Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(symbolic computation)`

.
Showing records 1 – 30 of
47 total matches.

Search Limiters

Dates

- 2016 – 2020 (16)
- 2011 – 2015 (16)
- 2006 – 2010 (10)

▼ Search Limiters

University of Waterloo

1. Gupta, Somit. Hermite Forms of Polynomial Matrices.

Degree: 2011, University of Waterloo

URL: http://hdl.handle.net/10012/6108

► This thesis presents a new algorithm for computing the Hermite form of a polynomial matrix. Given a nonsingular n by n matrix A filled with…
(more)

Subjects/Keywords: Computer Algebra; Matrix Normal Forms; Symbolic Computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gupta, S. (2011). Hermite Forms of Polynomial Matrices. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/6108

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Gupta, Somit. “Hermite Forms of Polynomial Matrices.” 2011. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/6108.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Gupta, Somit. “Hermite Forms of Polynomial Matrices.” 2011. Web. 06 Aug 2020.

Vancouver:

Gupta S. Hermite Forms of Polynomial Matrices. [Internet] [Thesis]. University of Waterloo; 2011. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/6108.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gupta S. Hermite Forms of Polynomial Matrices. [Thesis]. University of Waterloo; 2011. Available from: http://hdl.handle.net/10012/6108

Not specified: Masters Thesis or Doctoral Dissertation

University of Ottawa

2.
Dovlo, Edem.
Development of a *Symbolic* Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates
.

Degree: 2011, University of Ottawa

URL: http://hdl.handle.net/10393/20269

► The Fourier transform is one of the most useful tools in science and engineering and can be expanded to multi-dimensions and curvilinear coordinates. Multidimensional Fourier…
(more)

Subjects/Keywords: 2D Fourier Transform; Polar coordinates; Symbolic Computer Algebra; Symbolic Computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dovlo, E. (2011). Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/20269

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Dovlo, Edem. “Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates .” 2011. Thesis, University of Ottawa. Accessed August 06, 2020. http://hdl.handle.net/10393/20269.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Dovlo, Edem. “Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates .” 2011. Web. 06 Aug 2020.

Vancouver:

Dovlo E. Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates . [Internet] [Thesis]. University of Ottawa; 2011. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10393/20269.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dovlo E. Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates . [Thesis]. University of Ottawa; 2011. Available from: http://hdl.handle.net/10393/20269

Not specified: Masters Thesis or Doctoral Dissertation

University of Plymouth

3.
Carmantini, Giovanni Sirio.
Dynamical systems theory for transparent *symbolic* *computation* in neuronal networks.

Degree: PhD, 2017, University of Plymouth

URL: http://hdl.handle.net/10026.1/8647

► In this thesis, we explore the interface between *symbolic* and dynamical system *computation*, with particular regard to dynamical system models of neuronal networks. In doing…
(more)

Subjects/Keywords: 006.3; Automata Theory; Recurrent Neural Networks; Representation Theory; Neural Symbolic Computation; Dynamical Systems; Symbolic Dynamics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Carmantini, G. S. (2017). Dynamical systems theory for transparent symbolic computation in neuronal networks. (Doctoral Dissertation). University of Plymouth. Retrieved from http://hdl.handle.net/10026.1/8647

Chicago Manual of Style (16^{th} Edition):

Carmantini, Giovanni Sirio. “Dynamical systems theory for transparent symbolic computation in neuronal networks.” 2017. Doctoral Dissertation, University of Plymouth. Accessed August 06, 2020. http://hdl.handle.net/10026.1/8647.

MLA Handbook (7^{th} Edition):

Carmantini, Giovanni Sirio. “Dynamical systems theory for transparent symbolic computation in neuronal networks.” 2017. Web. 06 Aug 2020.

Vancouver:

Carmantini GS. Dynamical systems theory for transparent symbolic computation in neuronal networks. [Internet] [Doctoral dissertation]. University of Plymouth; 2017. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10026.1/8647.

Council of Science Editors:

Carmantini GS. Dynamical systems theory for transparent symbolic computation in neuronal networks. [Doctoral Dissertation]. University of Plymouth; 2017. Available from: http://hdl.handle.net/10026.1/8647

Penn State University

4. Liang, Chao. Approximate solution to second order parabolic equations, with application to financial modeling.

Degree: PhD, Mathematics, 2014, Penn State University

URL: https://etda.libraries.psu.edu/catalog/22656

► In this dissertation, we consider second order parabolic equations with variable coefficients. We derive the closed-form approximations to the associated fundamental solution, as well as…
(more)

Subjects/Keywords: Partial Differential Equations; Financial Modeling; Option Pricing; Approximate Solutions; Symbolic Computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Liang, C. (2014). Approximate solution to second order parabolic equations, with application to financial modeling. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/22656

Chicago Manual of Style (16^{th} Edition):

Liang, Chao. “Approximate solution to second order parabolic equations, with application to financial modeling.” 2014. Doctoral Dissertation, Penn State University. Accessed August 06, 2020. https://etda.libraries.psu.edu/catalog/22656.

