” 2018. Web. 20 Jul 2019.

Vancouver:

Kirchhoff-Lukat CS. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. [Internet] [Doctoral dissertation]. University of Cambridge; 2018. [cited 2019 Jul 20]. Available from: https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570.

Council of Science Editors:

Kirchhoff-Lukat CS. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. [Doctoral Dissertation]. University of Cambridge; 2018. Available from: https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570

University of Colorado

10.
Nita, Alexander.
Essential Self-Adjointness of the *Symplectic* Dirac Operators.

Degree: PhD, Mathematics, 2016, University of Colorado

URL: http://scholar.colorado.edu/math_gradetds/45

► The main problem we consider in this thesis is the essential self-adjointness of the *symplectic* Dirac operators D and ~D constructed by Katharina Habermann…
(more)

Subjects/Keywords: Dirac operator; functional analysis; self-adjointness; symplectic geometry; symplectic topology; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nita, A. (2016). Essential Self-Adjointness of the Symplectic Dirac Operators. (Doctoral Dissertation). University of Colorado. Retrieved from http://scholar.colorado.edu/math_gradetds/45

Chicago Manual of Style (16^{th} Edition):

Nita, Alexander. “Essential Self-Adjointness of the Symplectic Dirac Operators.” 2016. Doctoral Dissertation, University of Colorado. Accessed July 20, 2019. http://scholar.colorado.edu/math_gradetds/45.

MLA Handbook (7^{th} Edition):

Nita, Alexander. “Essential Self-Adjointness of the Symplectic Dirac Operators.” 2016. Web. 20 Jul 2019.

Vancouver:

Nita A. Essential Self-Adjointness of the Symplectic Dirac Operators. [Internet] [Doctoral dissertation]. University of Colorado; 2016. [cited 2019 Jul 20]. Available from: http://scholar.colorado.edu/math_gradetds/45.

Council of Science Editors:

Nita A. Essential Self-Adjointness of the Symplectic Dirac Operators. [Doctoral Dissertation]. University of Colorado; 2016. Available from: http://scholar.colorado.edu/math_gradetds/45

University of Minnesota

11.
Mak, Cheuk Yu.
Rigidity of *symplectic* fillings, *symplectic* divisors and Dehn twist exact sequences.

Degree: PhD, Mathematics, 2016, University of Minnesota

URL: http://hdl.handle.net/11299/182326

► We present three different aspects of *symplectic* *geometry* in connection to complex *geometry*. Convex *symplectic* manifolds, *symplectic* divisors and Lagrangians are central objects to study…
(more)

Subjects/Keywords: Dehn twists; Log Calabi-Yau surfaces; Symplectic fillings; Symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mak, C. Y. (2016). Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/182326

Chicago Manual of Style (16^{th} Edition):

Mak, Cheuk Yu. “Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences.” 2016. Doctoral Dissertation, University of Minnesota. Accessed July 20, 2019. http://hdl.handle.net/11299/182326.

MLA Handbook (7^{th} Edition):

Mak, Cheuk Yu. “Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences.” 2016. Web. 20 Jul 2019.

Vancouver:

Mak CY. Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences. [Internet] [Doctoral dissertation]. University of Minnesota; 2016. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/11299/182326.

Council of Science Editors:

Mak CY. Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences. [Doctoral Dissertation]. University of Minnesota; 2016. Available from: http://hdl.handle.net/11299/182326

University of Cambridge

12. Benedetti, Gabriele. The contact property for magnetic flows on surfaces.

Degree: PhD, 2015, University of Cambridge

URL: https://www.repository.cam.ac.uk/handle/1810/247157 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.642462

► This work investigates the dynamics of magnetic flows on closed orientable Riemannian surfaces. These flows are determined by triples (M, g, σ), where M is…
(more)

Subjects/Keywords: 516.3; Magnetic flows; Symplectic geometry; Periodic orbits

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Benedetti, G. (2015). The contact property for magnetic flows on surfaces. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/247157 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.642462

Chicago Manual of Style (16^{th} Edition):

Benedetti, Gabriele. “The contact property for magnetic flows on surfaces.” 2015. Doctoral Dissertation, University of Cambridge. Accessed July 20, 2019. https://www.repository.cam.ac.uk/handle/1810/247157 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.642462.

