Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(symbolic computation). Showing records 1 – 30 of 47 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters


University of Waterloo

1. Gupta, Somit. Hermite Forms of Polynomial Matrices.

Degree: 2011, University of Waterloo

 This thesis presents a new algorithm for computing the Hermite form of a polynomial matrix. Given a nonsingular n by n matrix A filled with… (more)

Subjects/Keywords: Computer Algebra; Matrix Normal Forms; Symbolic Computation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gupta, S. (2011). Hermite Forms of Polynomial Matrices. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/6108

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gupta, Somit. “Hermite Forms of Polynomial Matrices.” 2011. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/6108.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gupta, Somit. “Hermite Forms of Polynomial Matrices.” 2011. Web. 06 Aug 2020.

Vancouver:

Gupta S. Hermite Forms of Polynomial Matrices. [Internet] [Thesis]. University of Waterloo; 2011. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/6108.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gupta S. Hermite Forms of Polynomial Matrices. [Thesis]. University of Waterloo; 2011. Available from: http://hdl.handle.net/10012/6108

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Ottawa

2. Dovlo, Edem. Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates .

Degree: 2011, University of Ottawa

 The Fourier transform is one of the most useful tools in science and engineering and can be expanded to multi-dimensions and curvilinear coordinates. Multidimensional Fourier… (more)

Subjects/Keywords: 2D Fourier Transform; Polar coordinates; Symbolic Computer Algebra; Symbolic Computation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dovlo, E. (2011). Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/20269

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dovlo, Edem. “Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates .” 2011. Thesis, University of Ottawa. Accessed August 06, 2020. http://hdl.handle.net/10393/20269.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dovlo, Edem. “Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates .” 2011. Web. 06 Aug 2020.

Vancouver:

Dovlo E. Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates . [Internet] [Thesis]. University of Ottawa; 2011. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10393/20269.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dovlo E. Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates . [Thesis]. University of Ottawa; 2011. Available from: http://hdl.handle.net/10393/20269

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Plymouth

3. Carmantini, Giovanni Sirio. Dynamical systems theory for transparent symbolic computation in neuronal networks.

Degree: PhD, 2017, University of Plymouth

 In this thesis, we explore the interface between symbolic and dynamical system computation, with particular regard to dynamical system models of neuronal networks. In doing… (more)

Subjects/Keywords: 006.3; Automata Theory; Recurrent Neural Networks; Representation Theory; Neural Symbolic Computation; Dynamical Systems; Symbolic Dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Carmantini, G. S. (2017). Dynamical systems theory for transparent symbolic computation in neuronal networks. (Doctoral Dissertation). University of Plymouth. Retrieved from http://hdl.handle.net/10026.1/8647

Chicago Manual of Style (16th Edition):

Carmantini, Giovanni Sirio. “Dynamical systems theory for transparent symbolic computation in neuronal networks.” 2017. Doctoral Dissertation, University of Plymouth. Accessed August 06, 2020. http://hdl.handle.net/10026.1/8647.

MLA Handbook (7th Edition):

Carmantini, Giovanni Sirio. “Dynamical systems theory for transparent symbolic computation in neuronal networks.” 2017. Web. 06 Aug 2020.

Vancouver:

Carmantini GS. Dynamical systems theory for transparent symbolic computation in neuronal networks. [Internet] [Doctoral dissertation]. University of Plymouth; 2017. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10026.1/8647.

Council of Science Editors:

Carmantini GS. Dynamical systems theory for transparent symbolic computation in neuronal networks. [Doctoral Dissertation]. University of Plymouth; 2017. Available from: http://hdl.handle.net/10026.1/8647


Penn State University

4. Liang, Chao. Approximate solution to second order parabolic equations, with application to financial modeling.

Degree: PhD, Mathematics, 2014, Penn State University

 In this dissertation, we consider second order parabolic equations with variable coefficients. We derive the closed-form approximations to the associated fundamental solution, as well as… (more)

Subjects/Keywords: Partial Differential Equations; Financial Modeling; Option Pricing; Approximate Solutions; Symbolic Computation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liang, C. (2014). Approximate solution to second order parabolic equations, with application to financial modeling. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/22656

Chicago Manual of Style (16th Edition):

Liang, Chao. “Approximate solution to second order parabolic equations, with application to financial modeling.” 2014. Doctoral Dissertation, Penn State University. Accessed August 06, 2020. https://etda.libraries.psu.edu/catalog/22656.

MLA Handbook (7th Edition):

Liang, Chao. “Approximate solution to second order parabolic equations, with application to financial modeling.” 2014. Web. 06 Aug 2020.

Vancouver:

Liang C. Approximate solution to second order parabolic equations, with application to financial modeling. [Internet] [Doctoral dissertation]. Penn State University; 2014. [cited 2020 Aug 06]. Available from: https://etda.libraries.psu.edu/catalog/22656.

Council of Science Editors:

Liang C. Approximate solution to second order parabolic equations, with application to financial modeling. [Doctoral Dissertation]. Penn State University; 2014. Available from: https://etda.libraries.psu.edu/catalog/22656


University of Waterloo

5. Heinle, Albert. Computational Approaches to Problems in Noncommutative Algebra  – Theory, Applications and Implementations.