MLA Handbook (7^{th} Edition):

Liang, Chao. “Approximate solution to second order parabolic equations, with application to financial modeling.” 2014. Web. 06 Aug 2020.

Vancouver:

Liang C. Approximate solution to second order parabolic equations, with application to financial modeling. [Internet] [Doctoral dissertation]. Penn State University; 2014. [cited 2020 Aug 06]. Available from: https://etda.libraries.psu.edu/catalog/22656.

Council of Science Editors:

Liang C. Approximate solution to second order parabolic equations, with application to financial modeling. [Doctoral Dissertation]. Penn State University; 2014. Available from: https://etda.libraries.psu.edu/catalog/22656

University of Waterloo

5. Heinle, Albert. Computational Approaches to Problems in Noncommutative Algebra – Theory, Applications and Implementations.

Degree: 2016, University of Waterloo

URL: http://hdl.handle.net/10012/10948

► Noncommutative rings appear in several areas of mathematics. Most prominently, they can be used to model operator equations, such as differential or difference equations. In…
(more)

Subjects/Keywords: Noncommutative Algebra; Symbolic Computation; Computer Algebra; Matrix Normal Forms; Cryptography

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Heinle, A. (2016). Computational Approaches to Problems in Noncommutative Algebra – Theory, Applications and Implementations. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/10948

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Heinle, Albert. “Computational Approaches to Problems in Noncommutative Algebra – Theory, Applications and Implementations.” 2016. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/10948.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Heinle, Albert. “Computational Approaches to Problems in Noncommutative Algebra – Theory, Applications and Implementations.” 2016. Web. 06 Aug 2020.

Vancouver:

Heinle A. Computational Approaches to Problems in Noncommutative Algebra – Theory, Applications and Implementations. [Internet] [Thesis]. University of Waterloo; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/10948.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Heinle A. Computational Approaches to Problems in Noncommutative Algebra – Theory, Applications and Implementations. [Thesis]. University of Waterloo; 2016. Available from: http://hdl.handle.net/10012/10948

Not specified: Masters Thesis or Doctoral Dissertation

University of Waterloo

6.
LIANG, YITENG.
* Symbolic* Integration of Multibody System Dynamics with Finite Element Method.

Degree: 2017, University of Waterloo

URL: http://hdl.handle.net/10012/11152

► A general procedure integrating the finite element method with multibody system dynamics using *symbolic* *computation* is presented. It takes advantage of both the nodal formulation…
(more)

Subjects/Keywords: Multibody system dynamics; Finite element method; Symbolic computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

LIANG, Y. (2017). Symbolic Integration of Multibody System Dynamics with Finite Element Method. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/11152

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

LIANG, YITENG. “Symbolic Integration of Multibody System Dynamics with Finite Element Method.” 2017. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/11152.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

LIANG, YITENG. “Symbolic Integration of Multibody System Dynamics with Finite Element Method.” 2017. Web. 06 Aug 2020.

Vancouver:

LIANG Y. Symbolic Integration of Multibody System Dynamics with Finite Element Method. [Internet] [Thesis]. University of Waterloo; 2017. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/11152.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

LIANG Y. Symbolic Integration of Multibody System Dynamics with Finite Element Method. [Thesis]. University of Waterloo; 2017. Available from: http://hdl.handle.net/10012/11152

Not specified: Masters Thesis or Doctoral Dissertation

University of Waterloo

7.
Roche, Daniel Steven.
Efficient *Computation* with Sparse and Dense Polynomials.

Degree: 2011, University of Waterloo

URL: http://hdl.handle.net/10012/5869

► Computations with polynomials are at the heart of any computer algebra system and also have many applications in engineering, coding theory, and cryptography. Generally speaking,…
(more)

Subjects/Keywords: computer algebra; symbolic computation; polynomials; multiplication; interpolation; perfect powers

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Roche, D. S. (2011). Efficient Computation with Sparse and Dense Polynomials. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/5869

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Roche, Daniel Steven. “Efficient Computation with Sparse and Dense Polynomials.” 2011. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/5869.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Roche, Daniel Steven. “Efficient Computation with Sparse and Dense Polynomials.” 2011. Web. 06 Aug 2020.

