Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(symplectic geometry). Showing records 1 – 30 of 98 total matches.

[1] [2] [3] [4]

Search Limiters

Last 2 Years | English Only

Country

▼ Search Limiters


University of Illinois – Urbana-Champaign

1. Wolbert, Seth P. Symplectic toric stratified spaces with isolated singularities.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

 We provide a classification of two types of toric objects: symplectic toric cones and symplectic toric stratified spaces with isolated singularities. Both types of object… (more)

Subjects/Keywords: Symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wolbert, S. P. (2017). Symplectic toric stratified spaces with isolated singularities. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/98085

Chicago Manual of Style (16th Edition):

Wolbert, Seth P. “Symplectic toric stratified spaces with isolated singularities.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 20, 2019. http://hdl.handle.net/2142/98085.

MLA Handbook (7th Edition):

Wolbert, Seth P. “Symplectic toric stratified spaces with isolated singularities.” 2017. Web. 20 Jul 2019.

Vancouver:

Wolbert SP. Symplectic toric stratified spaces with isolated singularities. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/2142/98085.

Council of Science Editors:

Wolbert SP. Symplectic toric stratified spaces with isolated singularities. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/98085


University of California – Berkeley

2. McMillan, Aaron Fraenkel. On Embedding Singular Poisson Spaces.

Degree: Mathematics, 2011, University of California – Berkeley

 This dissertation investigates the problem of locally embedding singular Poisson spaces. Specifically, it seeks to understand when a singular symplectic quotient V/G of a symplectic(more)

Subjects/Keywords: Mathematics; Poisson geometry; Symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McMillan, A. F. (2011). On Embedding Singular Poisson Spaces. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/6xz306q4

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

McMillan, Aaron Fraenkel. “On Embedding Singular Poisson Spaces.” 2011. Thesis, University of California – Berkeley. Accessed July 20, 2019. http://www.escholarship.org/uc/item/6xz306q4.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

McMillan, Aaron Fraenkel. “On Embedding Singular Poisson Spaces.” 2011. Web. 20 Jul 2019.

Vancouver:

McMillan AF. On Embedding Singular Poisson Spaces. [Internet] [Thesis]. University of California – Berkeley; 2011. [cited 2019 Jul 20]. Available from: http://www.escholarship.org/uc/item/6xz306q4.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McMillan AF. On Embedding Singular Poisson Spaces. [Thesis]. University of California – Berkeley; 2011. Available from: http://www.escholarship.org/uc/item/6xz306q4

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Rochester

3. Cho, Hyunjoo. Existence of almost contact structures on manifolds with G2-structures and generalizations.

Degree: PhD, 2012, University of Rochester

 This dissertation consists of two main results. First, we investigate the relationship between almost contact structures and G2-structures on seven-dimensional Riemannian manifolds: we show that… (more)

Subjects/Keywords: Differential geometry; Symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cho, H. (2012). Existence of almost contact structures on manifolds with G2-structures and generalizations. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/21273

Chicago Manual of Style (16th Edition):

Cho, Hyunjoo. “Existence of almost contact structures on manifolds with G2-structures and generalizations.” 2012. Doctoral Dissertation, University of Rochester. Accessed July 20, 2019. http://hdl.handle.net/1802/21273.

MLA Handbook (7th Edition):

Cho, Hyunjoo. “Existence of almost contact structures on manifolds with G2-structures and generalizations.” 2012. Web. 20 Jul 2019.

Vancouver:

Cho H. Existence of almost contact structures on manifolds with G2-structures and generalizations. [Internet] [Doctoral dissertation]. University of Rochester; 2012. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/1802/21273.

Council of Science Editors:

Cho H. Existence of almost contact structures on manifolds with G2-structures and generalizations. [Doctoral Dissertation]. University of Rochester; 2012. Available from: http://hdl.handle.net/1802/21273


Columbia University

4. Zhao, Jingyu. Periodic symplectic cohomologies and obstructions to exact Lagrangian immersions.

Degree: 2016, Columbia University

 Given a Liouville manifold, symplectic cohomology is defined as the Hamiltonian Floer homology for the symplectic action functional on the free loop space. In this… (more)

Subjects/Keywords: Symplectic geometry; Homology theory; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhao, J. (2016). Periodic symplectic cohomologies and obstructions to exact Lagrangian immersions. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8V69JMZ

Chicago Manual of Style (16th Edition):

Zhao, Jingyu. “Periodic symplectic cohomologies and obstructions to exact Lagrangian immersions.” 2016. Doctoral Dissertation, Columbia University. Accessed July 20, 2019. https://doi.org/10.7916/D8V69JMZ.

MLA Handbook (7th Edition):

Zhao, Jingyu. “Periodic symplectic cohomologies and obstructions to exact Lagrangian immersions.” 2016. Web. 20 Jul 2019.

Vancouver:

Zhao J. Periodic symplectic cohomologies and obstructions to exact Lagrangian immersions. [Internet] [Doctoral dissertation]. Columbia University; 2016. [cited 2019 Jul 20]. Available from: https://doi.org/10.7916/D8V69JMZ.