Degree: 2016, University of Waterloo

 Noncommutative rings appear in several areas of mathematics. Most prominently, they can be used to model operator equations, such as differential or difference equations. In… (more)

Subjects/Keywords: Noncommutative Algebra; Symbolic Computation; Computer Algebra; Matrix Normal Forms; Cryptography

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Heinle, A. (2016). Computational Approaches to Problems in Noncommutative Algebra  – Theory, Applications and Implementations. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/10948

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Heinle, Albert. “Computational Approaches to Problems in Noncommutative Algebra  – Theory, Applications and Implementations.” 2016. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/10948.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Heinle, Albert. “Computational Approaches to Problems in Noncommutative Algebra  – Theory, Applications and Implementations.” 2016. Web. 06 Aug 2020.

Vancouver:

Heinle A. Computational Approaches to Problems in Noncommutative Algebra  – Theory, Applications and Implementations. [Internet] [Thesis]. University of Waterloo; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/10948.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Heinle A. Computational Approaches to Problems in Noncommutative Algebra  – Theory, Applications and Implementations. [Thesis]. University of Waterloo; 2016. Available from: http://hdl.handle.net/10012/10948

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Waterloo

6. LIANG, YITENG. Symbolic Integration of Multibody System Dynamics with Finite Element Method.

Degree: 2017, University of Waterloo

 A general procedure integrating the finite element method with multibody system dynamics using symbolic computation is presented. It takes advantage of both the nodal formulation… (more)

Subjects/Keywords: Multibody system dynamics; Finite element method; Symbolic computation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

LIANG, Y. (2017). Symbolic Integration of Multibody System Dynamics with Finite Element Method. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/11152

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

LIANG, YITENG. “Symbolic Integration of Multibody System Dynamics with Finite Element Method.” 2017. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/11152.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

LIANG, YITENG. “Symbolic Integration of Multibody System Dynamics with Finite Element Method.” 2017. Web. 06 Aug 2020.

Vancouver:

LIANG Y. Symbolic Integration of Multibody System Dynamics with Finite Element Method. [Internet] [Thesis]. University of Waterloo; 2017. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/11152.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

LIANG Y. Symbolic Integration of Multibody System Dynamics with Finite Element Method. [Thesis]. University of Waterloo; 2017. Available from: http://hdl.handle.net/10012/11152

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Waterloo

7. Roche, Daniel Steven. Efficient Computation with Sparse and Dense Polynomials.

Degree: 2011, University of Waterloo

 Computations with polynomials are at the heart of any computer algebra system and also have many applications in engineering, coding theory, and cryptography. Generally speaking,… (more)

Subjects/Keywords: computer algebra; symbolic computation; polynomials; multiplication; interpolation; perfect powers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roche, D. S. (2011). Efficient Computation with Sparse and Dense Polynomials. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/5869

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Roche, Daniel Steven. “Efficient Computation with Sparse and Dense Polynomials.” 2011. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/5869.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Roche, Daniel Steven. “Efficient Computation with Sparse and Dense Polynomials.” 2011. Web. 06 Aug 2020.

Vancouver:

Roche DS. Efficient Computation with Sparse and Dense Polynomials. [Internet] [Thesis]. University of Waterloo; 2011. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/5869.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Roche DS. Efficient Computation with Sparse and Dense Polynomials. [Thesis]. University of Waterloo; 2011. Available from: http://hdl.handle.net/10012/5869

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Waterloo

8. Kim, Myung Sub. Hermite form computation of matrices of differential polynomials.

Degree: 2009, University of Waterloo

 Given a matrix A in F(t)[D;δ]n ×  n over the ring of differential polynomials, we first prove the existence of the Hermite form H of A… (more)

Subjects/Keywords: Symbolic Computation; Differential Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kim, M. S. (2009). Hermite form computation of matrices of differential polynomials. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/4626

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kim, Myung Sub. “Hermite form computation of matrices of differential polynomials.” 2009. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/4626.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kim, Myung Sub. “Hermite form computation of matrices of differential polynomials.” 2009. Web. 06 Aug 2020.

Vancouver:

Kim MS. Hermite form computation of matrices of differential polynomials. [Internet] [Thesis]. University of Waterloo; 2009. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/4626.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kim MS. Hermite form computation of matrices of differential polynomials. [Thesis]. University of Waterloo; 2009. Available from: http://hdl.handle.net/10012/4626

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


NSYSU

9. Chen, Cheng-yu. Calculating Distribution Function and Characteristic Function using Mathematica.

Degree: Master, Applied Mathematics, 2010, NSYSU

 This paper deals with the applications of symbolic computation of Mathematica 7.0 (Wolfram, 2008) in distribution theory. The purpose of this study is twofold. Firstly,… (more)

Subjects/Keywords: characteristic function; computer algebra system; independent univariate random variables; Mathematica; numerical computation; symbolic computation; linear combination

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, C. (2010). Calculating Distribution Function and Characteristic Function using Mathematica. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chen, Cheng-yu. “Calculating Distribution Function and Characteristic Function using Mathematica.” 2010. Thesis, NSYSU. Accessed August 06, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chen, Cheng-yu. “Calculating Distribution Function and Characteristic Function using Mathematica.” 2010. Web. 06 Aug 2020.

