Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(symplectic algebra). Showing records 1 – 19 of 19 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Louisiana State University

1. Levitt, Jesse S. F. Properties of Polynomial Identity Quantized Weyl Algebras.

Degree: PhD, Applied Mathematics, 2016, Louisiana State University

 In this work on Polynomial Identity (PI) quantized Weyl algebras we begin with a brief survey of Poisson geometry and quantum cluster algebras, before using… (more)

Subjects/Keywords: Rings and Algebras; Quantum Algebra; Symplectic Ge

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Levitt, J. S. F. (2016). Properties of Polynomial Identity Quantized Weyl Algebras. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07102016-204601 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1509

Chicago Manual of Style (16th Edition):

Levitt, Jesse S F. “Properties of Polynomial Identity Quantized Weyl Algebras.” 2016. Doctoral Dissertation, Louisiana State University. Accessed July 14, 2020. etd-07102016-204601 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1509.

MLA Handbook (7th Edition):

Levitt, Jesse S F. “Properties of Polynomial Identity Quantized Weyl Algebras.” 2016. Web. 14 Jul 2020.

Vancouver:

Levitt JSF. Properties of Polynomial Identity Quantized Weyl Algebras. [Internet] [Doctoral dissertation]. Louisiana State University; 2016. [cited 2020 Jul 14]. Available from: etd-07102016-204601 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1509.

Council of Science Editors:

Levitt JSF. Properties of Polynomial Identity Quantized Weyl Algebras. [Doctoral Dissertation]. Louisiana State University; 2016. Available from: etd-07102016-204601 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1509


Northeastern University

2. Gamse, Elisheva Adina. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.

Degree: PhD, Department of Mathematics, 2016, Northeastern University

 In Part I we study the moduli space of holomorphic parabolic vector bundles over a curve, using combinatorial techniques to obtain information about the structure… (more)

Subjects/Keywords: moduli space; geometric quantisation; Lie group actions; Symplectic geometry; Symplectic manifolds; Vector bundles; Moduli theory; Rings (Algebra); Lie groups; Quantum theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gamse, E. A. (2016). Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20211399

Chicago Manual of Style (16th Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Doctoral Dissertation, Northeastern University. Accessed July 14, 2020. http://hdl.handle.net/2047/D20211399.

MLA Handbook (7th Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Web. 14 Jul 2020.

Vancouver:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Internet] [Doctoral dissertation]. Northeastern University; 2016. [cited 2020 Jul 14]. Available from: http://hdl.handle.net/2047/D20211399.

Council of Science Editors:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Doctoral Dissertation]. Northeastern University; 2016. Available from: http://hdl.handle.net/2047/D20211399


Vrije Universiteit Amsterdam

3. Asadi, E. Integrable Systems and Symplectic Geometry .

Degree: 2008, Vrije Universiteit Amsterdam

Subjects/Keywords: Integrable System; Cartan structure; Lie algebra; Symplectic Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Asadi, E. (2008). Integrable Systems and Symplectic Geometry . (Doctoral Dissertation). Vrije Universiteit Amsterdam. Retrieved from http://hdl.handle.net/1871/32791

Chicago Manual of Style (16th Edition):

Asadi, E. “Integrable Systems and Symplectic Geometry .” 2008. Doctoral Dissertation, Vrije Universiteit Amsterdam. Accessed July 14, 2020. http://hdl.handle.net/1871/32791.

MLA Handbook (7th Edition):

Asadi, E. “Integrable Systems and Symplectic Geometry .” 2008. Web. 14 Jul 2020.

Vancouver:

Asadi E. Integrable Systems and Symplectic Geometry . [Internet] [Doctoral dissertation]. Vrije Universiteit Amsterdam; 2008. [cited 2020 Jul 14]. Available from: http://hdl.handle.net/1871/32791.

Council of Science Editors:

Asadi E. Integrable Systems and Symplectic Geometry . [Doctoral Dissertation]. Vrije Universiteit Amsterdam; 2008. Available from: http://hdl.handle.net/1871/32791


University of Arizona

4. Spiegler, Adam. Stability of Generic Equilibria of the 2n Dimensional Free Rigid Body Using the Energy-Casimir Method .