MLA Handbook (7^{th} Edition):

Benedetti, Gabriele. “The contact property for magnetic flows on surfaces.” 2015. Web. 20 Jul 2019.

Vancouver:

Benedetti G. The contact property for magnetic flows on surfaces. [Internet] [Doctoral dissertation]. University of Cambridge; 2015. [cited 2019 Jul 20]. Available from: https://www.repository.cam.ac.uk/handle/1810/247157 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.642462.

Council of Science Editors:

Benedetti G. The contact property for magnetic flows on surfaces. [Doctoral Dissertation]. University of Cambridge; 2015. Available from: https://www.repository.cam.ac.uk/handle/1810/247157 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.642462

University of Cambridge

13. Benedetti, Gabriele. The contact property for magnetic flows on surfaces .

Degree: 2015, University of Cambridge

URL: https://www.repository.cam.ac.uk/handle/1810/247157

► This work investigates the dynamics of magnetic flows on closed orientable Riemannian surfaces. These flows are determined by triples (M, g, σ), where M is…
(more)

Subjects/Keywords: Magnetic flows; Symplectic geometry; Periodic orbits

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Benedetti, G. (2015). The contact property for magnetic flows on surfaces . (Thesis). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/247157

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Benedetti, Gabriele. “The contact property for magnetic flows on surfaces .” 2015. Thesis, University of Cambridge. Accessed July 20, 2019. https://www.repository.cam.ac.uk/handle/1810/247157.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Benedetti, Gabriele. “The contact property for magnetic flows on surfaces .” 2015. Web. 20 Jul 2019.

Vancouver:

Benedetti G. The contact property for magnetic flows on surfaces . [Internet] [Thesis]. University of Cambridge; 2015. [cited 2019 Jul 20]. Available from: https://www.repository.cam.ac.uk/handle/1810/247157.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Benedetti G. The contact property for magnetic flows on surfaces . [Thesis]. University of Cambridge; 2015. Available from: https://www.repository.cam.ac.uk/handle/1810/247157

Not specified: Masters Thesis or Doctoral Dissertation

University of Southern California

14.
Avdek, Russell.
Contact surgery, open books, and *symplectic*
cobordisms.

Degree: PhD, Mathematics, 2013, University of Southern California

URL: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/304150/rec/1611

► In this thesis, we study contact manifolds and *symplectic* cobordisms between them using open book decompositions and various types of *symplectic* handle attachment. In the…
(more)

Subjects/Keywords: contact geometry; symplectic geometry; contact surgery; Weinstein handle; symplectic cobordism; open book; monodromy; Dehn twist

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Avdek, R. (2013). Contact surgery, open books, and symplectic cobordisms. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/304150/rec/1611

Chicago Manual of Style (16^{th} Edition):

Avdek, Russell. “Contact surgery, open books, and symplectic cobordisms.” 2013. Doctoral Dissertation, University of Southern California. Accessed July 20, 2019. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/304150/rec/1611.

MLA Handbook (7^{th} Edition):

Avdek, Russell. “Contact surgery, open books, and symplectic cobordisms.” 2013. Web. 20 Jul 2019.

Vancouver:

Avdek R. Contact surgery, open books, and symplectic cobordisms. [Internet] [Doctoral dissertation]. University of Southern California; 2013. [cited 2019 Jul 20]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/304150/rec/1611.

Council of Science Editors:

Avdek R. Contact surgery, open books, and symplectic cobordisms. [Doctoral Dissertation]. University of Southern California; 2013. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/304150/rec/1611

Universiteit Utrecht

15.
Tel, A.W.
Lefschetz fibrations and *symplectic* structures.

Degree: 2015, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/311281

► In this thesis, we study a relation between *symplectic* structures and Lefschetz ?brations to shed some light on 4-manifold theory. We introduce *symplectic* manifolds and…
(more)

Subjects/Keywords: Lefschetz fibration; Lefschetz pencil; symplectic geometry; fiber bundle; complex geometry; compatibility

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tel, A. W. (2015). Lefschetz fibrations and symplectic structures. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/311281

Chicago Manual of Style (16^{th} Edition):

Tel, A W. “Lefschetz fibrations and symplectic structures.” 2015. Masters Thesis, Universiteit Utrecht. Accessed July 20, 2019. http://dspace.library.uu.nl:8080/handle/1874/311281.