Vancouver:

Chen C. Calculating Distribution Function and Characteristic Function using Mathematica. [Internet] [Thesis]. NSYSU; 2010. [cited 2020 Aug 06]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen C. Calculating Distribution Function and Characteristic Function using Mathematica. [Thesis]. NSYSU; 2010. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Georgia Tech

10. Steffy, Daniel E. Topics in exact precision mathematical programming.

Degree: PhD, Algorithms, Combinatorics, and Optimization, 2011, Georgia Tech

 The focus of this dissertation is the advancement of theory and computation related to exact precision mathematical programming. Optimization software based on floating-point arithmetic can… (more)

Subjects/Keywords: Linear programming; Mixed-integer programming; Exact computation; Symbolic computation; Linear algebra; Programming (Mathematics); Mathematical optimization; Linear programming

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Steffy, D. E. (2011). Topics in exact precision mathematical programming. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/39639

Chicago Manual of Style (16th Edition):

Steffy, Daniel E. “Topics in exact precision mathematical programming.” 2011. Doctoral Dissertation, Georgia Tech. Accessed August 06, 2020. http://hdl.handle.net/1853/39639.

MLA Handbook (7th Edition):

Steffy, Daniel E. “Topics in exact precision mathematical programming.” 2011. Web. 06 Aug 2020.

Vancouver:

Steffy DE. Topics in exact precision mathematical programming. [Internet] [Doctoral dissertation]. Georgia Tech; 2011. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1853/39639.

Council of Science Editors:

Steffy DE. Topics in exact precision mathematical programming. [Doctoral Dissertation]. Georgia Tech; 2011. Available from: http://hdl.handle.net/1853/39639


University of Western Ontario

11. Moir, Robert H.C. Feasible Computation in Symbolic and Numeric Integration.

Degree: 2017, University of Western Ontario

 Two central concerns in scientific computing are the reliability and efficiency of algorithms. We introduce the term feasible computation to describe algorithms that are reliable… (more)

Subjects/Keywords: symbolic integration; symbolic-numeric integration; unwinding numbers; rational functions; effective validity; effective logic; feasible computation; Numerical Analysis and Computation; Numerical Analysis and Scientific Computing

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moir, R. H. C. (2017). Feasible Computation in Symbolic and Numeric Integration. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/5155

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Moir, Robert H C. “Feasible Computation in Symbolic and Numeric Integration.” 2017. Thesis, University of Western Ontario. Accessed August 06, 2020. https://ir.lib.uwo.ca/etd/5155.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Moir, Robert H C. “Feasible Computation in Symbolic and Numeric Integration.” 2017. Web. 06 Aug 2020.

Vancouver:

Moir RHC. Feasible Computation in Symbolic and Numeric Integration. [Internet] [Thesis]. University of Western Ontario; 2017. [cited 2020 Aug 06]. Available from: https://ir.lib.uwo.ca/etd/5155.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Moir RHC. Feasible Computation in Symbolic and Numeric Integration. [Thesis]. University of Western Ontario; 2017. Available from: https://ir.lib.uwo.ca/etd/5155

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Berkeley

12. Rosen, Zvi. Algebraic Matroids in Applications.

Degree: Mathematics, 2015, University of California – Berkeley

 Algebraic matroids are combinatorial objects defined by the set of coordinates of an algebraic variety. These objects are of interest whenever coordinates hold significance: for… (more)

Subjects/Keywords: Mathematics; Statistics; Algebraic Matroids; Algebraic Statistics; Applied Algebraic Geometry; Chemical Reaction Networks; Combinatorics; Symbolic Computation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rosen, Z. (2015). Algebraic Matroids in Applications. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/1tq3k5bz

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rosen, Zvi. “Algebraic Matroids in Applications.” 2015. Thesis, University of California – Berkeley. Accessed August 06, 2020. http://www.escholarship.org/uc/item/1tq3k5bz.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rosen, Zvi. “Algebraic Matroids in Applications.” 2015. Web. 06 Aug 2020.

Vancouver:

Rosen Z. Algebraic Matroids in Applications. [Internet] [Thesis]. University of California – Berkeley; 2015. [cited 2020 Aug 06]. Available from: http://www.escholarship.org/uc/item/1tq3k5bz.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rosen Z. Algebraic Matroids in Applications. [Thesis]. University of California – Berkeley; 2015. Available from: http://www.escholarship.org/uc/item/1tq3k5bz

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Cincinnati

13. Cabarcas, Daniel. Gröbner Bases Computation and Mutant Polynomials.

Degree: PhD, Arts and Sciences: Mathematical Sciences, 2011, University of Cincinnati

  Gröbner bases are the single most important tool in applicable algebraic geometry. They are used to compute standard representatives in the residue classes of… (more)

Subjects/Keywords: Mathematics; Gr&246; bner bases; Mutant polynomials; Complexity; Algorithms; Symbolic computation; Linear algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cabarcas, D. (2011). Gröbner Bases Computation and Mutant Polynomials. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300

Chicago Manual of Style (16th Edition):

Cabarcas, Daniel. “Gröbner Bases Computation and Mutant Polynomials.” 2011. Doctoral Dissertation, University of Cincinnati. Accessed August 06, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300.

MLA Handbook (7th Edition):

Cabarcas, Daniel. “Gröbner Bases Computation and Mutant Polynomials.” 2011. Web. 06 Aug 2020.

Vancouver:

Cabarcas D. Gröbner Bases Computation and Mutant Polynomials. [Internet] [Doctoral dissertation]. University of Cincinnati; 2011. [cited 2020 Aug 06]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300.