Vancouver:

Roche DS. Efficient Computation with Sparse and Dense Polynomials. [Internet] [Thesis]. University of Waterloo; 2011. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/5869.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Roche DS. Efficient Computation with Sparse and Dense Polynomials. [Thesis]. University of Waterloo; 2011. Available from: http://hdl.handle.net/10012/5869

Not specified: Masters Thesis or Doctoral Dissertation

University of Waterloo

8.
Kim, Myung Sub.
Hermite form *computation* of matrices of differential polynomials.

Degree: 2009, University of Waterloo

URL: http://hdl.handle.net/10012/4626

► Given a matrix A in F(t)[D;δ]^{n × n} over the ring of differential polynomials, we first prove the existence of the Hermite form H of A…
(more)

Subjects/Keywords: Symbolic Computation; Differential Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kim, M. S. (2009). Hermite form computation of matrices of differential polynomials. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/4626

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kim, Myung Sub. “Hermite form computation of matrices of differential polynomials.” 2009. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/4626.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kim, Myung Sub. “Hermite form computation of matrices of differential polynomials.” 2009. Web. 06 Aug 2020.

Vancouver:

Kim MS. Hermite form computation of matrices of differential polynomials. [Internet] [Thesis]. University of Waterloo; 2009. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/4626.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kim MS. Hermite form computation of matrices of differential polynomials. [Thesis]. University of Waterloo; 2009. Available from: http://hdl.handle.net/10012/4626

Not specified: Masters Thesis or Doctoral Dissertation

NSYSU

9. Chen, Cheng-yu. Calculating Distribution Function and Characteristic Function using Mathematica.

Degree: Master, Applied Mathematics, 2010, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658

► This paper deals with the applications of *symbolic* *computation* of Mathematica 7.0 (Wolfram, 2008) in distribution theory. The purpose of this study is twofold. Firstly,…
(more)

Subjects/Keywords: characteristic function; computer algebra system; independent univariate random variables; Mathematica; numerical computation; symbolic computation; linear combination

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, C. (2010). Calculating Distribution Function and Characteristic Function using Mathematica. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chen, Cheng-yu. “Calculating Distribution Function and Characteristic Function using Mathematica.” 2010. Thesis, NSYSU. Accessed August 06, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chen, Cheng-yu. “Calculating Distribution Function and Characteristic Function using Mathematica.” 2010. Web. 06 Aug 2020.

Vancouver:

Chen C. Calculating Distribution Function and Characteristic Function using Mathematica. [Internet] [Thesis]. NSYSU; 2010. [cited 2020 Aug 06]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen C. Calculating Distribution Function and Characteristic Function using Mathematica. [Thesis]. NSYSU; 2010. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658

Not specified: Masters Thesis or Doctoral Dissertation

Georgia Tech

10. Steffy, Daniel E. Topics in exact precision mathematical programming.

Degree: PhD, Algorithms, Combinatorics, and Optimization, 2011, Georgia Tech

URL: http://hdl.handle.net/1853/39639

► The focus of this dissertation is the advancement of theory and *computation* related to exact precision mathematical programming. Optimization software based on floating-point arithmetic can…
(more)

Subjects/Keywords: Linear programming; Mixed-integer programming; Exact computation; Symbolic computation; Linear algebra; Programming (Mathematics); Mathematical optimization; Linear programming

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Steffy, D. E. (2011). Topics in exact precision mathematical programming. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/39639

Chicago Manual of Style (16^{th} Edition):

Steffy, Daniel E. “Topics in exact precision mathematical programming.” 2011. Doctoral Dissertation, Georgia Tech. Accessed August 06, 2020. http://hdl.handle.net/1853/39639.

MLA Handbook (7^{th} Edition):

Steffy, Daniel E. “Topics in exact precision mathematical programming.” 2011. Web. 06 Aug 2020.

Vancouver:

Steffy DE. Topics in exact precision mathematical programming. [Internet] [Doctoral dissertation]. Georgia Tech; 2011. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1853/39639.

Council of Science Editors:

Steffy DE. Topics in exact precision mathematical programming. [Doctoral Dissertation]. Georgia Tech; 2011. Available from: http://hdl.handle.net/1853/39639

University of Western Ontario

11.
Moir, Robert H.C.
Feasible *Computation* in *Symbolic* and Numeric Integration.

Degree: 2017, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/5155

► Two central concerns in scientific computing are the reliability and efficiency of algorithms. We introduce the term feasible *computation* to describe algorithms that are reliable…
(more)

Subjects/Keywords: symbolic integration; symbolic-numeric integration; unwinding numbers; rational functions; effective validity; effective logic; feasible computation; Numerical Analysis and Computation; Numerical Analysis and Scientific Computing

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Moir, R. H. C. (2017). Feasible Computation in Symbolic and Numeric Integration. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/5155

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Moir, Robert H C. “Feasible Computation in Symbolic and Numeric Integration.” 2017. Thesis, University of Western Ontario. Accessed August 06, 2020. https://ir.lib.uwo.ca/etd/5155.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Moir, Robert H C. “Feasible Computation in Symbolic and Numeric Integration.” 2017. Web. 06 Aug 2020.