MLA Handbook (7^{th} Edition):

Tel, A W. “Lefschetz fibrations and symplectic structures.” 2015. Web. 20 Jul 2019.

Vancouver:

Tel AW. Lefschetz fibrations and symplectic structures. [Internet] [Masters thesis]. Universiteit Utrecht; 2015. [cited 2019 Jul 20]. Available from: http://dspace.library.uu.nl:8080/handle/1874/311281.

Council of Science Editors:

Tel AW. Lefschetz fibrations and symplectic structures. [Masters Thesis]. Universiteit Utrecht; 2015. Available from: http://dspace.library.uu.nl:8080/handle/1874/311281

University of California – Berkeley

16.
Canez, Santiago Valencia.
Double Groupoids, Orbifolds, and the *Symplectic* Category.

Degree: Mathematics, 2011, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/7df5f00t

► Motivated by an attempt to better understand the notion of a *symplectic* stack, we introduce the notion of a \emph{*symplectic* hopfoid}, which should be thought…
(more)

Subjects/Keywords: Mathematics; category theory; differential geometry; groupoids; orbifolds; stacks; symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Canez, S. V. (2011). Double Groupoids, Orbifolds, and the Symplectic Category. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/7df5f00t

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Canez, Santiago Valencia. “Double Groupoids, Orbifolds, and the Symplectic Category.” 2011. Thesis, University of California – Berkeley. Accessed July 20, 2019. http://www.escholarship.org/uc/item/7df5f00t.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Canez, Santiago Valencia. “Double Groupoids, Orbifolds, and the Symplectic Category.” 2011. Web. 20 Jul 2019.

Vancouver:

Canez SV. Double Groupoids, Orbifolds, and the Symplectic Category. [Internet] [Thesis]. University of California – Berkeley; 2011. [cited 2019 Jul 20]. Available from: http://www.escholarship.org/uc/item/7df5f00t.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Canez SV. Double Groupoids, Orbifolds, and the Symplectic Category. [Thesis]. University of California – Berkeley; 2011. Available from: http://www.escholarship.org/uc/item/7df5f00t

Not specified: Masters Thesis or Doctoral Dissertation

University of California – Berkeley

17. Brown, Jeffrey Steven. Gromov – Witten Invariants of Toric Fibrations.

Degree: Mathematics, 2009, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/38b8b8q5

► We prove a conjecture of Artur Elezi in a generalized form suggested by Givental. Namely, our main result relates genus-0 Gromov – Witten invariants of a…
(more)

Subjects/Keywords: Mathematics; Gromov – Witten Invariant; Symplectic Geometry; Algebraic Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Brown, J. S. (2009). Gromov – Witten Invariants of Toric Fibrations. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/38b8b8q5

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Brown, Jeffrey Steven. “Gromov – Witten Invariants of Toric Fibrations.” 2009. Thesis, University of California – Berkeley. Accessed July 20, 2019. http://www.escholarship.org/uc/item/38b8b8q5.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Brown, Jeffrey Steven. “Gromov – Witten Invariants of Toric Fibrations.” 2009. Web. 20 Jul 2019.

Vancouver:

Brown JS. Gromov – Witten Invariants of Toric Fibrations. [Internet] [Thesis]. University of California – Berkeley; 2009. [cited 2019 Jul 20]. Available from: http://www.escholarship.org/uc/item/38b8b8q5.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brown JS. Gromov – Witten Invariants of Toric Fibrations. [Thesis]. University of California – Berkeley; 2009. Available from: http://www.escholarship.org/uc/item/38b8b8q5

Not specified: Masters Thesis or Doctoral Dissertation

18. Lanius, Melinda Dawn. Generically nondegenerate Poisson structures and their Lie algebroids.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/101536