Degree: 2006, University of Arizona

 The rigid body has been one of the most noteworthy applications of Newtonian mechanics. Applying the principles of classical mechanics to the rigid body is… (more)

Subjects/Keywords: rigid body; symplectic geometry; Lie algebra; energy-Casimir

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Spiegler, A. (2006). Stability of Generic Equilibria of the 2n Dimensional Free Rigid Body Using the Energy-Casimir Method . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/194821

Chicago Manual of Style (16th Edition):

Spiegler, Adam. “Stability of Generic Equilibria of the 2n Dimensional Free Rigid Body Using the Energy-Casimir Method .” 2006. Doctoral Dissertation, University of Arizona. Accessed July 14, 2020. http://hdl.handle.net/10150/194821.

MLA Handbook (7th Edition):

Spiegler, Adam. “Stability of Generic Equilibria of the 2n Dimensional Free Rigid Body Using the Energy-Casimir Method .” 2006. Web. 14 Jul 2020.

Vancouver:

Spiegler A. Stability of Generic Equilibria of the 2n Dimensional Free Rigid Body Using the Energy-Casimir Method . [Internet] [Doctoral dissertation]. University of Arizona; 2006. [cited 2020 Jul 14]. Available from: http://hdl.handle.net/10150/194821.

Council of Science Editors:

Spiegler A. Stability of Generic Equilibria of the 2n Dimensional Free Rigid Body Using the Energy-Casimir Method . [Doctoral Dissertation]. University of Arizona; 2006. Available from: http://hdl.handle.net/10150/194821

5. Asadi, E. Integrable Systems and Symplectic Geometry.

Degree: 2008, NARCIS

Subjects/Keywords: Cartan structure; Integrable System; Lie algebra; Symplectic Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Asadi, E. (2008). Integrable Systems and Symplectic Geometry. (Doctoral Dissertation). NARCIS. Retrieved from https://research.vu.nl/en/publications/65bd48d7-2b3e-4520-b2b1-b0e815ea69ef ; urn:nbn:nl:ui:31-1871/32791 ; 65bd48d7-2b3e-4520-b2b1-b0e815ea69ef ; 1871/32791 ; urn:isbn:9789090230009 ; urn:nbn:nl:ui:31-1871/32791 ; https://research.vu.nl/en/publications/65bd48d7-2b3e-4520-b2b1-b0e815ea69ef

Chicago Manual of Style (16th Edition):

Asadi, E. “Integrable Systems and Symplectic Geometry.” 2008. Doctoral Dissertation, NARCIS. Accessed July 14, 2020. https://research.vu.nl/en/publications/65bd48d7-2b3e-4520-b2b1-b0e815ea69ef ; urn:nbn:nl:ui:31-1871/32791 ; 65bd48d7-2b3e-4520-b2b1-b0e815ea69ef ; 1871/32791 ; urn:isbn:9789090230009 ; urn:nbn:nl:ui:31-1871/32791 ; https://research.vu.nl/en/publications/65bd48d7-2b3e-4520-b2b1-b0e815ea69ef.

MLA Handbook (7th Edition):

Asadi, E. “Integrable Systems and Symplectic Geometry.” 2008. Web. 14 Jul 2020.

Vancouver:

Asadi E. Integrable Systems and Symplectic Geometry. [Internet] [Doctoral dissertation]. NARCIS; 2008. [cited 2020 Jul 14]. Available from: https://research.vu.nl/en/publications/65bd48d7-2b3e-4520-b2b1-b0e815ea69ef ; urn:nbn:nl:ui:31-1871/32791 ; 65bd48d7-2b3e-4520-b2b1-b0e815ea69ef ; 1871/32791 ; urn:isbn:9789090230009 ; urn:nbn:nl:ui:31-1871/32791 ; https://research.vu.nl/en/publications/65bd48d7-2b3e-4520-b2b1-b0e815ea69ef.