Vancouver:

Moir RHC. Feasible Computation in Symbolic and Numeric Integration. [Internet] [Thesis]. University of Western Ontario; 2017. [cited 2020 Aug 06]. Available from: https://ir.lib.uwo.ca/etd/5155.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Moir RHC. Feasible Computation in Symbolic and Numeric Integration. [Thesis]. University of Western Ontario; 2017. Available from: https://ir.lib.uwo.ca/etd/5155

Not specified: Masters Thesis or Doctoral Dissertation

University of California – Berkeley

12. Rosen, Zvi. Algebraic Matroids in Applications.

Degree: Mathematics, 2015, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/1tq3k5bz

► Algebraic matroids are combinatorial objects defined by the set of coordinates of an algebraic variety. These objects are of interest whenever coordinates hold significance: for…
(more)

Subjects/Keywords: Mathematics; Statistics; Algebraic Matroids; Algebraic Statistics; Applied Algebraic Geometry; Chemical Reaction Networks; Combinatorics; Symbolic Computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rosen, Z. (2015). Algebraic Matroids in Applications. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/1tq3k5bz

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Rosen, Zvi. “Algebraic Matroids in Applications.” 2015. Thesis, University of California – Berkeley. Accessed August 06, 2020. http://www.escholarship.org/uc/item/1tq3k5bz.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Rosen, Zvi. “Algebraic Matroids in Applications.” 2015. Web. 06 Aug 2020.

Vancouver:

Rosen Z. Algebraic Matroids in Applications. [Internet] [Thesis]. University of California – Berkeley; 2015. [cited 2020 Aug 06]. Available from: http://www.escholarship.org/uc/item/1tq3k5bz.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rosen Z. Algebraic Matroids in Applications. [Thesis]. University of California – Berkeley; 2015. Available from: http://www.escholarship.org/uc/item/1tq3k5bz

Not specified: Masters Thesis or Doctoral Dissertation

University of Cincinnati

13.
Cabarcas, Daniel.
Gröbner Bases *Computation* and Mutant Polynomials.

Degree: PhD, Arts and Sciences: Mathematical Sciences, 2011, University of Cincinnati

URL: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300

► Gröbner bases are the single most important tool in applicable algebraic geometry. They are used to compute standard representatives in the residue classes of…
(more)

Subjects/Keywords: Mathematics; Gr&246; bner bases; Mutant polynomials; Complexity; Algorithms; Symbolic computation; Linear algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cabarcas, D. (2011). Gröbner Bases Computation and Mutant Polynomials. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300

Chicago Manual of Style (16^{th} Edition):

Cabarcas, Daniel. “Gröbner Bases Computation and Mutant Polynomials.” 2011. Doctoral Dissertation, University of Cincinnati. Accessed August 06, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300.

MLA Handbook (7^{th} Edition):

Cabarcas, Daniel. “Gröbner Bases Computation and Mutant Polynomials.” 2011. Web. 06 Aug 2020.

Vancouver:

Cabarcas D. Gröbner Bases Computation and Mutant Polynomials. [Internet] [Doctoral dissertation]. University of Cincinnati; 2011. [cited 2020 Aug 06]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300.

Council of Science Editors:

Cabarcas D. Gröbner Bases Computation and Mutant Polynomials. [Doctoral Dissertation]. University of Cincinnati; 2011. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300

14.
Dumont, Louis.
Algorithmes rapides pour le calcul symbolique de certaines intégrales de contour à paramètre : Efficient algorithms for the *symbolic* *computation* of certain contour integrals with one parameter.

Degree: Docteur es, Mathématiques et informatique, 2016, Université Paris-Saclay (ComUE)

URL: http://www.theses.fr/2016SACLX111

►

Cette thèse traite de problèmes d'intégration symbolique en calcul formel. L'objectif principal est de mettre au point des algorithmes permettant de calculer rapidement des fonctions… (more)

Subjects/Keywords: Calcul formel; Intégrale; Création télescopique; Diagonale; Marche; Symbolic computation; Integral; Creative telescoping; Diagonal; Walk

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dumont, L. (2016). Algorithmes rapides pour le calcul symbolique de certaines intégrales de contour à paramètre : Efficient algorithms for the symbolic computation of certain contour integrals with one parameter. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2016SACLX111

Chicago Manual of Style (16^{th} Edition):

Dumont, Louis. “Algorithmes rapides pour le calcul symbolique de certaines intégrales de contour à paramètre : Efficient algorithms for the symbolic computation of certain contour integrals with one parameter.” 2016. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed August 06, 2020. http://www.theses.fr/2016SACLX111.

MLA Handbook (7^{th} Edition):

Dumont, Louis. “Algorithmes rapides pour le calcul symbolique de certaines intégrales de contour à paramètre : Efficient algorithms for the symbolic computation of certain contour integrals with one parameter.” 2016. Web. 06 Aug 2020.