Council of Science Editors:

Cabarcas D. Gröbner Bases Computation and Mutant Polynomials. [Doctoral Dissertation]. University of Cincinnati; 2011. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300

14. Dumont, Louis. Algorithmes rapides pour le calcul symbolique de certaines intégrales de contour à paramètre : Efficient algorithms for the symbolic computation of certain contour integrals with one parameter.

Degree: Docteur es, Mathématiques et informatique, 2016, Université Paris-Saclay (ComUE)

Cette thèse traite de problèmes d'intégration symbolique en calcul formel. L'objectif principal est de mettre au point des algorithmes permettant de calculer rapidement des fonctions… (more)

Subjects/Keywords: Calcul formel; Intégrale; Création télescopique; Diagonale; Marche; Symbolic computation; Integral; Creative telescoping; Diagonal; Walk

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dumont, L. (2016). Algorithmes rapides pour le calcul symbolique de certaines intégrales de contour à paramètre : Efficient algorithms for the symbolic computation of certain contour integrals with one parameter. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2016SACLX111

Chicago Manual of Style (16th Edition):

Dumont, Louis. “Algorithmes rapides pour le calcul symbolique de certaines intégrales de contour à paramètre : Efficient algorithms for the symbolic computation of certain contour integrals with one parameter.” 2016. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed August 06, 2020. http://www.theses.fr/2016SACLX111.

MLA Handbook (7th Edition):

Dumont, Louis. “Algorithmes rapides pour le calcul symbolique de certaines intégrales de contour à paramètre : Efficient algorithms for the symbolic computation of certain contour integrals with one parameter.” 2016. Web. 06 Aug 2020.

Vancouver:

Dumont L. Algorithmes rapides pour le calcul symbolique de certaines intégrales de contour à paramètre : Efficient algorithms for the symbolic computation of certain contour integrals with one parameter. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2016. [cited 2020 Aug 06]. Available from: http://www.theses.fr/2016SACLX111.

Council of Science Editors:

Dumont L. Algorithmes rapides pour le calcul symbolique de certaines intégrales de contour à paramètre : Efficient algorithms for the symbolic computation of certain contour integrals with one parameter. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2016. Available from: http://www.theses.fr/2016SACLX111

15. Hugounenq, Cyril. Volcans et calcul d'isogénies : Volcanoes and isogeny computing.

Degree: Docteur es, Informatique, 2017, Université Paris-Saclay (ComUE)

Le problème du calcul d'isogénies est apparu dans l'algorithme SEA de comptage de points de courbes elliptiques définies sur des corps finis. L'apparition de nouvelles… (more)

Subjects/Keywords: Calcul Formel; Cryptographie; Courbes elliptiques; Isogénies; Symbolic computation; Cryptography; Elliptic Curves; Isogeny

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hugounenq, C. (2017). Volcans et calcul d'isogénies : Volcanoes and isogeny computing. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2017SACLV050

Chicago Manual of Style (16th Edition):

Hugounenq, Cyril. “Volcans et calcul d'isogénies : Volcanoes and isogeny computing.” 2017. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed August 06, 2020. http://www.theses.fr/2017SACLV050.

MLA Handbook (7th Edition):

Hugounenq, Cyril. “Volcans et calcul d'isogénies : Volcanoes and isogeny computing.” 2017. Web. 06 Aug 2020.

Vancouver:

Hugounenq C. Volcans et calcul d'isogénies : Volcanoes and isogeny computing. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2017. [cited 2020 Aug 06]. Available from: http://www.theses.fr/2017SACLV050.

Council of Science Editors:

Hugounenq C. Volcans et calcul d'isogénies : Volcanoes and isogeny computing. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2017. Available from: http://www.theses.fr/2017SACLV050


University of Illinois – Chicago

16. Cerny, Brian M. Numerical Optimization as a Means to Symbolic Regression Program Synthesis.

Degree: 2012, University of Illinois – Chicago

 Over the years there has been an increasing interest in probabilistically oriented Evolutionary Algorithms (EAs), but it has not been until recently that these innovative… (more)

Subjects/Keywords: Genetic Programming; Gene Expression Programming; Prefix Gene Expression Programming; Hidden Markov Model; Symbolic Regression; Differential Evolution; Estimation of Distribution Algorithm; Genetic Algorithm; Symbolic Function Identification; Evolutionary Computation; Evolutionary Algorithm

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cerny, B. M. (2012). Numerical Optimization as a Means to Symbolic Regression Program Synthesis. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/8899

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cerny, Brian M. “Numerical Optimization as a Means to Symbolic Regression Program Synthesis.” 2012. Thesis, University of Illinois – Chicago. Accessed August 06, 2020. http://hdl.handle.net/10027/8899.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cerny, Brian M. “Numerical Optimization as a Means to Symbolic Regression Program Synthesis.” 2012. Web. 06 Aug 2020.