Council of Science Editors:

Asadi E. Integrable Systems and Symplectic Geometry. [Doctoral Dissertation]. NARCIS; 2008. Available from: https://research.vu.nl/en/publications/65bd48d7-2b3e-4520-b2b1-b0e815ea69ef ; urn:nbn:nl:ui:31-1871/32791 ; 65bd48d7-2b3e-4520-b2b1-b0e815ea69ef ; 1871/32791 ; urn:isbn:9789090230009 ; urn:nbn:nl:ui:31-1871/32791 ; https://research.vu.nl/en/publications/65bd48d7-2b3e-4520-b2b1-b0e815ea69ef


East Tennessee State University

6. Frazier, William. Application of Symplectic Integration on a Dynamical System.

Degree: MS, Mathematical Sciences, 2017, East Tennessee State University

  Molecular Dynamics (MD) is the numerical simulation of a large system of interacting molecules, and one of the key components of a MD simulation… (more)

Subjects/Keywords: Lie algebra; Lie group; symplectic integration; molecular dynamics; Algebra; Dynamic Systems; Non-linear Dynamics; Numerical Analysis and Computation; Ordinary Differential Equations and Applied Dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Frazier, W. (2017). Application of Symplectic Integration on a Dynamical System. (Masters Thesis). East Tennessee State University. Retrieved from https://dc.etsu.edu/etd/3213

Chicago Manual of Style (16th Edition):

Frazier, William. “Application of Symplectic Integration on a Dynamical System.” 2017. Masters Thesis, East Tennessee State University. Accessed July 14, 2020. https://dc.etsu.edu/etd/3213.

MLA Handbook (7th Edition):

Frazier, William. “Application of Symplectic Integration on a Dynamical System.” 2017. Web. 14 Jul 2020.

Vancouver:

Frazier W. Application of Symplectic Integration on a Dynamical System. [Internet] [Masters thesis]. East Tennessee State University; 2017. [cited 2020 Jul 14]. Available from: https://dc.etsu.edu/etd/3213.

Council of Science Editors:

Frazier W. Application of Symplectic Integration on a Dynamical System. [Masters Thesis]. East Tennessee State University; 2017. Available from: https://dc.etsu.edu/etd/3213


University of Florida

7. Kutsak, Sergii M. Essential Manifolds with Extra Structures.

Degree: PhD, Mathematics, 2013, University of Florida

 We consider classes of algebraic manifoldsA, of symplectic manifolds S, of symplectic manifolds with the hard Lefschetzproperty HS and the class of cohomologically symplectic manifolds… (more)

Subjects/Keywords: Algebra; Coordinate systems; Integers; Isomorphism; Lie groups; Mathematical theorems; Mathematics; Tangents; Topology; Vector spaces; algebra  – algebraic  – contact  – essential  – fundamental  – group  – hard  – invariant  – lefschetz  – lie  – manifold  – nilmanifold  – property  – structure  – symplectic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kutsak, S. M. (2013). Essential Manifolds with Extra Structures. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0045303

Chicago Manual of Style (16th Edition):

Kutsak, Sergii M. “Essential Manifolds with Extra Structures.” 2013. Doctoral Dissertation, University of Florida. Accessed July 14, 2020. https://ufdc.ufl.edu/UFE0045303.

MLA Handbook (7th Edition):

Kutsak, Sergii M. “Essential Manifolds with Extra Structures.” 2013. Web. 14 Jul 2020.

Vancouver:

Kutsak SM. Essential Manifolds with Extra Structures. [Internet] [Doctoral dissertation]. University of Florida; 2013. [cited 2020 Jul 14]. Available from: https://ufdc.ufl.edu/UFE0045303.

Council of Science Editors:

Kutsak SM. Essential Manifolds with Extra Structures. [Doctoral Dissertation]. University of Florida; 2013. Available from: https://ufdc.ufl.edu/UFE0045303

8. Grašič, Mateja. Algebre, določene z ničelnim produktom.

Degree: 2012, Univerza v Mariboru

V doktorski disertaciji so obravnavane algebre, določene z ničelnim produktom. Ta pojem je nov. Zato bo veˇcji del disertacije namenjen ugotavljanju določenosti z ničelnim produktom… (more)