Vancouver:

Dumont L. Algorithmes rapides pour le calcul symbolique de certaines intégrales de contour à paramètre : Efficient algorithms for the symbolic computation of certain contour integrals with one parameter. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2016. [cited 2020 Aug 06]. Available from: http://www.theses.fr/2016SACLX111.

Council of Science Editors:

Dumont L. Algorithmes rapides pour le calcul symbolique de certaines intégrales de contour à paramètre : Efficient algorithms for the symbolic computation of certain contour integrals with one parameter. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2016. Available from: http://www.theses.fr/2016SACLX111

15. Hugounenq, Cyril. Volcans et calcul d'isogénies : Volcanoes and isogeny computing.

Degree: Docteur es, Informatique, 2017, Université Paris-Saclay (ComUE)

URL: http://www.theses.fr/2017SACLV050

►

Le problème du calcul d'isogénies est apparu dans l'algorithme SEA de comptage de points de courbes elliptiques définies sur des corps finis. L'apparition de nouvelles… (more)

Subjects/Keywords: Calcul Formel; Cryptographie; Courbes elliptiques; Isogénies; Symbolic computation; Cryptography; Elliptic Curves; Isogeny

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hugounenq, C. (2017). Volcans et calcul d'isogénies : Volcanoes and isogeny computing. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2017SACLV050

Chicago Manual of Style (16^{th} Edition):

Hugounenq, Cyril. “Volcans et calcul d'isogénies : Volcanoes and isogeny computing.” 2017. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed August 06, 2020. http://www.theses.fr/2017SACLV050.

MLA Handbook (7^{th} Edition):

Hugounenq, Cyril. “Volcans et calcul d'isogénies : Volcanoes and isogeny computing.” 2017. Web. 06 Aug 2020.

Vancouver:

Hugounenq C. Volcans et calcul d'isogénies : Volcanoes and isogeny computing. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2017. [cited 2020 Aug 06]. Available from: http://www.theses.fr/2017SACLV050.

Council of Science Editors:

Hugounenq C. Volcans et calcul d'isogénies : Volcanoes and isogeny computing. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2017. Available from: http://www.theses.fr/2017SACLV050

University of Illinois – Chicago

16.
Cerny, Brian M.
Numerical Optimization as a Means to *Symbolic* Regression Program Synthesis.

Degree: 2012, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/8899

► Over the years there has been an increasing interest in probabilistically oriented Evolutionary Algorithms (EAs), but it has not been until recently that these innovative…
(more)

Subjects/Keywords: Genetic Programming; Gene Expression Programming; Prefix Gene Expression Programming; Hidden Markov Model; Symbolic Regression; Differential Evolution; Estimation of Distribution Algorithm; Genetic Algorithm; Symbolic Function Identification; Evolutionary Computation; Evolutionary Algorithm

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cerny, B. M. (2012). Numerical Optimization as a Means to Symbolic Regression Program Synthesis. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/8899

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Cerny, Brian M. “Numerical Optimization as a Means to Symbolic Regression Program Synthesis.” 2012. Thesis, University of Illinois – Chicago. Accessed August 06, 2020. http://hdl.handle.net/10027/8899.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Cerny, Brian M. “Numerical Optimization as a Means to Symbolic Regression Program Synthesis.” 2012. Web. 06 Aug 2020.

Vancouver:

Cerny BM. Numerical Optimization as a Means to Symbolic Regression Program Synthesis. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10027/8899.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cerny BM. Numerical Optimization as a Means to Symbolic Regression Program Synthesis. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/8899

Not specified: Masters Thesis or Doctoral Dissertation

North Carolina State University

17. Cicco, Tracey Martine Westbrook. Algorithms for Computing Restricted Root Systems and Weyl Groups.

Degree: PhD, Mathematics, 2006, North Carolina State University

URL: http://www.lib.ncsu.edu/resolver/1840.16/4830

► While the computational packages LiE, Gap4, Chevie, and Magma are sufficient for work with Lie Groups and their corresponding Lie Algebras, no such packages exist…
(more)

Subjects/Keywords: k-structure; symbolic computation; symmetric spaces; linear algebraic groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cicco, T. M. W. (2006). Algorithms for Computing Restricted Root Systems and Weyl Groups. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/4830

Chicago Manual of Style (16^{th} Edition):

Cicco, Tracey Martine Westbrook. “Algorithms for Computing Restricted Root Systems and Weyl Groups.” 2006. Doctoral Dissertation, North Carolina State University. Accessed August 06, 2020. http://www.lib.ncsu.edu/resolver/1840.16/4830.

MLA Handbook (7^{th} Edition):

Cicco, Tracey Martine Westbrook. “Algorithms for Computing Restricted Root Systems and Weyl Groups.” 2006. Web. 06 Aug 2020.

Vancouver:

Cicco TMW. Algorithms for Computing Restricted Root Systems and Weyl Groups. [Internet] [Doctoral dissertation]. North Carolina State University; 2006. [cited 2020 Aug 06]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4830.