► In this dissertation, generically nondegenerate Poisson manifolds are studied by lifting them to a Lie algebroid where they can be understood as nondegenerate. This allows…
(more)

Subjects/Keywords: Poisson geometry; symplectic geometry

…1.1 Poisson and *symplectic* *geometry*
A Poisson manifold
(M, π)
is a manifold
M… …tools of *symplectic* *geometry* to the Lie algebroid.
Moser.
We use the standard Moser… …which we have hope of applying standard techniques of *symplectic*
*geometry*.
2.2.1 Lie… …hypersurfaces), we can adapt the standard Moser technique
of *symplectic* *geometry* to establish… …a *symplectic* one and allow us to view the Poisson structure as non-degenerate. The second…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lanius, M. D. (2018). Generically nondegenerate Poisson structures and their Lie algebroids. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101536

Chicago Manual of Style (16^{th} Edition):

Lanius, Melinda Dawn. “Generically nondegenerate Poisson structures and their Lie algebroids.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 20, 2019. http://hdl.handle.net/2142/101536.

MLA Handbook (7^{th} Edition):

Lanius, Melinda Dawn. “Generically nondegenerate Poisson structures and their Lie algebroids.” 2018. Web. 20 Jul 2019.

Vancouver:

Lanius MD. Generically nondegenerate Poisson structures and their Lie algebroids. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/2142/101536.

Council of Science Editors:

Lanius MD. Generically nondegenerate Poisson structures and their Lie algebroids. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101536

19. Blacker, Casey Alexander. The Moduli Space of Flat Connections over Higher Dimensional Manifolds.

Degree: 2018, University of California – eScholarship, University of California

URL: http://www.escholarship.org/uc/item/0535z0rb

► Let M be a smooth manifold of dimension at least 3, let G be a compact Lie group, and let P be a G-principal bundle…
(more)

Subjects/Keywords: Mathematics; differential geometry; gauge theory; moment maps; symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Blacker, C. A. (2018). The Moduli Space of Flat Connections over Higher Dimensional Manifolds. (Thesis). University of California – eScholarship, University of California. Retrieved from http://www.escholarship.org/uc/item/0535z0rb

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Blacker, Casey Alexander. “The Moduli Space of Flat Connections over Higher Dimensional Manifolds.” 2018. Thesis, University of California – eScholarship, University of California. Accessed July 20, 2019. http://www.escholarship.org/uc/item/0535z0rb.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Blacker, Casey Alexander. “The Moduli Space of Flat Connections over Higher Dimensional Manifolds.” 2018. Web. 20 Jul 2019.

Vancouver:

Blacker CA. The Moduli Space of Flat Connections over Higher Dimensional Manifolds. [Internet] [Thesis]. University of California – eScholarship, University of California; 2018. [cited 2019 Jul 20]. Available from: http://www.escholarship.org/uc/item/0535z0rb.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Blacker CA. The Moduli Space of Flat Connections over Higher Dimensional Manifolds. [Thesis]. University of California – eScholarship, University of California; 2018. Available from: http://www.escholarship.org/uc/item/0535z0rb

Not specified: Masters Thesis or Doctoral Dissertation

Université Catholique de Louvain

20.
Voglaire, Yannick.
Quantization of solvable *symplectic* symmetric spaces.

Degree: 2011, Université Catholique de Louvain

URL: http://hdl.handle.net/2078.1/106799

►

*Geometry* and physics have a long history of mutual interactions. Among those interactions coming from quantum mechanics, the early “Weyl quantization” of the phase space…
(more)

Subjects/Keywords: Quantization; Symplectic geometry; Symmetric spaces; Lie theory; Symplectic reduction; Double extension; Midpoint map

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Voglaire, Y. (2011). Quantization of solvable symplectic symmetric spaces. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/106799

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Voglaire, Yannick. “Quantization of solvable symplectic symmetric spaces.” 2011. Thesis, Université Catholique de Louvain. Accessed July 20, 2019. http://hdl.handle.net/2078.1/106799.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Voglaire, Yannick. “Quantization of solvable symplectic symmetric spaces.” 2011. Web. 20 Jul 2019.