Subjects/Keywords: Albertova algebra; bilinearna preslikava; funkcijska identiteta; homomorfizem; idempotent; jordanska algebra; Liejeva algebra; linearna preslikava; matrična algebra; multiaditivna preslikava; prakolobar; poševno simetrična matrika; simetrična matrika; simplektična involucija; transponiranje; ničelni produkt; algebra; določena z ničelnim produktom.; Albert algebra; bilinear map; functional identity; homomorphism; idempotent; Jordan algebra; Lie algebra; linear map; matrix algebra; multiadditive map; prime ring; skew symmetric matrix; symmetric matrix; symplectic involution; transpose involution; zero product; zero product determined algebra.; info:eu-repo/classification/udc/512.643(043.3)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grašič, M. (2012). Algebre, določene z ničelnim produktom. (Doctoral Dissertation). Univerza v Mariboru. Retrieved from https://dk.um.si/IzpisGradiva.php?id=22240 ; https://dk.um.si/Dokument.php?id=28610&dn= ; https://plus.si.cobiss.net/opac7/bib/260808704?lang=sl

Chicago Manual of Style (16th Edition):

Grašič, Mateja. “Algebre, določene z ničelnim produktom.” 2012. Doctoral Dissertation, Univerza v Mariboru. Accessed July 14, 2020. https://dk.um.si/IzpisGradiva.php?id=22240 ; https://dk.um.si/Dokument.php?id=28610&dn= ; https://plus.si.cobiss.net/opac7/bib/260808704?lang=sl.

MLA Handbook (7th Edition):

Grašič, Mateja. “Algebre, določene z ničelnim produktom.” 2012. Web. 14 Jul 2020.

Vancouver:

Grašič M. Algebre, določene z ničelnim produktom. [Internet] [Doctoral dissertation]. Univerza v Mariboru; 2012. [cited 2020 Jul 14]. Available from: https://dk.um.si/IzpisGradiva.php?id=22240 ; https://dk.um.si/Dokument.php?id=28610&dn= ; https://plus.si.cobiss.net/opac7/bib/260808704?lang=sl.

Council of Science Editors:

Grašič M. Algebre, določene z ničelnim produktom. [Doctoral Dissertation]. Univerza v Mariboru; 2012. Available from: https://dk.um.si/IzpisGradiva.php?id=22240 ; https://dk.um.si/Dokument.php?id=28610&dn= ; https://plus.si.cobiss.net/opac7/bib/260808704?lang=sl


University of Oregon

9. Brown, Jonathan, 1975-. Finite W-algebras of classical type.

Degree: 2009, University of Oregon

In this work we prove that the finite W -algebras associated to nilpotent elements in the symplectic or orthogonal Lie algebras whose Jordan blocks are all the same size are quotients of twisted Yangians. We use this to classify the finite dimensional irreducible representations of these finite W -algebras.

Subjects/Keywords: Finite W-algebras; Nilpotent; Symplectic; Quantum algebra; Mathematics; W-algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brown, Jonathan, 1. (2009). Finite W-algebras of classical type. (Thesis). University of Oregon. Retrieved from http://hdl.handle.net/1794/10201

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Brown, Jonathan, 1975-. “Finite W-algebras of classical type.” 2009. Thesis, University of Oregon. Accessed July 14, 2020. http://hdl.handle.net/1794/10201.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Brown, Jonathan, 1975-. “Finite W-algebras of classical type.” 2009. Web. 14 Jul 2020.

Vancouver:

Brown, Jonathan 1. Finite W-algebras of classical type. [Internet] [Thesis]. University of Oregon; 2009. [cited 2020 Jul 14]. Available from: http://hdl.handle.net/1794/10201.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brown, Jonathan 1. Finite W-algebras of classical type. [Thesis]. University of Oregon; 2009. Available from: http://hdl.handle.net/1794/10201

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

10. Shorser, Lindsey. Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups.

Degree: 2010, University of Toronto

When solving problems involving quantum mechanical systems, it is frequently desirable to find the matrix elements of a unitary representation T of a real algebraic… (more)

Subjects/Keywords: Lie algebra; Lie group; representation; symplectic; coherent state; 0405

symplectic group Sp(n) with Lie algebra g = sp(n), the complexification of… …same Lie algebra element. Chapter 3. Matrix Factorization for the Compact Symplectic Group… …real compact algebraic Lie group with Lie algebra g; we write GC and gC for their respective… …subalgebras are of positive and negative weight spaces respectively. The Lie algebra of P decomposes… …as well: p = n+ + h. (1.39) N is the subgroup of GC with Lie algebra n− , so… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shorser, L. (2010). Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/32951

Chicago Manual of Style (16th Edition):

Shorser, Lindsey. “Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups.” 2010. Doctoral Dissertation, University of Toronto. Accessed July 14, 2020. http://hdl.handle.net/1807/32951.