Council of Science Editors:

Cicco TMW. Algorithms for Computing Restricted Root Systems and Weyl Groups. [Doctoral Dissertation]. North Carolina State University; 2006. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4830

18. Vaccon, Tristan. Précision p-adique : p-adic precision.

Degree: Docteur es, Mathématiques et applications, 2015, Rennes 1

URL: http://www.theses.fr/2015REN1S032

►

Les nombres p-adiques sont un analogue des nombres réels plus proche de l’arithmétique. L’avènement ces dernières décennies de la géométrie arithmétique a engendré la création… (more)

Subjects/Keywords: Algorithmique; Gröbner, Bases de; Calcul formel; Analyse numérique; Arithmétique; Algorithmic; Gröbner basis; Symbolic computation; Numerical analysis; Arithmetic

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vaccon, T. (2015). Précision p-adique : p-adic precision. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2015REN1S032

Chicago Manual of Style (16^{th} Edition):

Vaccon, Tristan. “Précision p-adique : p-adic precision.” 2015. Doctoral Dissertation, Rennes 1. Accessed August 06, 2020. http://www.theses.fr/2015REN1S032.

MLA Handbook (7^{th} Edition):

Vaccon, Tristan. “Précision p-adique : p-adic precision.” 2015. Web. 06 Aug 2020.

Vancouver:

Vaccon T. Précision p-adique : p-adic precision. [Internet] [Doctoral dissertation]. Rennes 1; 2015. [cited 2020 Aug 06]. Available from: http://www.theses.fr/2015REN1S032.

Council of Science Editors:

Vaccon T. Précision p-adique : p-adic precision. [Doctoral Dissertation]. Rennes 1; 2015. Available from: http://www.theses.fr/2015REN1S032

University of Waterloo

19. Arnold, Andrew. Sparse Polynomial Interpolation and Testing.

Degree: 2016, University of Waterloo

URL: http://hdl.handle.net/10012/10307

► Interpolation is the process of learning an unknown polynomial f from some set of its evaluations. We consider the interpolation of a sparse polynomial, i.e.,…
(more)

Subjects/Keywords: sparse interpolation; sparsity testing; polynomial identity testing; polynomial arithmetic; error-correcting codes; sparse Fourier transform; Boolean functions; symbolic computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Arnold, A. (2016). Sparse Polynomial Interpolation and Testing. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/10307

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Arnold, Andrew. “Sparse Polynomial Interpolation and Testing.” 2016. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/10307.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Arnold, Andrew. “Sparse Polynomial Interpolation and Testing.” 2016. Web. 06 Aug 2020.

Vancouver:

Arnold A. Sparse Polynomial Interpolation and Testing. [Internet] [Thesis]. University of Waterloo; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/10307.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Arnold A. Sparse Polynomial Interpolation and Testing. [Thesis]. University of Waterloo; 2016. Available from: http://hdl.handle.net/10012/10307

Not specified: Masters Thesis or Doctoral Dissertation

20. Bright, Curtis. Computational Methods for Combinatorial and Number Theoretic Problems.

Degree: 2017, University of Waterloo

URL: http://hdl.handle.net/10012/11761

► Computational methods have become a valuable tool for studying mathematical problems and for constructing large combinatorial objects. In fact, it is often not possible to…
(more)

Subjects/Keywords: satisfiability checking; symbolic computation; combinatorics; number theory; Williamson matrices; Complex Golay sequences; minimal primes; Hadamard conjecture

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bright, C. (2017). Computational Methods for Combinatorial and Number Theoretic Problems. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/11761

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bright, Curtis. “Computational Methods for Combinatorial and Number Theoretic Problems.” 2017. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/11761.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bright, Curtis. “Computational Methods for Combinatorial and Number Theoretic Problems.” 2017. Web. 06 Aug 2020.

Vancouver:

Bright C. Computational Methods for Combinatorial and Number Theoretic Problems. [Internet] [Thesis]. University of Waterloo; 2017. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/11761.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bright C. Computational Methods for Combinatorial and Number Theoretic Problems. [Thesis]. University of Waterloo; 2017. Available from: http://hdl.handle.net/10012/11761

Not specified: Masters Thesis or Doctoral Dissertation

University of Western Ontario

21. Pan, Wei. Algorithmic Contributions to the Theory of Regular Chains.

Degree: 2011, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/80

► Regular chains, introduced about twenty years ago, have emerged as one of the major tools for solving polynomial systems symbolically. In this thesis, we focus…
(more)

Subjects/Keywords: symbolic computation; regular chain; regular GCD; subresultant; fast Fourier transform; GPU computing; Other Computer Sciences; Theory and Algorithms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pan, W. (2011). Algorithmic Contributions to the Theory of Regular Chains. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/80

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pan, Wei. “Algorithmic Contributions to the Theory of Regular Chains.” 2011. Thesis, University of Western Ontario. Accessed August 06, 2020. https://ir.lib.uwo.ca/etd/80.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pan, Wei. “Algorithmic Contributions to the Theory of Regular Chains.” 2011. Web. 06 Aug 2020.