Council of Science Editors:

Zhao J. Periodic symplectic cohomologies and obstructions to exact Lagrangian immersions. [Doctoral Dissertation]. Columbia University; 2016. Available from: https://doi.org/10.7916/D8V69JMZ


ETH Zürich

5. Naef, Kathrin. Translated Points on Dynamically Convex Contact Manifolds.

Degree: 2018, ETH Zürich

Subjects/Keywords: Symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Naef, K. (2018). Translated Points on Dynamically Convex Contact Manifolds. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/263960

Chicago Manual of Style (16th Edition):

Naef, Kathrin. “Translated Points on Dynamically Convex Contact Manifolds.” 2018. Doctoral Dissertation, ETH Zürich. Accessed July 20, 2019. http://hdl.handle.net/20.500.11850/263960.

MLA Handbook (7th Edition):

Naef, Kathrin. “Translated Points on Dynamically Convex Contact Manifolds.” 2018. Web. 20 Jul 2019.

Vancouver:

Naef K. Translated Points on Dynamically Convex Contact Manifolds. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/20.500.11850/263960.

Council of Science Editors:

Naef K. Translated Points on Dynamically Convex Contact Manifolds. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/263960


Louisiana State University

6. Lambert-Cole, Peter. Invariants of Legendrian products.

Degree: PhD, Applied Mathematics, 2014, Louisiana State University

This thesis investigates a construction in contact topology of Legendrian submanifolds called the Legendrian product. We investigate and compute invariants for these Legendrian submanifolds, including the Thurston-Bennequin invariant and Maslov class; Legendrian contact homology for the product of two Legendrian knots; and generating family homology.

Subjects/Keywords: low-dimensional topology; Contact geometry; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lambert-Cole, P. (2014). Invariants of Legendrian products. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909

Chicago Manual of Style (16th Edition):

Lambert-Cole, Peter. “Invariants of Legendrian products.” 2014. Doctoral Dissertation, Louisiana State University. Accessed July 20, 2019. etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909.

MLA Handbook (7th Edition):

Lambert-Cole, Peter. “Invariants of Legendrian products.” 2014. Web. 20 Jul 2019.

Vancouver:

Lambert-Cole P. Invariants of Legendrian products. [Internet] [Doctoral dissertation]. Louisiana State University; 2014. [cited 2019 Jul 20]. Available from: etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909.

Council of Science Editors:

Lambert-Cole P. Invariants of Legendrian products. [Doctoral Dissertation]. Louisiana State University; 2014. Available from: etd-07142014-122759 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2909


Uppsala University

7. Iakovidis, Nikolaos. Geometry of Contact Toric Manifolds in 3D.

Degree: Theoretical Physics, 2016, Uppsala University

  In this project we present some applications of symplectic and contact geometry on 3-manifolds. In the first section we introduce the notion of symplectic(more)

Subjects/Keywords: Symplectic Geometry; Contact Geometry; Lens spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Iakovidis, N. (2016). Geometry of Contact Toric Manifolds in 3D. (Thesis). Uppsala University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296221

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Iakovidis, Nikolaos. “Geometry of Contact Toric Manifolds in 3D.” 2016. Thesis, Uppsala University. Accessed July 20, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296221.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Iakovidis, Nikolaos. “Geometry of Contact Toric Manifolds in 3D.” 2016. Web. 20 Jul 2019.

Vancouver:

Iakovidis N. Geometry of Contact Toric Manifolds in 3D. [Internet] [Thesis]. Uppsala University; 2016. [cited 2019 Jul 20]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296221.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Iakovidis N. Geometry of Contact Toric Manifolds in 3D. [Thesis]. Uppsala University; 2016. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296221

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

8. Luk, Kevin. Moduli Space Techniques in Algebraic Geometry and Symplectic Geometry.

Degree: 2012, University of Toronto

The following is my M.Sc. thesis on moduli space techniques in algebraic and symplectic geometry. It is divided into the following two parts: the rst… (more)

Subjects/Keywords: Pure Mathematics; Algebraic Geometry; Symplectic Geometry; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Luk, K. (2012). Moduli Space Techniques in Algebraic Geometry and Symplectic Geometry. (Masters Thesis). University of Toronto. Retrieved from http://hdl.handle.net/1807/33298

Chicago Manual of Style (16th Edition):

Luk, Kevin. “Moduli Space Techniques in Algebraic Geometry and Symplectic Geometry.” 2012. Masters Thesis, University of Toronto. Accessed July 20, 2019. http://hdl.handle.net/1807/33298.

MLA Handbook (7th Edition):

Luk, Kevin. “Moduli Space Techniques in Algebraic Geometry and Symplectic Geometry.” 2012. Web. 20 Jul 2019.

Vancouver:

Luk K. Moduli Space Techniques in Algebraic Geometry and Symplectic Geometry. [Internet] [Masters thesis]. University of Toronto; 2012. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/1807/33298.