MLA Handbook (7th Edition):

Shorser, Lindsey. “Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups.” 2010. Web. 14 Jul 2020.

Vancouver:

Shorser L. Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups. [Internet] [Doctoral dissertation]. University of Toronto; 2010. [cited 2020 Jul 14]. Available from: http://hdl.handle.net/1807/32951.

Council of Science Editors:

Shorser L. Scalar and Vector Coherent State Representations of Compact and Non-compact Symplectic Groups. [Doctoral Dissertation]. University of Toronto; 2010. Available from: http://hdl.handle.net/1807/32951

11. Vaillant, Timothée. Rotation à long terme des corps célestes et application à Cérès et Vesta : Long-term rotation of celestial bodies and application to Ceres and Vesta.

Degree: Docteur es, Astronomie et Astrophysique, 2018, Paris Sciences et Lettres

Le sujet de cette thèse est l'étude de la rotation à long terme des corps célestes.La première partie est consacrée à l’étude de la rotation… (more)

Subjects/Keywords: Mécanique céleste; Rotation des corps solides; Cérès; Vesta; Intégrateurs symplectiques; Algèbre de Lie; Celestial mechanics; Rotation of rigid bodies; Ceres; Vesta; Symplectic integrators; Lie algebra; 520

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vaillant, T. (2018). Rotation à long terme des corps célestes et application à Cérès et Vesta : Long-term rotation of celestial bodies and application to Ceres and Vesta. (Doctoral Dissertation). Paris Sciences et Lettres. Retrieved from http://www.theses.fr/2018PSLEO005

Chicago Manual of Style (16th Edition):

Vaillant, Timothée. “Rotation à long terme des corps célestes et application à Cérès et Vesta : Long-term rotation of celestial bodies and application to Ceres and Vesta.” 2018. Doctoral Dissertation, Paris Sciences et Lettres. Accessed July 14, 2020. http://www.theses.fr/2018PSLEO005.

MLA Handbook (7th Edition):

Vaillant, Timothée. “Rotation à long terme des corps célestes et application à Cérès et Vesta : Long-term rotation of celestial bodies and application to Ceres and Vesta.” 2018. Web. 14 Jul 2020.

Vancouver:

Vaillant T. Rotation à long terme des corps célestes et application à Cérès et Vesta : Long-term rotation of celestial bodies and application to Ceres and Vesta. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres; 2018. [cited 2020 Jul 14]. Available from: http://www.theses.fr/2018PSLEO005.

Council of Science Editors:

Vaillant T. Rotation à long terme des corps célestes et application à Cérès et Vesta : Long-term rotation of celestial bodies and application to Ceres and Vesta. [Doctoral Dissertation]. Paris Sciences et Lettres; 2018. Available from: http://www.theses.fr/2018PSLEO005


University of South Africa

12. Tshilombo, Mukinayi Hermenegilde. Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces.

Degree: 2015, University of South Africa

 This thesis deals with cohomologies on the symplectic quotient of a Frölicher space which is locally diffeomorphic to a Euclidean Frölicher subspace of Rn of… (more)

Subjects/Keywords: Differential geometry on Frolicher spaces; Constant dimension; Locally Euclidean Frolicher spaces; Symplectic structure; Symplectic geometry; Symplectic quotient or reduced space; Exterior algebra; Hausdor paracompact Frolicher topologies; Ringed Frolicher space; Smooth Gelfand representation; Sheaf cohomology; Alexander-Spanier cohomology; Singular cohomology; Cech cohomology and de Rham cohomology; Isommorphism of cohomologies on the reduced space; Poisson and Hamiltonian geometries on the reduced space; Vector fields and mechanics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tshilombo, M. H. (2015). Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces. (Doctoral Dissertation). University of South Africa. Retrieved from http://hdl.handle.net/10500/19942

Chicago Manual of Style (16th Edition):

Tshilombo, Mukinayi Hermenegilde. “Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces.” 2015. Doctoral Dissertation, University of South Africa. Accessed July 14, 2020. http://hdl.handle.net/10500/19942.

MLA Handbook (7th Edition):

Tshilombo, Mukinayi Hermenegilde. “Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces.” 2015. Web. 14 Jul 2020.