Vancouver:

Voglaire Y. Quantization of solvable symplectic symmetric spaces. [Internet] [Thesis]. Université Catholique de Louvain; 2011. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/2078.1/106799.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Voglaire Y. Quantization of solvable symplectic symmetric spaces. [Thesis]. Université Catholique de Louvain; 2011. Available from: http://hdl.handle.net/2078.1/106799

Not specified: Masters Thesis or Doctoral Dissertation

Cornell University

21.
Huynh, My Thanh.
The Gromov Width of *Symplectic* Cuts of *Symplectic* Manifolds
.

Degree: 2018, Cornell University

URL: http://hdl.handle.net/1813/59394

► In 1985, Gromov discovered a rigidity phenonmenon for *symplectic* embeddings which led to the concept of Gromov width: a measure of the largest ball that…
(more)

Subjects/Keywords: grassmannian; gromov width; pseudoholomorphic curves; symplectic cut; symplectic geometry; toric variety; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Huynh, M. T. (2018). The Gromov Width of Symplectic Cuts of Symplectic Manifolds . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/59394

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Huynh, My Thanh. “The Gromov Width of Symplectic Cuts of Symplectic Manifolds .” 2018. Thesis, Cornell University. Accessed July 20, 2019. http://hdl.handle.net/1813/59394.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Huynh, My Thanh. “The Gromov Width of Symplectic Cuts of Symplectic Manifolds .” 2018. Web. 20 Jul 2019.

Vancouver:

Huynh MT. The Gromov Width of Symplectic Cuts of Symplectic Manifolds . [Internet] [Thesis]. Cornell University; 2018. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/1813/59394.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Huynh MT. The Gromov Width of Symplectic Cuts of Symplectic Manifolds . [Thesis]. Cornell University; 2018. Available from: http://hdl.handle.net/1813/59394

Not specified: Masters Thesis or Doctoral Dissertation

Colorado State University

22. Eddy, Thomas D. Improved stick number upper bounds.

Degree: MS(M.S.), Mathematics, 2019, Colorado State University

URL: http://hdl.handle.net/10217/195411

► A stick knot is a mathematical knot formed by a chain of straight line segments. For a knot K, define the stick number of K,…
(more)

Subjects/Keywords: knot theory; stick number; toric symplectic manifold; polygon index; edge number; symplectic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Eddy, T. D. (2019). Improved stick number upper bounds. (Masters Thesis). Colorado State University. Retrieved from http://hdl.handle.net/10217/195411

Chicago Manual of Style (16^{th} Edition):

Eddy, Thomas D. “Improved stick number upper bounds.” 2019. Masters Thesis, Colorado State University. Accessed July 20, 2019. http://hdl.handle.net/10217/195411.

MLA Handbook (7^{th} Edition):

Eddy, Thomas D. “Improved stick number upper bounds.” 2019. Web. 20 Jul 2019.

Vancouver:

Eddy TD. Improved stick number upper bounds. [Internet] [Masters thesis]. Colorado State University; 2019. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/10217/195411.

Council of Science Editors:

Eddy TD. Improved stick number upper bounds. [Masters Thesis]. Colorado State University; 2019. Available from: http://hdl.handle.net/10217/195411

University of Oxford

23.
Roeser, Markus Karl.
The ASD equations in split signature and hypersymplectic * geometry*.

Degree: PhD, 2012, University of Oxford

URL: http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122

► This thesis is mainly concerned with the study of hypersymplectic structures in gauge theory. These structures arise via applications of the hypersymplectic quotient construction to…
(more)

Subjects/Keywords: 530.1435; Differential geometry; Hypersymplectic Geometry; Gauge Theory; Symplectic Geometry; Moduli Space; Moment Map; special Holonomy

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Roeser, M. K. (2012). The ASD equations in split signature and hypersymplectic geometry. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122

Chicago Manual of Style (16^{th} Edition):

Roeser, Markus Karl. “The ASD equations in split signature and hypersymplectic geometry.” 2012. Doctoral Dissertation, University of Oxford. Accessed July 20, 2019. http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122.