Vancouver:

Cerny BM. Numerical Optimization as a Means to Symbolic Regression Program Synthesis. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10027/8899.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cerny BM. Numerical Optimization as a Means to Symbolic Regression Program Synthesis. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/8899

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


North Carolina State University

17. Cicco, Tracey Martine Westbrook. Algorithms for Computing Restricted Root Systems and Weyl Groups.

Degree: PhD, Mathematics, 2006, North Carolina State University

 While the computational packages LiE, Gap4, Chevie, and Magma are sufficient for work with Lie Groups and their corresponding Lie Algebras, no such packages exist… (more)

Subjects/Keywords: k-structure; symbolic computation; symmetric spaces; linear algebraic groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cicco, T. M. W. (2006). Algorithms for Computing Restricted Root Systems and Weyl Groups. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/4830

Chicago Manual of Style (16th Edition):

Cicco, Tracey Martine Westbrook. “Algorithms for Computing Restricted Root Systems and Weyl Groups.” 2006. Doctoral Dissertation, North Carolina State University. Accessed August 06, 2020. http://www.lib.ncsu.edu/resolver/1840.16/4830.

MLA Handbook (7th Edition):

Cicco, Tracey Martine Westbrook. “Algorithms for Computing Restricted Root Systems and Weyl Groups.” 2006. Web. 06 Aug 2020.

Vancouver:

Cicco TMW. Algorithms for Computing Restricted Root Systems and Weyl Groups. [Internet] [Doctoral dissertation]. North Carolina State University; 2006. [cited 2020 Aug 06]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4830.

Council of Science Editors:

Cicco TMW. Algorithms for Computing Restricted Root Systems and Weyl Groups. [Doctoral Dissertation]. North Carolina State University; 2006. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4830

18. Vaccon, Tristan. Précision p-adique : p-adic precision.

Degree: Docteur es, Mathématiques et applications, 2015, Rennes 1

Les nombres p-adiques sont un analogue des nombres réels plus proche de l’arithmétique. L’avènement ces dernières décennies de la géométrie arithmétique a engendré la création… (more)

Subjects/Keywords: Algorithmique; Gröbner, Bases de; Calcul formel; Analyse numérique; Arithmétique; Algorithmic; Gröbner basis; Symbolic computation; Numerical analysis; Arithmetic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vaccon, T. (2015). Précision p-adique : p-adic precision. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2015REN1S032

Chicago Manual of Style (16th Edition):

Vaccon, Tristan. “Précision p-adique : p-adic precision.” 2015. Doctoral Dissertation, Rennes 1. Accessed August 06, 2020. http://www.theses.fr/2015REN1S032.

MLA Handbook (7th Edition):

Vaccon, Tristan. “Précision p-adique : p-adic precision.” 2015. Web. 06 Aug 2020.

Vancouver:

Vaccon T. Précision p-adique : p-adic precision. [Internet] [Doctoral dissertation]. Rennes 1; 2015. [cited 2020 Aug 06]. Available from: http://www.theses.fr/2015REN1S032.

Council of Science Editors:

Vaccon T. Précision p-adique : p-adic precision. [Doctoral Dissertation]. Rennes 1; 2015. Available from: http://www.theses.fr/2015REN1S032


University of Waterloo

19. Arnold, Andrew. Sparse Polynomial Interpolation and Testing.

Degree: 2016, University of Waterloo

 Interpolation is the process of learning an unknown polynomial f from some set of its evaluations. We consider the interpolation of a sparse polynomial, i.e.,… (more)

Subjects/Keywords: sparse interpolation; sparsity testing; polynomial identity testing; polynomial arithmetic; error-correcting codes; sparse Fourier transform; Boolean functions; symbolic computation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Arnold, A. (2016). Sparse Polynomial Interpolation and Testing. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/10307

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Arnold, Andrew. “Sparse Polynomial Interpolation and Testing.” 2016. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/10307.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Arnold, Andrew. “Sparse Polynomial Interpolation and Testing.” 2016. Web. 06 Aug 2020.

Vancouver:

Arnold A. Sparse Polynomial Interpolation and Testing. [Internet] [Thesis]. University of Waterloo; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/10307.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Arnold A. Sparse Polynomial Interpolation and Testing. [Thesis]. University of Waterloo; 2016. Available from: http://hdl.handle.net/10012/10307

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

20. Bright, Curtis. Computational Methods for Combinatorial and Number Theoretic Problems.

Degree: 2017, University of Waterloo

 Computational methods have become a valuable tool for studying mathematical problems and for constructing large combinatorial objects. In fact, it is often not possible to… (more)

Subjects/Keywords: satisfiability checking; symbolic computation; combinatorics; number theory; Williamson matrices; Complex Golay sequences; minimal primes; Hadamard conjecture

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bright, C. (2017). Computational Methods for Combinatorial and Number Theoretic Problems. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/11761

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bright, Curtis. “Computational Methods for Combinatorial and Number Theoretic Problems.” 2017. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/11761.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bright, Curtis. “Computational Methods for Combinatorial and Number Theoretic Problems.” 2017. Web. 06 Aug 2020.

Vancouver:

Bright C. Computational Methods for Combinatorial and Number Theoretic Problems. [Internet] [Thesis]. University of Waterloo; 2017. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/11761.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bright C. Computational Methods for Combinatorial and Number Theoretic Problems. [Thesis]. University of Waterloo; 2017. Available from: http://hdl.handle.net/10012/11761

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Western Ontario

21. Pan, Wei. Algorithmic Contributions to the Theory of Regular Chains.

Degree: 2011, University of Western Ontario

 Regular chains, introduced about twenty years ago, have emerged as one of the major tools for solving polynomial systems symbolically. In this thesis, we focus… (more)

Subjects/Keywords: symbolic computation; regular chain; regular GCD; subresultant; fast Fourier transform; GPU computing; Other Computer Sciences; Theory and Algorithms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pan, W. (2011). Algorithmic Contributions to the Theory of Regular Chains. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/80

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pan, Wei. “Algorithmic Contributions to the Theory of Regular Chains.” 2011. Thesis, University of Western Ontario. Accessed August 06, 2020. https://ir.lib.uwo.ca/etd/80.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pan, Wei. “Algorithmic Contributions to the Theory of Regular Chains.” 2011. Web. 06 Aug 2020.