Vancouver:

Tshilombo MH. Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces. [Internet] [Doctoral dissertation]. University of South Africa; 2015. [cited 2020 Jul 14]. Available from: http://hdl.handle.net/10500/19942.

Council of Science Editors:

Tshilombo MH. Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces. [Doctoral Dissertation]. University of South Africa; 2015. Available from: http://hdl.handle.net/10500/19942


ETH Zürich

13. Busch, Cornelia Minette. Symplectic characteristic classes and the Farrell cohomology of Sp(p-1,Z).

Degree: 2000, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE GRUPPEN (ALGEBRA); ZYKLOTOMISCHE ZAHLKÖRPER (ZAHLENTHEORIE); KOHOMOLOGIE-OPERATIONEN (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC GROUPS (ALGEBRA); CYCLOTOMIC NUMBER FIELDS (NUMBER THEORY); COHOMOLOGY OPERATIONS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Busch, C. M. (2000). Symplectic characteristic classes and the Farrell cohomology of Sp(p-1,Z). (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/144531

Chicago Manual of Style (16th Edition):

Busch, Cornelia Minette. “Symplectic characteristic classes and the Farrell cohomology of Sp(p-1,Z).” 2000. Doctoral Dissertation, ETH Zürich. Accessed July 14, 2020. http://hdl.handle.net/20.500.11850/144531.

MLA Handbook (7th Edition):

Busch, Cornelia Minette. “Symplectic characteristic classes and the Farrell cohomology of Sp(p-1,Z).” 2000. Web. 14 Jul 2020.

Vancouver:

Busch CM. Symplectic characteristic classes and the Farrell cohomology of Sp(p-1,Z). [Internet] [Doctoral dissertation]. ETH Zürich; 2000. [cited 2020 Jul 14]. Available from: http://hdl.handle.net/20.500.11850/144531.

Council of Science Editors:

Busch CM. Symplectic characteristic classes and the Farrell cohomology of Sp(p-1,Z). [Doctoral Dissertation]. ETH Zürich; 2000. Available from: http://hdl.handle.net/20.500.11850/144531


ETH Zürich

14. Dhérin, Benoît Umbert Richard. Star products and symlectic groupoids.

Degree: 2004, ETH Zürich

Subjects/Keywords: GRUNDPROBLEME DER QUANTENTHEORIE; SYMPLEKTISCHE GRUPPEN (ALGEBRA); ERZEUGENDE FUNKTIONEN (ANALYSIS); POISSON-MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); BASIC PROBLEMS IN QUANTUM THEORY; SYMPLECTIC GROUPS (ALGEBRA); GENERATING FUNCTIONS (MATHEMATICAL ANALYSIS); POISSON MANIFOLDS (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dhérin, B. U. R. (2004). Star products and symlectic groupoids. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/148308

Chicago Manual of Style (16th Edition):

Dhérin, Benoît Umbert Richard. “Star products and symlectic groupoids.” 2004. Doctoral Dissertation, ETH Zürich. Accessed July 14, 2020. http://hdl.handle.net/20.500.11850/148308.

MLA Handbook (7th Edition):

Dhérin, Benoît Umbert Richard. “Star products and symlectic groupoids.” 2004. Web. 14 Jul 2020.

Vancouver:

Dhérin BUR. Star products and symlectic groupoids. [Internet] [Doctoral dissertation]. ETH Zürich; 2004. [cited 2020 Jul 14]. Available from: http://hdl.handle.net/20.500.11850/148308.

Council of Science Editors:

Dhérin BUR. Star products and symlectic groupoids. [Doctoral Dissertation]. ETH Zürich; 2004. Available from: http://hdl.handle.net/20.500.11850/148308


Louisiana State University

15. Launey, Kristina D. Group theoretical approach to pairing and non-linear phenomena in atomic nuclei.

Degree: PhD, Physical Sciences and Mathematics, 2003, Louisiana State University

 The symplectic sp(4) algebra provides a natural framework for studying proton-neutron (pn) and like-nucleon pairing correlations as well as higher-J pn interactions in nuclei when… (more)

Subjects/Keywords: significance of q-deformation; isobaric analog 0+ states; isospin symmetry; binding energy; non-linear many-body interactions; symplectic algebra; pairing correlations; pairing gaps; staggering; beta decay; isospin mixing

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Launey, K. D. (2003). Group theoretical approach to pairing and non-linear phenomena in atomic nuclei. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-1111103-171256 ; https://digitalcommons.lsu.edu/gradschool_dissertations/442

Chicago Manual of Style (16th Edition):

Launey, Kristina D. “Group theoretical approach to pairing and non-linear phenomena in atomic nuclei.” 2003. Doctoral Dissertation, Louisiana State University. Accessed July 14, 2020. etd-1111103-171256 ; https://digitalcommons.lsu.edu/gradschool_dissertations/442.