MLA Handbook (7^{th} Edition):

Roeser, Markus Karl. “The ASD equations in split signature and hypersymplectic geometry.” 2012. Web. 20 Jul 2019.

Vancouver:

Roeser MK. The ASD equations in split signature and hypersymplectic geometry. [Internet] [Doctoral dissertation]. University of Oxford; 2012. [cited 2019 Jul 20]. Available from: http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122.

Council of Science Editors:

Roeser MK. The ASD equations in split signature and hypersymplectic geometry. [Doctoral Dissertation]. University of Oxford; 2012. Available from: http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122

24.
Osorno Torres, B.
Codimension-one *Symplectic* Foliations : Constructions and Examples.

Degree: 2015, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/323294

► This thesis addresses the question: which compact manifolds admit codimension-one *symplectic* foliations? It develops a method to construct such *symplectic* foliations on compact manifolds, called…
(more)

Subjects/Keywords: Symplectic foliations; Poisson geometry; Symplectic geometry; Foliations

…95
95
98
100
103
7 Deformations of Log-*symplectic* Structures
111
7.1 B-*geometry*… …*geometry*, e.g., in the study of four-manifolds. *Symplectic* foliations are also relevant
from the… …*geometry*, the problem of existence of *symplectic* foliations is very different in closed manifolds… …*geometry* and Lie algebroids. A Poisson structure on a manifold is a generalised *symplectic*… …foliation and therefore Poisson *geometry* provides a natural
framework to study *symplectic*…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Osorno Torres, B. (2015). Codimension-one Symplectic Foliations : Constructions and Examples. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/323294

Chicago Manual of Style (16^{th} Edition):

Osorno Torres, B. “Codimension-one Symplectic Foliations : Constructions and Examples.” 2015. Doctoral Dissertation, Universiteit Utrecht. Accessed July 20, 2019. http://dspace.library.uu.nl:8080/handle/1874/323294.

MLA Handbook (7^{th} Edition):

Osorno Torres, B. “Codimension-one Symplectic Foliations : Constructions and Examples.” 2015. Web. 20 Jul 2019.

Vancouver:

Osorno Torres B. Codimension-one Symplectic Foliations : Constructions and Examples. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2015. [cited 2019 Jul 20]. Available from: http://dspace.library.uu.nl:8080/handle/1874/323294.

Council of Science Editors:

Osorno Torres B. Codimension-one Symplectic Foliations : Constructions and Examples. [Doctoral Dissertation]. Universiteit Utrecht; 2015. Available from: http://dspace.library.uu.nl:8080/handle/1874/323294

25.
Osorno Torres, B.
Codimension-one *Symplectic* Foliations : Constructions and Examples.

Degree: 2015, University Utrecht

URL: http://dspace.library.uu.nl/handle/1874/323294 ; URN:NBN:NL:UI:10-1874-323294 ; urn:isbn:978-90-393-6409-3 ; URN:NBN:NL:UI:10-1874-323294 ; http://dspace.library.uu.nl/handle/1874/323294

► This thesis addresses the question: which compact manifolds admit codimension-one *symplectic* foliations? It develops a method to construct such *symplectic* foliations on compact manifolds, called…
(more)

Subjects/Keywords: Symplectic foliations; Poisson geometry; Symplectic geometry; Foliations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Osorno Torres, B. (2015). Codimension-one Symplectic Foliations : Constructions and Examples. (Doctoral Dissertation). University Utrecht. Retrieved from http://dspace.library.uu.nl/handle/1874/323294 ; URN:NBN:NL:UI:10-1874-323294 ; urn:isbn:978-90-393-6409-3 ; URN:NBN:NL:UI:10-1874-323294 ; http://dspace.library.uu.nl/handle/1874/323294

Chicago Manual of Style (16^{th} Edition):

Osorno Torres, B. “Codimension-one Symplectic Foliations : Constructions and Examples.” 2015. Doctoral Dissertation, University Utrecht. Accessed July 20, 2019. http://dspace.library.uu.nl/handle/1874/323294 ; URN:NBN:NL:UI:10-1874-323294 ; urn:isbn:978-90-393-6409-3 ; URN:NBN:NL:UI:10-1874-323294 ; http://dspace.library.uu.nl/handle/1874/323294.