Council of Science Editors:

Luk K. Moduli Space Techniques in Algebraic Geometry and Symplectic Geometry. [Masters Thesis]. University of Toronto; 2012. Available from: http://hdl.handle.net/1807/33298


University of Cambridge

9. Kirchhoff-Lukat, Charlotte Sophie. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.

Degree: PhD, 2018, University of Cambridge

 This thesis explores aspects of generalized geometry, a geometric framework introduced by Hitchin and Gualtieri in the early 2000s. In the first part, we introduce… (more)

Subjects/Keywords: differential geometry; generalized complex geometry; Poisson geometry; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kirchhoff-Lukat, C. S. (2018). Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570

Chicago Manual of Style (16th Edition):

Kirchhoff-Lukat, Charlotte Sophie. “Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.” 2018. Doctoral Dissertation, University of Cambridge. Accessed July 20, 2019. https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570.

MLA Handbook (7th Edition):

Kirchhoff-Lukat, Charlotte Sophie. “Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.” 2018. Web. 20 Jul 2019.

Vancouver:

Kirchhoff-Lukat CS. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. [Internet] [Doctoral dissertation]. University of Cambridge; 2018. [cited 2019 Jul 20]. Available from: https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570.

Council of Science Editors:

Kirchhoff-Lukat CS. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. [Doctoral Dissertation]. University of Cambridge; 2018. Available from: https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570


University of Colorado

10. Nita, Alexander. Essential Self-Adjointness of the Symplectic Dirac Operators.

Degree: PhD, Mathematics, 2016, University of Colorado

  The main problem we consider in this thesis is the essential self-adjointness of the symplectic Dirac operators D and ~D constructed by Katharina Habermann… (more)

Subjects/Keywords: Dirac operator; functional analysis; self-adjointness; symplectic geometry; symplectic topology; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nita, A. (2016). Essential Self-Adjointness of the Symplectic Dirac Operators. (Doctoral Dissertation). University of Colorado. Retrieved from http://scholar.colorado.edu/math_gradetds/45

Chicago Manual of Style (16th Edition):

Nita, Alexander. “Essential Self-Adjointness of the Symplectic Dirac Operators.” 2016. Doctoral Dissertation, University of Colorado. Accessed July 20, 2019. http://scholar.colorado.edu/math_gradetds/45.

MLA Handbook (7th Edition):

Nita, Alexander. “Essential Self-Adjointness of the Symplectic Dirac Operators.” 2016. Web. 20 Jul 2019.

Vancouver:

Nita A. Essential Self-Adjointness of the Symplectic Dirac Operators. [Internet] [Doctoral dissertation]. University of Colorado; 2016. [cited 2019 Jul 20]. Available from: http://scholar.colorado.edu/math_gradetds/45.

Council of Science Editors:

Nita A. Essential Self-Adjointness of the Symplectic Dirac Operators. [Doctoral Dissertation]. University of Colorado; 2016. Available from: http://scholar.colorado.edu/math_gradetds/45


University of Minnesota

11. Mak, Cheuk Yu. Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences.

Degree: PhD, Mathematics, 2016, University of Minnesota

 We present three different aspects of symplectic geometry in connection to complex geometry. Convex symplectic manifolds, symplectic divisors and Lagrangians are central objects to study… (more)

Subjects/Keywords: Dehn twists; Log Calabi-Yau surfaces; Symplectic fillings; Symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mak, C. Y. (2016). Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/182326

Chicago Manual of Style (16th Edition):

Mak, Cheuk Yu. “Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences.” 2016. Doctoral Dissertation, University of Minnesota. Accessed July 20, 2019. http://hdl.handle.net/11299/182326.

MLA Handbook (7th Edition):

Mak, Cheuk Yu. “Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences.” 2016. Web. 20 Jul 2019.

Vancouver:

Mak CY. Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences. [Internet] [Doctoral dissertation]. University of Minnesota; 2016. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/11299/182326.

Council of Science Editors:

Mak CY. Rigidity of symplectic fillings, symplectic divisors and Dehn twist exact sequences. [Doctoral Dissertation]. University of Minnesota; 2016. Available from: http://hdl.handle.net/11299/182326


University of Cambridge

12. Benedetti, Gabriele. The contact property for magnetic flows on surfaces.

Degree: PhD, 2015, University of Cambridge

 This work investigates the dynamics of magnetic flows on closed orientable Riemannian surfaces. These flows are determined by triples (M, g, σ), where M is… (more)

Subjects/Keywords: 516.3; Magnetic flows; Symplectic geometry; Periodic orbits

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Benedetti, G. (2015). The contact property for magnetic flows on surfaces. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/247157 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.642462

Chicago Manual of Style (16th Edition):

Benedetti, Gabriele. “The contact property for magnetic flows on surfaces.” 2015. Doctoral Dissertation, University of Cambridge. Accessed July 20, 2019. https://www.repository.cam.ac.uk/handle/1810/247157 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.642462.

MLA Handbook (7th Edition):

Benedetti, Gabriele. “The contact property for magnetic flows on surfaces.” 2015. Web. 20 Jul 2019.

Vancouver:

Benedetti G. The contact property for magnetic flows on surfaces. [Internet] [Doctoral dissertation]. University of Cambridge; 2015. [cited 2019 Jul 20]. Available from: https://www.repository.cam.ac.uk/handle/1810/247157 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.642462.