Vancouver:

Pan W. Algorithmic Contributions to the Theory of Regular Chains. [Internet] [Thesis]. University of Western Ontario; 2011. [cited 2020 Aug 06]. Available from: https://ir.lib.uwo.ca/etd/80.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pan W. Algorithmic Contributions to the Theory of Regular Chains. [Thesis]. University of Western Ontario; 2011. Available from: https://ir.lib.uwo.ca/etd/80

Not specified: Masters Thesis or Doctoral Dissertation

22. Frasson, Miguel. Large Time Behaviour of Neutral Delay Systems.

Degree: 2005, Thomas Stieltjes Institute for Mathematics, Faculty of Mathematics & Natural Sciences, Leiden University

URL: http://hdl.handle.net/1887/616

Subjects/Keywords: Dunford calculus; Symbolic computation; Spectral projection; Characteristic equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Frasson, M. (2005). Large Time Behaviour of Neutral Delay Systems. (Doctoral Dissertation). Thomas Stieltjes Institute for Mathematics, Faculty of Mathematics & Natural Sciences, Leiden University. Retrieved from http://hdl.handle.net/1887/616

Chicago Manual of Style (16^{th} Edition):

Frasson, Miguel. “Large Time Behaviour of Neutral Delay Systems.” 2005. Doctoral Dissertation, Thomas Stieltjes Institute for Mathematics, Faculty of Mathematics & Natural Sciences, Leiden University. Accessed August 06, 2020. http://hdl.handle.net/1887/616.

MLA Handbook (7^{th} Edition):

Frasson, Miguel. “Large Time Behaviour of Neutral Delay Systems.” 2005. Web. 06 Aug 2020.

Vancouver:

Frasson M. Large Time Behaviour of Neutral Delay Systems. [Internet] [Doctoral dissertation]. Thomas Stieltjes Institute for Mathematics, Faculty of Mathematics & Natural Sciences, Leiden University; 2005. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1887/616.

Council of Science Editors:

Frasson M. Large Time Behaviour of Neutral Delay Systems. [Doctoral Dissertation]. Thomas Stieltjes Institute for Mathematics, Faculty of Mathematics & Natural Sciences, Leiden University; 2005. Available from: http://hdl.handle.net/1887/616

Leiden University

23. Ruijl, B.J.G. Advances in computational methods for Quantum Field Theory calculations.

Degree: 2017, Leiden University

URL: http://hdl.handle.net/1887/59455

► In this work we describe three methods to improve the performance of Quantum Field Theory calculations. First, we simplify large expressions to speed up numerical integrations.…
(more)

Subjects/Keywords: QFT; QCD; Feynman diagrams; Integrals; Renormalization; Optimization; Symbolic computation; QFT; QCD; Feynman diagrams; Integrals; Renormalization; Optimization; Symbolic computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ruijl, B. J. G. (2017). Advances in computational methods for Quantum Field Theory calculations. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/59455

Chicago Manual of Style (16^{th} Edition):

Ruijl, B J G. “Advances in computational methods for Quantum Field Theory calculations.” 2017. Doctoral Dissertation, Leiden University. Accessed August 06, 2020. http://hdl.handle.net/1887/59455.

MLA Handbook (7^{th} Edition):

Ruijl, B J G. “Advances in computational methods for Quantum Field Theory calculations.” 2017. Web. 06 Aug 2020.

Vancouver:

Ruijl BJG. Advances in computational methods for Quantum Field Theory calculations. [Internet] [Doctoral dissertation]. Leiden University; 2017. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/1887/59455.

Council of Science Editors:

Ruijl BJG. Advances in computational methods for Quantum Field Theory calculations. [Doctoral Dissertation]. Leiden University; 2017. Available from: http://hdl.handle.net/1887/59455

24. Arponen, Teijo. Numerical Solution and Structural Analysis of Differential-Algebraic Equations.

Degree: 2002, Helsinki University of Technology

URL: http://lib.tkk.fi/Diss/2002/isbn9512259095/

►

In the last two decades differential-algebraic equations (DAEs) have become an important branch in numerical analysis. In this Thesis we study them from a new,… (more)

Subjects/Keywords: symbolic computation; Runge-Kutta methods; index reduction; overdetermined differential equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Arponen, T. (2002). Numerical Solution and Structural Analysis of Differential-Algebraic Equations. (Thesis). Helsinki University of Technology. Retrieved from http://lib.tkk.fi/Diss/2002/isbn9512259095/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Arponen, Teijo. “Numerical Solution and Structural Analysis of Differential-Algebraic Equations.” 2002. Thesis, Helsinki University of Technology. Accessed August 06, 2020. http://lib.tkk.fi/Diss/2002/isbn9512259095/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Arponen, Teijo. “Numerical Solution and Structural Analysis of Differential-Algebraic Equations.” 2002. Web. 06 Aug 2020.