MLA Handbook (7^{th} Edition):

Osorno Torres, B. “Codimension-one Symplectic Foliations : Constructions and Examples.” 2015. Web. 20 Jul 2019.

Vancouver:

Osorno Torres B. Codimension-one Symplectic Foliations : Constructions and Examples. [Internet] [Doctoral dissertation]. University Utrecht; 2015. [cited 2019 Jul 20]. Available from: http://dspace.library.uu.nl/handle/1874/323294 ; URN:NBN:NL:UI:10-1874-323294 ; urn:isbn:978-90-393-6409-3 ; URN:NBN:NL:UI:10-1874-323294 ; http://dspace.library.uu.nl/handle/1874/323294.

Council of Science Editors:

Osorno Torres B. Codimension-one Symplectic Foliations : Constructions and Examples. [Doctoral Dissertation]. University Utrecht; 2015. Available from: http://dspace.library.uu.nl/handle/1874/323294 ; URN:NBN:NL:UI:10-1874-323294 ; urn:isbn:978-90-393-6409-3 ; URN:NBN:NL:UI:10-1874-323294 ; http://dspace.library.uu.nl/handle/1874/323294

Indian Institute of Science

26.
Kulkarni, Dheeraj.
Relative *Symplectic* Caps, Fibered Knots And 4-Genus.

Degree: 2012, Indian Institute of Science

URL: http://hdl.handle.net/2005/2285

► The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the…
(more)

Subjects/Keywords: Symplectic Geometry; Symplectic Capping Theorem; Symlpectic Manifolds; Fibered Knots; 4-Genus Knots; Symplectic Caps; Knot Theory; Contact Geometry; Contact Manifolds; Quasipositive Knots; Symplectic Convexity; Topology; Symplectic Neighborhood Theorem; Seifert Surfaces; Riemann Surface; Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kulkarni, D. (2012). Relative Symplectic Caps, Fibered Knots And 4-Genus. (Thesis). Indian Institute of Science. Retrieved from http://hdl.handle.net/2005/2285

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2012. Thesis, Indian Institute of Science. Accessed July 20, 2019. http://hdl.handle.net/2005/2285.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2012. Web. 20 Jul 2019.

Vancouver:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Internet] [Thesis]. Indian Institute of Science; 2012. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/2005/2285.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Thesis]. Indian Institute of Science; 2012. Available from: http://hdl.handle.net/2005/2285

Not specified: Masters Thesis or Doctoral Dissertation

Indian Institute of Science

27.
Kulkarni, Dheeraj.
Relative *Symplectic* Caps, Fibered Knots And 4-Genus.

Degree: 2012, Indian Institute of Science

URL: http://etd.iisc.ernet.in/handle/2005/2285 ; http://etd.ncsi.iisc.ernet.in/abstracts/2943/G25244-Abs.pdf

► The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the…
(more)

Subjects/Keywords: Symplectic Geometry; Symplectic Capping Theorem; Symlpectic Manifolds; Fibered Knots; 4-Genus Knots; Symplectic Caps; Knot Theory; Contact Geometry; Contact Manifolds; Quasipositive Knots; Symplectic Convexity; Topology; Symplectic Neighborhood Theorem; Seifert Surfaces; Riemann Surface; Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kulkarni, D. (2012). Relative Symplectic Caps, Fibered Knots And 4-Genus. (Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ernet.in/handle/2005/2285 ; http://etd.ncsi.iisc.ernet.in/abstracts/2943/G25244-Abs.pdf

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2012. Thesis, Indian Institute of Science. Accessed July 20, 2019. http://etd.iisc.ernet.in/handle/2005/2285 ; http://etd.ncsi.iisc.ernet.in/abstracts/2943/G25244-Abs.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2012. Web. 20 Jul 2019.