Council of Science Editors:

Benedetti G. The contact property for magnetic flows on surfaces. [Doctoral Dissertation]. University of Cambridge; 2015. Available from: https://www.repository.cam.ac.uk/handle/1810/247157 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.642462


University of Cambridge

13. Benedetti, Gabriele. The contact property for magnetic flows on surfaces .

Degree: 2015, University of Cambridge

 This work investigates the dynamics of magnetic flows on closed orientable Riemannian surfaces. These flows are determined by triples (M, g, σ), where M is… (more)

Subjects/Keywords: Magnetic flows; Symplectic geometry; Periodic orbits

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Benedetti, G. (2015). The contact property for magnetic flows on surfaces . (Thesis). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/247157

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Benedetti, Gabriele. “The contact property for magnetic flows on surfaces .” 2015. Thesis, University of Cambridge. Accessed July 20, 2019. https://www.repository.cam.ac.uk/handle/1810/247157.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Benedetti, Gabriele. “The contact property for magnetic flows on surfaces .” 2015. Web. 20 Jul 2019.

Vancouver:

Benedetti G. The contact property for magnetic flows on surfaces . [Internet] [Thesis]. University of Cambridge; 2015. [cited 2019 Jul 20]. Available from: https://www.repository.cam.ac.uk/handle/1810/247157.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Benedetti G. The contact property for magnetic flows on surfaces . [Thesis]. University of Cambridge; 2015. Available from: https://www.repository.cam.ac.uk/handle/1810/247157

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Southern California

14. Avdek, Russell. Contact surgery, open books, and symplectic cobordisms.

Degree: PhD, Mathematics, 2013, University of Southern California

 In this thesis, we study contact manifolds and symplectic cobordisms between them using open book decompositions and various types of symplectic handle attachment. In the… (more)

Subjects/Keywords: contact geometry; symplectic geometry; contact surgery; Weinstein handle; symplectic cobordism; open book; monodromy; Dehn twist

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Avdek, R. (2013). Contact surgery, open books, and symplectic cobordisms. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/304150/rec/1611

Chicago Manual of Style (16th Edition):

Avdek, Russell. “Contact surgery, open books, and symplectic cobordisms.” 2013. Doctoral Dissertation, University of Southern California. Accessed July 20, 2019. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/304150/rec/1611.

MLA Handbook (7th Edition):

Avdek, Russell. “Contact surgery, open books, and symplectic cobordisms.” 2013. Web. 20 Jul 2019.

Vancouver:

Avdek R. Contact surgery, open books, and symplectic cobordisms. [Internet] [Doctoral dissertation]. University of Southern California; 2013. [cited 2019 Jul 20]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/304150/rec/1611.

Council of Science Editors:

Avdek R. Contact surgery, open books, and symplectic cobordisms. [Doctoral Dissertation]. University of Southern California; 2013. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/304150/rec/1611


Universiteit Utrecht

15. Tel, A.W. Lefschetz fibrations and symplectic structures.

Degree: 2015, Universiteit Utrecht

 In this thesis, we study a relation between symplectic structures and Lefschetz ?brations to shed some light on 4-manifold theory. We introduce symplectic manifolds and… (more)

Subjects/Keywords: Lefschetz fibration; Lefschetz pencil; symplectic geometry; fiber bundle; complex geometry; compatibility

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tel, A. W. (2015). Lefschetz fibrations and symplectic structures. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/311281

Chicago Manual of Style (16th Edition):

Tel, A W. “Lefschetz fibrations and symplectic structures.” 2015. Masters Thesis, Universiteit Utrecht. Accessed July 20, 2019. http://dspace.library.uu.nl:8080/handle/1874/311281.

MLA Handbook (7th Edition):

Tel, A W. “Lefschetz fibrations and symplectic structures.” 2015. Web. 20 Jul 2019.

Vancouver:

Tel AW. Lefschetz fibrations and symplectic structures. [Internet] [Masters thesis]. Universiteit Utrecht; 2015. [cited 2019 Jul 20]. Available from: http://dspace.library.uu.nl:8080/handle/1874/311281.

Council of Science Editors:

Tel AW. Lefschetz fibrations and symplectic structures. [Masters Thesis]. Universiteit Utrecht; 2015. Available from: http://dspace.library.uu.nl:8080/handle/1874/311281


University of California – Berkeley

16. Canez, Santiago Valencia. Double Groupoids, Orbifolds, and the Symplectic Category.

Degree: Mathematics, 2011, University of California – Berkeley

 Motivated by an attempt to better understand the notion of a symplectic stack, we introduce the notion of a \emph{symplectic hopfoid}, which should be thought… (more)

Subjects/Keywords: Mathematics; category theory; differential geometry; groupoids; orbifolds; stacks; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Canez, S. V. (2011). Double Groupoids, Orbifolds, and the Symplectic Category. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/7df5f00t

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Canez, Santiago Valencia. “Double Groupoids, Orbifolds, and the Symplectic Category.” 2011. Thesis, University of California – Berkeley. Accessed July 20, 2019. http://www.escholarship.org/uc/item/7df5f00t.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Canez, Santiago Valencia. “Double Groupoids, Orbifolds, and the Symplectic Category.” 2011. Web. 20 Jul 2019.