MLA Handbook (7th Edition):

Launey, Kristina D. “Group theoretical approach to pairing and non-linear phenomena in atomic nuclei.” 2003. Web. 14 Jul 2020.

Vancouver:

Launey KD. Group theoretical approach to pairing and non-linear phenomena in atomic nuclei. [Internet] [Doctoral dissertation]. Louisiana State University; 2003. [cited 2020 Jul 14]. Available from: etd-1111103-171256 ; https://digitalcommons.lsu.edu/gradschool_dissertations/442.

Council of Science Editors:

Launey KD. Group theoretical approach to pairing and non-linear phenomena in atomic nuclei. [Doctoral Dissertation]. Louisiana State University; 2003. Available from: etd-1111103-171256 ; https://digitalcommons.lsu.edu/gradschool_dissertations/442


ETH Zürich

16. Gautschi, Ralf. Floer homology and surface diffeomorphisms.

Degree: 2002, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); MONODROMIEGRUPPEN (ALGEBRA); HOMOLOGIE TOPOLOGISCHER RÄUME UND STETIGER ABBILDUNGEN (ALGEBRAISCHE TOPOLOGIE); SINGULARITÄTEN ALGEBRAISCHER VARIETÄTEN (ALGEBRAISCHE GEOMETRIE); FLÄCHENKURVEN (DIFFERENTIALGEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); MONODROMY GROUPS (ALGEBRA); HOMOLOGY OF TOPOLOGICAL SPACES AND CONTINUOUS MAPPINGS (ALGEBRAIC TOPOLOGY); SINGULARITIES OF ALGEBRAIC VARIETIES (ALGEBRAIC GEOMETRY); SURFACE CURVES (DIFFERENTIAL GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gautschi, R. (2002). Floer homology and surface diffeomorphisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/146167

Chicago Manual of Style (16th Edition):

Gautschi, Ralf. “Floer homology and surface diffeomorphisms.” 2002. Doctoral Dissertation, ETH Zürich. Accessed July 14, 2020. http://hdl.handle.net/20.500.11850/146167.

MLA Handbook (7th Edition):

Gautschi, Ralf. “Floer homology and surface diffeomorphisms.” 2002. Web. 14 Jul 2020.

Vancouver:

Gautschi R. Floer homology and surface diffeomorphisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2002. [cited 2020 Jul 14]. Available from: http://hdl.handle.net/20.500.11850/146167.

Council of Science Editors:

Gautschi R. Floer homology and surface diffeomorphisms. [Doctoral Dissertation]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/146167


ETH Zürich

17. Ott, Andreas Michael Johannes. The non-local sympletic vortex equations and gauged Gromov-Witten invariants.

Degree: 2010, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); KOMPAKTE LIE-GRUPPEN UND KOMPAKTE LIE-ALGEBREN; GRUPPENOPERATIONEN (ALGEBRA); INVARIANTENTHEORIE (ALGEBRAISCHE GEOMETRIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); COMPACT LIE GROUPS AND COMPACT LIE ALGEBRAS; GROUP ACTIONS (ALGEBRA); INVARIANT THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ott, A. M. J. (2010). The non-local sympletic vortex equations and gauged Gromov-Witten invariants. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152597

Chicago Manual of Style (16th Edition):

Ott, Andreas Michael Johannes. “The non-local sympletic vortex equations and gauged Gromov-Witten invariants.” 2010. Doctoral Dissertation, ETH Zürich. Accessed July 14, 2020. http://hdl.handle.net/20.500.11850/152597.

MLA Handbook (7th Edition):

Ott, Andreas Michael Johannes. “The non-local sympletic vortex equations and gauged Gromov-Witten invariants.” 2010. Web. 14 Jul 2020.