Vancouver:

Pan W. Algorithmic Contributions to the Theory of Regular Chains. [Internet] [Thesis]. University of Western Ontario; 2011. [cited 2020 Aug 06]. Available from: https://ir.lib.uwo.ca/etd/80.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pan W. Algorithmic Contributions to the Theory of Regular Chains. [Thesis]. University of Western Ontario; 2011. Available from: https://ir.lib.uwo.ca/etd/80

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

22. Frasson, Miguel. Large Time Behaviour of Neutral Delay Systems.

Degree: 2005, Thomas Stieltjes Institute for Mathematics, Faculty of Mathematics & Natural Sciences, Leiden University

Subjects/Keywords: Dunford calculus; Symbolic computation; Spectral projection; Characteristic equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Frasson, M. (2005). Large Time Behaviour of Neutral Delay Systems. (Doctoral Dissertation). Thomas Stieltjes Institute for Mathematics, Faculty of Mathematics & Natural Sciences, Leiden University. Retrieved from http://hdl.handle.net/1887/616

Chicago Manual of Style (16th Edition):

Frasson, Miguel. “Large Time Behaviour of Neutral Delay Systems.” 2005. Doctoral Dissertation, Thomas Stieltjes Institute for Mathematics, Faculty of Mathematics & Natural Sciences, Leiden University. Accessed August 06, 2020. http://hdl.handle.net/1887/616.

MLA Handbook (7th Edition):

Frasson, Miguel. “Large Time Behaviour of Neutral Delay Systems.” 2005. Web. 06 Aug 2020.

Vancouver:

Frasson M. Large Time Behaviour of Neutral Delay Systems. [Internet] [Doctoral dissertation]. Thomas Stieltjes Institute for Mathematics, Faculty of Mathematics & Natural Sciences, Leiden University; 2005. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1887/616.

Council of Science Editors:

Frasson M. Large Time Behaviour of Neutral Delay Systems. [Doctoral Dissertation]. Thomas Stieltjes Institute for Mathematics, Faculty of Mathematics & Natural Sciences, Leiden University; 2005. Available from: http://hdl.handle.net/1887/616


Leiden University

23. Ruijl, B.J.G. Advances in computational methods for Quantum Field Theory calculations.

Degree: 2017, Leiden University

 In this work we describe three methods to improve the performance of Quantum Field Theory calculations. First, we simplify large expressions to speed up numerical integrations.… (more)

Subjects/Keywords: QFT; QCD; Feynman diagrams; Integrals; Renormalization; Optimization; Symbolic computation; QFT; QCD; Feynman diagrams; Integrals; Renormalization; Optimization; Symbolic computation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ruijl, B. J. G. (2017). Advances in computational methods for Quantum Field Theory calculations. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/59455

Chicago Manual of Style (16th Edition):

Ruijl, B J G. “Advances in computational methods for Quantum Field Theory calculations.” 2017. Doctoral Dissertation, Leiden University. Accessed August 06, 2020. http://hdl.handle.net/1887/59455.

MLA Handbook (7th Edition):

Ruijl, B J G. “Advances in computational methods for Quantum Field Theory calculations.” 2017. Web. 06 Aug 2020.

Vancouver:

Ruijl BJG. Advances in computational methods for Quantum Field Theory calculations. [Internet] [Doctoral dissertation]. Leiden University; 2017. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1887/59455.

Council of Science Editors:

Ruijl BJG. Advances in computational methods for Quantum Field Theory calculations. [Doctoral Dissertation]. Leiden University; 2017. Available from: http://hdl.handle.net/1887/59455

24. Arponen, Teijo. Numerical Solution and Structural Analysis of Differential-Algebraic Equations.

Degree: 2002, Helsinki University of Technology

In the last two decades differential-algebraic equations (DAEs) have become an important branch in numerical analysis. In this Thesis we study them from a new,… (more)

Subjects/Keywords: symbolic computation; Runge-Kutta methods; index reduction; overdetermined differential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Arponen, T. (2002). Numerical Solution and Structural Analysis of Differential-Algebraic Equations. (Thesis). Helsinki University of Technology. Retrieved from http://lib.tkk.fi/Diss/2002/isbn9512259095/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Arponen, Teijo. “Numerical Solution and Structural Analysis of Differential-Algebraic Equations.” 2002. Thesis, Helsinki University of Technology. Accessed August 06, 2020. http://lib.tkk.fi/Diss/2002/isbn9512259095/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Arponen, Teijo. “Numerical Solution and Structural Analysis of Differential-Algebraic Equations.” 2002. Web. 06 Aug 2020.