Vancouver:

Canez SV. Double Groupoids, Orbifolds, and the Symplectic Category. [Internet] [Thesis]. University of California – Berkeley; 2011. [cited 2019 Jul 20]. Available from: http://www.escholarship.org/uc/item/7df5f00t.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Canez SV. Double Groupoids, Orbifolds, and the Symplectic Category. [Thesis]. University of California – Berkeley; 2011. Available from: http://www.escholarship.org/uc/item/7df5f00t

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Berkeley

17. Brown, Jeffrey Steven. Gromov – Witten Invariants of Toric Fibrations.

Degree: Mathematics, 2009, University of California – Berkeley

 We prove a conjecture of Artur Elezi in a generalized form suggested by Givental. Namely, our main result relates genus-0 Gromov – Witten invariants of a… (more)

Subjects/Keywords: Mathematics; Gromov – Witten Invariant; Symplectic Geometry; Algebraic Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brown, J. S. (2009). Gromov – Witten Invariants of Toric Fibrations. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/38b8b8q5

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Brown, Jeffrey Steven. “Gromov – Witten Invariants of Toric Fibrations.” 2009. Thesis, University of California – Berkeley. Accessed July 20, 2019. http://www.escholarship.org/uc/item/38b8b8q5.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Brown, Jeffrey Steven. “Gromov – Witten Invariants of Toric Fibrations.” 2009. Web. 20 Jul 2019.

Vancouver:

Brown JS. Gromov – Witten Invariants of Toric Fibrations. [Internet] [Thesis]. University of California – Berkeley; 2009. [cited 2019 Jul 20]. Available from: http://www.escholarship.org/uc/item/38b8b8q5.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brown JS. Gromov – Witten Invariants of Toric Fibrations. [Thesis]. University of California – Berkeley; 2009. Available from: http://www.escholarship.org/uc/item/38b8b8q5

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

18. Lanius, Melinda Dawn. Generically nondegenerate Poisson structures and their Lie algebroids.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

 In this dissertation, generically nondegenerate Poisson manifolds are studied by lifting them to a Lie algebroid where they can be understood as nondegenerate. This allows… (more)

Subjects/Keywords: Poisson geometry; symplectic geometry

…1.1 Poisson and symplectic geometry A Poisson manifold (M, π) is a manifold M… …tools of symplectic geometry to the Lie algebroid. Moser. We use the standard Moser… …which we have hope of applying standard techniques of symplectic geometry. 2.2.1 Lie… …hypersurfaces), we can adapt the standard Moser technique of symplectic geometry to establish… …a symplectic one and allow us to view the Poisson structure as non-degenerate. The second… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lanius, M. D. (2018). Generically nondegenerate Poisson structures and their Lie algebroids. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101536

Chicago Manual of Style (16th Edition):

Lanius, Melinda Dawn. “Generically nondegenerate Poisson structures and their Lie algebroids.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 20, 2019. http://hdl.handle.net/2142/101536.

MLA Handbook (7th Edition):

Lanius, Melinda Dawn. “Generically nondegenerate Poisson structures and their Lie algebroids.” 2018. Web. 20 Jul 2019.

Vancouver:

Lanius MD. Generically nondegenerate Poisson structures and their Lie algebroids. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/2142/101536.

Council of Science Editors:

Lanius MD. Generically nondegenerate Poisson structures and their Lie algebroids. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101536

19. Blacker, Casey Alexander. The Moduli Space of Flat Connections over Higher Dimensional Manifolds.

Degree: 2018, University of California – eScholarship, University of California

 Let M be a smooth manifold of dimension at least 3, let G be a compact Lie group, and let P be a G-principal bundle… (more)

Subjects/Keywords: Mathematics; differential geometry; gauge theory; moment maps; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Blacker, C. A. (2018). The Moduli Space of Flat Connections over Higher Dimensional Manifolds. (Thesis). University of California – eScholarship, University of California. Retrieved from http://www.escholarship.org/uc/item/0535z0rb

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Blacker, Casey Alexander. “The Moduli Space of Flat Connections over Higher Dimensional Manifolds.” 2018. Thesis, University of California – eScholarship, University of California. Accessed July 20, 2019. http://www.escholarship.org/uc/item/0535z0rb.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Blacker, Casey Alexander. “The Moduli Space of Flat Connections over Higher Dimensional Manifolds.” 2018. Web. 20 Jul 2019.

Vancouver:

Blacker CA. The Moduli Space of Flat Connections over Higher Dimensional Manifolds. [Internet] [Thesis]. University of California – eScholarship, University of California; 2018. [cited 2019 Jul 20]. Available from: http://www.escholarship.org/uc/item/0535z0rb.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Blacker CA. The Moduli Space of Flat Connections over Higher Dimensional Manifolds. [Thesis]. University of California – eScholarship, University of California; 2018. Available from: http://www.escholarship.org/uc/item/0535z0rb

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université Catholique de Louvain

20. Voglaire, Yannick. Quantization of solvable symplectic symmetric spaces.

Degree: 2011, Université Catholique de Louvain

Geometry and physics have a long history of mutual interactions. Among those interactions coming from quantum mechanics, the early “Weyl quantization” of the phase space… (more)

Subjects/Keywords: Quantization; Symplectic geometry; Symmetric spaces; Lie theory; Symplectic reduction; Double extension; Midpoint map

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Voglaire, Y. (2011). Quantization of solvable symplectic symmetric spaces. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/106799

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Voglaire, Yannick. “Quantization of solvable symplectic symmetric spaces.” 2011. Thesis, Université Catholique de Louvain. Accessed July 20, 2019. http://hdl.handle.net/2078.1/106799.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Voglaire, Yannick. “Quantization of solvable symplectic symmetric spaces.” 2011. Web. 20 Jul 2019.