Vancouver:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Internet] [Thesis]. Indian Institute of Science; 2012. [cited 2019 Jul 20]. Available from: http://etd.iisc.ernet.in/handle/2005/2285 ; http://etd.ncsi.iisc.ernet.in/abstracts/2943/G25244-Abs.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Thesis]. Indian Institute of Science; 2012. Available from: http://etd.iisc.ernet.in/handle/2005/2285 ; http://etd.ncsi.iisc.ernet.in/abstracts/2943/G25244-Abs.pdf

Not specified: Masters Thesis or Doctoral Dissertation

University of California – San Diego

28.
Palmer, Joseph.
* Symplectic* invariants and moduli spaces of integrable systems.

Degree: Mathematics, 2016, University of California – San Diego

URL: http://www.escholarship.org/uc/item/8fm2b234

► In this dissertation I prove a number of results about the *symplectic* *geometry* of finite dimensional integrable Hamiltonian systems, especially those of semitoric type. Integrable…
(more)

Subjects/Keywords: Mathematics; integrable systems; minimal models; semitoric systems; symplectic geometry; sympletic capacities; toric geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Palmer, J. (2016). Symplectic invariants and moduli spaces of integrable systems. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/8fm2b234

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Palmer, Joseph. “Symplectic invariants and moduli spaces of integrable systems.” 2016. Thesis, University of California – San Diego. Accessed July 20, 2019. http://www.escholarship.org/uc/item/8fm2b234.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Palmer, Joseph. “Symplectic invariants and moduli spaces of integrable systems.” 2016. Web. 20 Jul 2019.

Vancouver:

Palmer J. Symplectic invariants and moduli spaces of integrable systems. [Internet] [Thesis]. University of California – San Diego; 2016. [cited 2019 Jul 20]. Available from: http://www.escholarship.org/uc/item/8fm2b234.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Palmer J. Symplectic invariants and moduli spaces of integrable systems. [Thesis]. University of California – San Diego; 2016. Available from: http://www.escholarship.org/uc/item/8fm2b234

Not specified: Masters Thesis or Doctoral Dissertation

29. Alboresi, Davide. Poisson Manifolds and Holomorphic Curves.

Degree: 2018, University Utrecht

URL: http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348

► In this thesis we study the topology of Poisson manifolds using techniques from *symplectic* topology, especially holomorphic curves. In particular, we study the topology of…
(more)

Subjects/Keywords: Poisson geometry; Symplectic geometry; Holomorphic curves

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Alboresi, D. (2018). Poisson Manifolds and Holomorphic Curves. (Doctoral Dissertation). University Utrecht. Retrieved from http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348

Chicago Manual of Style (16^{th} Edition):

Alboresi, Davide. “Poisson Manifolds and Holomorphic Curves.” 2018. Doctoral Dissertation, University Utrecht. Accessed July 20, 2019. http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348.

MLA Handbook (7^{th} Edition):

Alboresi, Davide. “Poisson Manifolds and Holomorphic Curves.” 2018. Web. 20 Jul 2019.

Vancouver:

Alboresi D. Poisson Manifolds and Holomorphic Curves. [Internet] [Doctoral dissertation]. University Utrecht; 2018. [cited 2019 Jul 20]. Available from: http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348.

Council of Science Editors:

Alboresi D. Poisson Manifolds and Holomorphic Curves. [Doctoral Dissertation]. University Utrecht; 2018. Available from: http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348

Cornell University

30. Leung, Ho Hon. K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory .

Degree: 2011, Cornell University

URL: http://hdl.handle.net/1813/29318

► This thesis consists of two chapters. In the first chapter, we compute the K theory of weight varieties by using techniques in Hamiltonian *geometry*. In…
(more)

Subjects/Keywords: Symplectic Geometry; Operator Algebras; Divided difference operators; KK-theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Leung, H. H. (2011). K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/29318

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Leung, Ho Hon. “K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory .” 2011. Thesis, Cornell University. Accessed July 20, 2019. http://hdl.handle.net/1813/29318.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Leung, Ho Hon. “K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory .” 2011. Web. 20 Jul 2019.

Vancouver:

Leung HH. K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory . [Internet] [Thesis]. Cornell University; 2011. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/1813/29318.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Leung HH. K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory . [Thesis]. Cornell University; 2011. Available from: http://hdl.handle.net/1813/29318

Not specified: Masters Thesis or Doctoral Dissertation