Vancouver:

Arponen T. Numerical Solution and Structural Analysis of Differential-Algebraic Equations. [Internet] [Thesis]. Helsinki University of Technology; 2002. [cited 2020 Aug 06]. Available from: http://lib.tkk.fi/Diss/2002/isbn9512259095/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Arponen T. Numerical Solution and Structural Analysis of Differential-Algebraic Equations. [Thesis]. Helsinki University of Technology; 2002. Available from: http://lib.tkk.fi/Diss/2002/isbn9512259095/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

25. Watson, Robert Loyd. Lifting Automorphisms from Root Systems to Lie Algebras.

Degree: PhD, Mathematics, 2010, North Carolina State University

 In 1996 and 2000 A.G. Helminck gave the first algorithms for computing some of the structure of symmetric spaces. In this thesis we extend these… (more)

Subjects/Keywords: Symbolic Computation; Root Systems; Lie Algebra; Lie Theory; Lie

…Chapter 11 Programming Interface for Symbolic Computation in LiE Groups and Symmetric Spaces… …Chapter 12 Programming Interface for Symbolic Computation in LiE Groups and Symmetric Spaces… …Computation of the Correction Vector(s) . . . . . . . . . . . . . . . . . . . 4.6… …Classification Scheme for 1-Consistent Helminck Diagrams . . . . . . . . 98 7.8 Computation of the 1… …itself. In particular, we wish to recover the action ¯ in a fashion suitable for computation. θ… 

Page 1 Page 2 Page 3 Page 4 Page 5 Sample image

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Watson, R. L. (2010). Lifting Automorphisms from Root Systems to Lie Algebras. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/6181

Chicago Manual of Style (16th Edition):

Watson, Robert Loyd. “Lifting Automorphisms from Root Systems to Lie Algebras.” 2010. Doctoral Dissertation, North Carolina State University. Accessed August 06, 2020. http://www.lib.ncsu.edu/resolver/1840.16/6181.

MLA Handbook (7th Edition):

Watson, Robert Loyd. “Lifting Automorphisms from Root Systems to Lie Algebras.” 2010. Web. 06 Aug 2020.

Vancouver:

Watson RL. Lifting Automorphisms from Root Systems to Lie Algebras. [Internet] [Doctoral dissertation]. North Carolina State University; 2010. [cited 2020 Aug 06]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/6181.

Council of Science Editors:

Watson RL. Lifting Automorphisms from Root Systems to Lie Algebras. [Doctoral Dissertation]. North Carolina State University; 2010. Available from: http://www.lib.ncsu.edu/resolver/1840.16/6181

26. Amaral, Miguel Martins do. Caracterização e modelação de fissuras em edifícios utilizando 3D laser scanning, com vista à sua reabilitação.

Degree: 2014, Repositório Científico do Instituto Politécnico de Lisboa

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil

Ao longo do tempo, as construções típicas como edifícios, obras de arte,… (more)

Subjects/Keywords: Varrimento Laser 3D; Fissuração; Reconstrução de superfícies; Nuvens de pontos; Computação simbólica; Algoritmos; Reabilitação; 3D laser scanning; Cracks; Surface reconstruction; Point clouds; Symbolic computation; Algorithms; Rehabilitation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Amaral, M. M. d. (2014). Caracterização e modelação de fissuras em edifícios utilizando 3D laser scanning, com vista à sua reabilitação. (Thesis). Repositório Científico do Instituto Politécnico de Lisboa. Retrieved from http://www.rcaap.pt/detail.jsp?id=oai:repositorio.ipl.pt:10400.21/3543

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Amaral, Miguel Martins do. “Caracterização e modelação de fissuras em edifícios utilizando 3D laser scanning, com vista à sua reabilitação.” 2014. Thesis, Repositório Científico do Instituto Politécnico de Lisboa. Accessed August 06, 2020. http://www.rcaap.pt/detail.jsp?id=oai:repositorio.ipl.pt:10400.21/3543.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Amaral, Miguel Martins do. “Caracterização e modelação de fissuras em edifícios utilizando 3D laser scanning, com vista à sua reabilitação.” 2014. Web. 06 Aug 2020.

Vancouver:

Amaral MMd. Caracterização e modelação de fissuras em edifícios utilizando 3D laser scanning, com vista à sua reabilitação. [Internet] [Thesis]. Repositório Científico do Instituto Politécnico de Lisboa; 2014. [cited 2020 Aug 06]. Available from: http://www.rcaap.pt/detail.jsp?id=oai:repositorio.ipl.pt:10400.21/3543.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Amaral MMd. Caracterização e modelação de fissuras em edifícios utilizando 3D laser scanning, com vista à sua reabilitação. [Thesis]. Repositório Científico do Instituto Politécnico de Lisboa; 2014. Available from: http://www.rcaap.pt/detail.jsp?id=oai:repositorio.ipl.pt:10400.21/3543

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

27. Tasić Milan. Computation of generalized inveses.

Degree: PhD, Science, 2003, University of Niš

 Moj cilj nije bio da ispitujem implementaciju svih poznatih metoda za izračunavanje generalisanih metoda. Takođe mi nije bio cilj da poredim direktne i iterativne metode.… (more)

Subjects/Keywords: symbolic computation; applied mathematics; generalized inverses; simboličko izračunavanje; primenjena matematika; generalisani inverzi

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Milan, T. (2003). Computation of generalized inveses. (Doctoral Dissertation). University of Niš. Retrieved from http://dx.doi.org/10.2298/NI20030321TASIC ; http://eteze.ni.ac.rs/application/showtheses?thesesId=159 ; https://fedorani.ni.ac.rs/fedora/get/o:701/bdef:Content/get ; http://vbs.rs/scripts/cobiss?command=SEARCH&base=99999&select=ID=533043350

Chicago Manual of Style (16th Edition):

Milan, Tasić. “Computation of generalized inveses.” 2003. Doctoral Dissertation, University of Niš. Accessed August 06, 2020. http://dx.doi.org/10.2298/NI20030321TASIC ; http://eteze.ni.ac.rs/application/showtheses?thesesId=159 ; https://fedorani.ni.ac.rs/fedora/get/o:701/bdef:Content/get ; http://vbs.rs/scripts/cobiss?command=SEARCH&base=99999&select=ID=533043350.