Vancouver:

Voglaire Y. Quantization of solvable symplectic symmetric spaces. [Internet] [Thesis]. Université Catholique de Louvain; 2011. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/2078.1/106799.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Voglaire Y. Quantization of solvable symplectic symmetric spaces. [Thesis]. Université Catholique de Louvain; 2011. Available from: http://hdl.handle.net/2078.1/106799

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Cornell University

21. Huynh, My Thanh. The Gromov Width of Symplectic Cuts of Symplectic Manifolds .

Degree: 2018, Cornell University

 In 1985, Gromov discovered a rigidity phenonmenon for symplectic embeddings which led to the concept of Gromov width: a measure of the largest ball that… (more)

Subjects/Keywords: grassmannian; gromov width; pseudoholomorphic curves; symplectic cut; symplectic geometry; toric variety; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huynh, M. T. (2018). The Gromov Width of Symplectic Cuts of Symplectic Manifolds . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/59394

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Huynh, My Thanh. “The Gromov Width of Symplectic Cuts of Symplectic Manifolds .” 2018. Thesis, Cornell University. Accessed July 20, 2019. http://hdl.handle.net/1813/59394.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Huynh, My Thanh. “The Gromov Width of Symplectic Cuts of Symplectic Manifolds .” 2018. Web. 20 Jul 2019.

Vancouver:

Huynh MT. The Gromov Width of Symplectic Cuts of Symplectic Manifolds . [Internet] [Thesis]. Cornell University; 2018. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/1813/59394.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Huynh MT. The Gromov Width of Symplectic Cuts of Symplectic Manifolds . [Thesis]. Cornell University; 2018. Available from: http://hdl.handle.net/1813/59394

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Colorado State University

22. Eddy, Thomas D. Improved stick number upper bounds.

Degree: MS(M.S.), Mathematics, 2019, Colorado State University

 A stick knot is a mathematical knot formed by a chain of straight line segments. For a knot K, define the stick number of K,… (more)

Subjects/Keywords: knot theory; stick number; toric symplectic manifold; polygon index; edge number; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eddy, T. D. (2019). Improved stick number upper bounds. (Masters Thesis). Colorado State University. Retrieved from http://hdl.handle.net/10217/195411

Chicago Manual of Style (16th Edition):

Eddy, Thomas D. “Improved stick number upper bounds.” 2019. Masters Thesis, Colorado State University. Accessed July 20, 2019. http://hdl.handle.net/10217/195411.

MLA Handbook (7th Edition):

Eddy, Thomas D. “Improved stick number upper bounds.” 2019. Web. 20 Jul 2019.

Vancouver:

Eddy TD. Improved stick number upper bounds. [Internet] [Masters thesis]. Colorado State University; 2019. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/10217/195411.

Council of Science Editors:

Eddy TD. Improved stick number upper bounds. [Masters Thesis]. Colorado State University; 2019. Available from: http://hdl.handle.net/10217/195411


University of Oxford

23. Roeser, Markus Karl. The ASD equations in split signature and hypersymplectic geometry.

Degree: PhD, 2012, University of Oxford

 This thesis is mainly concerned with the study of hypersymplectic structures in gauge theory. These structures arise via applications of the hypersymplectic quotient construction to… (more)

Subjects/Keywords: 530.1435; Differential geometry; Hypersymplectic Geometry; Gauge Theory; Symplectic Geometry; Moduli Space; Moment Map; special Holonomy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roeser, M. K. (2012). The ASD equations in split signature and hypersymplectic geometry. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122

Chicago Manual of Style (16th Edition):

Roeser, Markus Karl. “The ASD equations in split signature and hypersymplectic geometry.” 2012. Doctoral Dissertation, University of Oxford. Accessed July 20, 2019. http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122.

MLA Handbook (7th Edition):

Roeser, Markus Karl. “The ASD equations in split signature and hypersymplectic geometry.” 2012. Web. 20 Jul 2019.

Vancouver:

Roeser MK. The ASD equations in split signature and hypersymplectic geometry. [Internet] [Doctoral dissertation]. University of Oxford; 2012. [cited 2019 Jul 20]. Available from: http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122.