Vancouver:

Ott AMJ. The non-local sympletic vortex equations and gauged Gromov-Witten invariants. [Internet] [Doctoral dissertation]. ETH Zürich; 2010. [cited 2020 Jul 14]. Available from: http://hdl.handle.net/20.500.11850/152597.

Council of Science Editors:

Ott AMJ. The non-local sympletic vortex equations and gauged Gromov-Witten invariants. [Doctoral Dissertation]. ETH Zürich; 2010. Available from: http://hdl.handle.net/20.500.11850/152597


ETH Zürich

18. Strubel, Tobias. Fenchel-Nielsen coordinates for maximal representations.

Degree: 2011, ETH Zürich

Subjects/Keywords: LINEARE DARSTELLUNGEN VON LIE-ALGEBREN UND LIE-GRUPPEN; SYMPLEKTISCHE GRUPPEN (ALGEBRA); TEICHMÜLLERRÄUME (ANALYTISCHE RÄUME); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); LINEAR REPRESENTATIONS OF LIE ALGEBRAS AND LIE GROUPS; SYMPLECTIC GROUPS (ALGEBRA); TEICHMÜLLER SPACES (ANALYTIC SPACES); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Strubel, T. (2011). Fenchel-Nielsen coordinates for maximal representations. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153151

Chicago Manual of Style (16th Edition):

Strubel, Tobias. “Fenchel-Nielsen coordinates for maximal representations.” 2011. Doctoral Dissertation, ETH Zürich. Accessed July 14, 2020. http://hdl.handle.net/20.500.11850/153151.

MLA Handbook (7th Edition):

Strubel, Tobias. “Fenchel-Nielsen coordinates for maximal representations.” 2011. Web. 14 Jul 2020.

Vancouver:

Strubel T. Fenchel-Nielsen coordinates for maximal representations. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2020 Jul 14]. Available from: http://hdl.handle.net/20.500.11850/153151.

Council of Science Editors:

Strubel T. Fenchel-Nielsen coordinates for maximal representations. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/153151


ETH Zürich

19. Engeli, Markus Peter Roderick. Traces in deformation quantization and a Riemann-Roch-Hirzebruch formula for differential operators.

Degree: 2008, ETH Zürich

Subjects/Keywords: DEFORMATIONEN ALGEBRAISCHER STRUKTUREN (ALGEBRA); SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); DIFFERENTIALOPERATOREN + INTEGRALOPERATOREN AUF MANNIGFALTIGKEITEN (TOPOLOGIE); RIEMANN-ROCH-THEOREM FÜR KOMPLEXE MANNIGFALTIGKEITEN (ANALYTISCHE RÄUME); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); DEFORMATIONS OF ALGEBRAIC STRUCTURES (ALGEBRA); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); DIFFERENTIAL + INTEGRAL OPERATORS ON MANIFOLDS (TOPOLOGY); RIEMANN-ROCH THEOREM FOR COMPLEX MANIFOLDS (ANALYTIC SPACES); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Engeli, M. P. R. (2008). Traces in deformation quantization and a Riemann-Roch-Hirzebruch formula for differential operators. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/150558

Chicago Manual of Style (16th Edition):

Engeli, Markus Peter Roderick. “Traces in deformation quantization and a Riemann-Roch-Hirzebruch formula for differential operators.” 2008. Doctoral Dissertation, ETH Zürich. Accessed July 14, 2020. http://hdl.handle.net/20.500.11850/150558.

MLA Handbook (7th Edition):

Engeli, Markus Peter Roderick. “Traces in deformation quantization and a Riemann-Roch-Hirzebruch formula for differential operators.” 2008. Web. 14 Jul 2020.

Vancouver:

Engeli MPR. Traces in deformation quantization and a Riemann-Roch-Hirzebruch formula for differential operators. [Internet] [Doctoral dissertation]. ETH Zürich; 2008. [cited 2020 Jul 14]. Available from: http://hdl.handle.net/20.500.11850/150558.

Council of Science Editors:

Engeli MPR. Traces in deformation quantization and a Riemann-Roch-Hirzebruch formula for differential operators. [Doctoral Dissertation]. ETH Zürich; 2008. Available from: http://hdl.handle.net/20.500.11850/150558

.