MLA Handbook (7th Edition):

Milan, Tasić. “Computation of generalized inveses.” 2003. Web. 06 Aug 2020.

Vancouver:

Milan T. Computation of generalized inveses. [Internet] [Doctoral dissertation]. University of Niš; 2003. [cited 2020 Aug 06]. Available from: http://dx.doi.org/10.2298/NI20030321TASIC ; http://eteze.ni.ac.rs/application/showtheses?thesesId=159 ; https://fedorani.ni.ac.rs/fedora/get/o:701/bdef:Content/get ; http://vbs.rs/scripts/cobiss?command=SEARCH&base=99999&select=ID=533043350.

Council of Science Editors:

Milan T. Computation of generalized inveses. [Doctoral Dissertation]. University of Niš; 2003. Available from: http://dx.doi.org/10.2298/NI20030321TASIC ; http://eteze.ni.ac.rs/application/showtheses?thesesId=159 ; https://fedorani.ni.ac.rs/fedora/get/o:701/bdef:Content/get ; http://vbs.rs/scripts/cobiss?command=SEARCH&base=99999&select=ID=533043350


Universitat de Girona

28. Ferrer Mallorquí, Inès. Modal interval based package for robust control.

Degree: 2016, Universitat de Girona

 Els sistemes complexes sovint contenen incerteses que fan que sigui difícil obtenir-ne el seu model i moltes vegades fins i tot ho fan impossible. Un… (more)

Subjects/Keywords: Modal interval analysis; Anàlisi intervalar modal; Análisis intervalar modal; Robust control; Control robust; Controlador robusto; Symbolic computation; Càlcul simbòlic; Cálculo simbólico; Uncertainty; Incertesa; Incertidumbre; 68

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ferrer Mallorquí, I. (2016). Modal interval based package for robust control. (Thesis). Universitat de Girona. Retrieved from http://hdl.handle.net/10803/392159

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ferrer Mallorquí, Inès. “Modal interval based package for robust control.” 2016. Thesis, Universitat de Girona. Accessed August 06, 2020. http://hdl.handle.net/10803/392159.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ferrer Mallorquí, Inès. “Modal interval based package for robust control.” 2016. Web. 06 Aug 2020.

Vancouver:

Ferrer Mallorquí I. Modal interval based package for robust control. [Internet] [Thesis]. Universitat de Girona; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10803/392159.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ferrer Mallorquí I. Modal interval based package for robust control. [Thesis]. Universitat de Girona; 2016. Available from: http://hdl.handle.net/10803/392159

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Waterloo

29. Bombardier, William. Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads.

Degree: 2009, University of Waterloo

 In recent years, there has been a push by automotive manufacturers to improve the efficiency of the vehicle development process. This can be accomplished by… (more)

Subjects/Keywords: Symbolic Computation; Vehicle Dynamics; Road Models; Tire Models; Graph Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bombardier, W. (2009). Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/4818

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bombardier, William. “Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads.” 2009. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/4818.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bombardier, William. “Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads.” 2009. Web. 06 Aug 2020.

Vancouver:

Bombardier W. Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads. [Internet] [Thesis]. University of Waterloo; 2009. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/4818.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bombardier W. Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads. [Thesis]. University of Waterloo; 2009. Available from: http://hdl.handle.net/10012/4818

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Arizona

30. Linfoot, Andy James. A Case Study of A Multithreaded Buchberger Normal Form Algorithm .

Degree: 2006, University of Arizona

 Groebner bases have many applications in mathematics, science, and engineering. This dissertation deals with the algorithmic aspects of computing these bases. The dissertation begins with… (more)

Subjects/Keywords: Applied Mathematics; Symbolic Computation; Groebner Bases; Parallel Computing; Computer Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Linfoot, A. J. (2006). A Case Study of A Multithreaded Buchberger Normal Form Algorithm . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/305141

Chicago Manual of Style (16th Edition):

Linfoot, Andy James. “A Case Study of A Multithreaded Buchberger Normal Form Algorithm .” 2006. Doctoral Dissertation, University of Arizona. Accessed August 06, 2020. http://hdl.handle.net/10150/305141.

MLA Handbook (7th Edition):

Linfoot, Andy James. “A Case Study of A Multithreaded Buchberger Normal Form Algorithm .” 2006. Web. 06 Aug 2020.

Vancouver:

Linfoot AJ. A Case Study of A Multithreaded Buchberger Normal Form Algorithm . [Internet] [Doctoral dissertation]. University of Arizona; 2006. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10150/305141.

Council of Science Editors:

Linfoot AJ. A Case Study of A Multithreaded Buchberger Normal Form Algorithm . [Doctoral Dissertation]. University of Arizona; 2006. Available from: http://hdl.handle.net/10150/305141

[1] [2]

.