Council of Science Editors:

Roeser MK. The ASD equations in split signature and hypersymplectic geometry. [Doctoral Dissertation]. University of Oxford; 2012. Available from: http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122

24. Osorno Torres, B. Codimension-one Symplectic Foliations : Constructions and Examples.

Degree: 2015, Universiteit Utrecht

 This thesis addresses the question: which compact manifolds admit codimension-one symplectic foliations? It develops a method to construct such symplectic foliations on compact manifolds, called… (more)

Subjects/Keywords: Symplectic foliations; Poisson geometry; Symplectic geometry; Foliations

…95 95 98 100 103 7 Deformations of Log-symplectic Structures 111 7.1 B-geometry… …geometry, e.g., in the study of four-manifolds. Symplectic foliations are also relevant from the… …geometry, the problem of existence of symplectic foliations is very different in closed manifolds… …geometry and Lie algebroids. A Poisson structure on a manifold is a generalised symplectic… …foliation and therefore Poisson geometry provides a natural framework to study symplectic… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Osorno Torres, B. (2015). Codimension-one Symplectic Foliations : Constructions and Examples. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/323294

Chicago Manual of Style (16th Edition):

Osorno Torres, B. “Codimension-one Symplectic Foliations : Constructions and Examples.” 2015. Doctoral Dissertation, Universiteit Utrecht. Accessed July 20, 2019. http://dspace.library.uu.nl:8080/handle/1874/323294.

MLA Handbook (7th Edition):

Osorno Torres, B. “Codimension-one Symplectic Foliations : Constructions and Examples.” 2015. Web. 20 Jul 2019.

Vancouver:

Osorno Torres B. Codimension-one Symplectic Foliations : Constructions and Examples. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2015. [cited 2019 Jul 20]. Available from: http://dspace.library.uu.nl:8080/handle/1874/323294.

Council of Science Editors:

Osorno Torres B. Codimension-one Symplectic Foliations : Constructions and Examples. [Doctoral Dissertation]. Universiteit Utrecht; 2015. Available from: http://dspace.library.uu.nl:8080/handle/1874/323294

25. Osorno Torres, B. Codimension-one Symplectic Foliations : Constructions and Examples.

Degree: 2015, University Utrecht

 This thesis addresses the question: which compact manifolds admit codimension-one symplectic foliations? It develops a method to construct such symplectic foliations on compact manifolds, called… (more)

Subjects/Keywords: Symplectic foliations; Poisson geometry; Symplectic geometry; Foliations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Osorno Torres, B. (2015). Codimension-one Symplectic Foliations : Constructions and Examples. (Doctoral Dissertation). University Utrecht. Retrieved from http://dspace.library.uu.nl/handle/1874/323294 ; URN:NBN:NL:UI:10-1874-323294 ; urn:isbn:978-90-393-6409-3 ; URN:NBN:NL:UI:10-1874-323294 ; http://dspace.library.uu.nl/handle/1874/323294

Chicago Manual of Style (16th Edition):

Osorno Torres, B. “Codimension-one Symplectic Foliations : Constructions and Examples.” 2015. Doctoral Dissertation, University Utrecht. Accessed July 20, 2019. http://dspace.library.uu.nl/handle/1874/323294 ; URN:NBN:NL:UI:10-1874-323294 ; urn:isbn:978-90-393-6409-3 ; URN:NBN:NL:UI:10-1874-323294 ; http://dspace.library.uu.nl/handle/1874/323294.

MLA Handbook (7th Edition):

Osorno Torres, B. “Codimension-one Symplectic Foliations : Constructions and Examples.” 2015. Web. 20 Jul 2019.

Vancouver:

Osorno Torres B. Codimension-one Symplectic Foliations : Constructions and Examples. [Internet] [Doctoral dissertation]. University Utrecht; 2015. [cited 2019 Jul 20]. Available from: http://dspace.library.uu.nl/handle/1874/323294 ; URN:NBN:NL:UI:10-1874-323294 ; urn:isbn:978-90-393-6409-3 ; URN:NBN:NL:UI:10-1874-323294 ; http://dspace.library.uu.nl/handle/1874/323294.

Council of Science Editors:

Osorno Torres B. Codimension-one Symplectic Foliations : Constructions and Examples. [Doctoral Dissertation]. University Utrecht; 2015. Available from: http://dspace.library.uu.nl/handle/1874/323294 ; URN:NBN:NL:UI:10-1874-323294 ; urn:isbn:978-90-393-6409-3 ; URN:NBN:NL:UI:10-1874-323294 ; http://dspace.library.uu.nl/handle/1874/323294


Indian Institute of Science

26. Kulkarni, Dheeraj. Relative Symplectic Caps, Fibered Knots And 4-Genus.

Degree: 2012, Indian Institute of Science

 The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the… (more)

Subjects/Keywords: Symplectic Geometry; Symplectic Capping Theorem; Symlpectic Manifolds; Fibered Knots; 4-Genus Knots; Symplectic Caps; Knot Theory; Contact Geometry; Contact Manifolds; Quasipositive Knots; Symplectic Convexity; Topology; Symplectic Neighborhood Theorem; Seifert Surfaces; Riemann Surface; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kulkarni, D. (2012). Relative Symplectic Caps, Fibered Knots And 4-Genus. (Thesis). Indian Institute of Science. Retrieved from http://hdl.handle.net/2005/2285

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2012. Thesis, Indian Institute of Science. Accessed July 20, 2019. http://hdl.handle.net/2005/2285.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2012. Web. 20 Jul 2019.

Vancouver:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Internet] [Thesis]. Indian Institute of Science; 2012. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/2005/2285.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Thesis]. Indian Institute of Science; 2012. Available from: http://hdl.handle.net/2005/2285

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

27. Kulkarni, Dheeraj. Relative Symplectic Caps, Fibered Knots And 4-Genus.

Degree: 2012, Indian Institute of Science

 The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the… (more)

Subjects/Keywords: Symplectic Geometry; Symplectic Capping Theorem; Symlpectic Manifolds; Fibered Knots; 4-Genus Knots; Symplectic Caps; Knot Theory; Contact Geometry; Contact Manifolds; Quasipositive Knots; Symplectic Convexity; Topology; Symplectic Neighborhood Theorem; Seifert Surfaces; Riemann Surface; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kulkarni, D. (2012). Relative Symplectic Caps, Fibered Knots And 4-Genus. (Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ernet.in/handle/2005/2285 ; http://etd.ncsi.iisc.ernet.in/abstracts/2943/G25244-Abs.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2012. Thesis, Indian Institute of Science. Accessed July 20, 2019. http://etd.iisc.ernet.in/handle/2005/2285 ; http://etd.ncsi.iisc.ernet.in/abstracts/2943/G25244-Abs.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2012. Web. 20 Jul 2019.

Vancouver:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Internet] [Thesis]. Indian Institute of Science; 2012. [cited 2019 Jul 20]. Available from: http://etd.iisc.ernet.in/handle/2005/2285 ; http://etd.ncsi.iisc.ernet.in/abstracts/2943/G25244-Abs.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Thesis]. Indian Institute of Science; 2012. Available from: http://etd.iisc.ernet.in/handle/2005/2285 ; http://etd.ncsi.iisc.ernet.in/abstracts/2943/G25244-Abs.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – San Diego

28. Palmer, Joseph. Symplectic invariants and moduli spaces of integrable systems.

Degree: Mathematics, 2016, University of California – San Diego

 In this dissertation I prove a number of results about the symplectic geometry of finite dimensional integrable Hamiltonian systems, especially those of semitoric type. Integrable… (more)

Subjects/Keywords: Mathematics; integrable systems; minimal models; semitoric systems; symplectic geometry; sympletic capacities; toric geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Palmer, J. (2016). Symplectic invariants and moduli spaces of integrable systems. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/8fm2b234

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Palmer, Joseph. “Symplectic invariants and moduli spaces of integrable systems.” 2016. Thesis, University of California – San Diego. Accessed July 20, 2019. http://www.escholarship.org/uc/item/8fm2b234.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Palmer, Joseph. “Symplectic invariants and moduli spaces of integrable systems.” 2016. Web. 20 Jul 2019.

Vancouver:

Palmer J. Symplectic invariants and moduli spaces of integrable systems. [Internet] [Thesis]. University of California – San Diego; 2016. [cited 2019 Jul 20]. Available from: http://www.escholarship.org/uc/item/8fm2b234.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Palmer J. Symplectic invariants and moduli spaces of integrable systems. [Thesis]. University of California – San Diego; 2016. Available from: http://www.escholarship.org/uc/item/8fm2b234

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

29. Alboresi, Davide. Poisson Manifolds and Holomorphic Curves.

Degree: 2018, University Utrecht

 In this thesis we study the topology of Poisson manifolds using techniques from symplectic topology, especially holomorphic curves. In particular, we study the topology of… (more)

Subjects/Keywords: Poisson geometry; Symplectic geometry; Holomorphic curves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alboresi, D. (2018). Poisson Manifolds and Holomorphic Curves. (Doctoral Dissertation). University Utrecht. Retrieved from http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348

Chicago Manual of Style (16th Edition):

Alboresi, Davide. “Poisson Manifolds and Holomorphic Curves.” 2018. Doctoral Dissertation, University Utrecht. Accessed July 20, 2019. http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348.

MLA Handbook (7th Edition):

Alboresi, Davide. “Poisson Manifolds and Holomorphic Curves.” 2018. Web. 20 Jul 2019.

Vancouver:

Alboresi D. Poisson Manifolds and Holomorphic Curves. [Internet] [Doctoral dissertation]. University Utrecht; 2018. [cited 2019 Jul 20]. Available from: http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348.

Council of Science Editors:

Alboresi D. Poisson Manifolds and Holomorphic Curves. [Doctoral Dissertation]. University Utrecht; 2018. Available from: http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348


Cornell University

30. Leung, Ho Hon. K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory .

Degree: 2011, Cornell University

 This thesis consists of two chapters. In the first chapter, we compute the K theory of weight varieties by using techniques in Hamiltonian geometry. In… (more)

Subjects/Keywords: Symplectic Geometry; Operator Algebras; Divided difference operators; KK-theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leung, H. H. (2011). K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/29318

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Leung, Ho Hon. “K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory .” 2011. Thesis, Cornell University. Accessed July 20, 2019. http://hdl.handle.net/1813/29318.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Leung, Ho Hon. “K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory .” 2011. Web. 20 Jul 2019.

Vancouver:

Leung HH. K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory . [Internet] [Thesis]. Cornell University; 2011. [cited 2019 Jul 20]. Available from: http://hdl.handle.net/1813/29318.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Leung HH. K-Theory Of Weight Varieties And Divided Difference Operators In Equivariant Kk-Theory . [Thesis]. Cornell University; 2011. Available from: http://hdl.handle.net/1813/29318

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4]

.