Vancouver:

Arponen T. Numerical Solution and Structural Analysis of Differential-Algebraic Equations. [Internet] [Thesis]. Helsinki University of Technology; 2002. [cited 2020 Aug 06]. Available from: http://lib.tkk.fi/Diss/2002/isbn9512259095/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Arponen T. Numerical Solution and Structural Analysis of Differential-Algebraic Equations. [Thesis]. Helsinki University of Technology; 2002. Available from: http://lib.tkk.fi/Diss/2002/isbn9512259095/

Not specified: Masters Thesis or Doctoral Dissertation

25. Watson, Robert Loyd. Lifting Automorphisms from Root Systems to Lie Algebras.

Degree: PhD, Mathematics, 2010, North Carolina State University

URL: http://www.lib.ncsu.edu/resolver/1840.16/6181

► In 1996 and 2000 A.G. Helminck gave the first algorithms for computing some of the structure of symmetric spaces. In this thesis we extend these…
(more)

Subjects/Keywords: Symbolic Computation; Root Systems; Lie Algebra; Lie Theory; Lie

…Chapter 11 Programming Interface for *Symbolic* *Computation* in LiE Groups
and Symmetric Spaces… …Chapter 12 Programming Interface for *Symbolic* *Computation* in LiE Groups
and Symmetric Spaces… …*Computation* of the Correction Vector(s) . . . . . . . . . . . . . . . . . . .
4.6… …Classification Scheme for 1-Consistent Helminck Diagrams . . . . . . . .
98
7.8 *Computation* of the 1… …itself. In particular, we wish to recover the action
¯ in a fashion suitable for *computation*.
θ…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Watson, R. L. (2010). Lifting Automorphisms from Root Systems to Lie Algebras. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/6181

Chicago Manual of Style (16^{th} Edition):

Watson, Robert Loyd. “Lifting Automorphisms from Root Systems to Lie Algebras.” 2010. Doctoral Dissertation, North Carolina State University. Accessed August 06, 2020. http://www.lib.ncsu.edu/resolver/1840.16/6181.

MLA Handbook (7^{th} Edition):

Watson, Robert Loyd. “Lifting Automorphisms from Root Systems to Lie Algebras.” 2010. Web. 06 Aug 2020.

Vancouver:

Watson RL. Lifting Automorphisms from Root Systems to Lie Algebras. [Internet] [Doctoral dissertation]. North Carolina State University; 2010. [cited 2020 Aug 06]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/6181.

Council of Science Editors:

Watson RL. Lifting Automorphisms from Root Systems to Lie Algebras. [Doctoral Dissertation]. North Carolina State University; 2010. Available from: http://www.lib.ncsu.edu/resolver/1840.16/6181

26. Amaral, Miguel Martins do. Caracterização e modelação de fissuras em edifícios utilizando 3D laser scanning, com vista à sua reabilitação.

Degree: 2014, Repositório Científico do Instituto Politécnico de Lisboa

URL: http://www.rcaap.pt/detail.jsp?id=oai:repositorio.ipl.pt:10400.21/3543

►

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil

Ao longo do tempo, as construções típicas como edifícios, obras de arte,… (more)

Subjects/Keywords: Varrimento Laser 3D; Fissuração; Reconstrução de superfícies; Nuvens de pontos; Computação simbólica; Algoritmos; Reabilitação; 3D laser scanning; Cracks; Surface reconstruction; Point clouds; Symbolic computation; Algorithms; Rehabilitation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Amaral, M. M. d. (2014). Caracterização e modelação de fissuras em edifícios utilizando 3D laser scanning, com vista à sua reabilitação. (Thesis). Repositório Científico do Instituto Politécnico de Lisboa. Retrieved from http://www.rcaap.pt/detail.jsp?id=oai:repositorio.ipl.pt:10400.21/3543

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Amaral, Miguel Martins do. “Caracterização e modelação de fissuras em edifícios utilizando 3D laser scanning, com vista à sua reabilitação.” 2014. Thesis, Repositório Científico do Instituto Politécnico de Lisboa. Accessed August 06, 2020. http://www.rcaap.pt/detail.jsp?id=oai:repositorio.ipl.pt:10400.21/3543.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Amaral, Miguel Martins do. “Caracterização e modelação de fissuras em edifícios utilizando 3D laser scanning, com vista à sua reabilitação.” 2014. Web. 06 Aug 2020.

Vancouver:

Amaral MMd. Caracterização e modelação de fissuras em edifícios utilizando 3D laser scanning, com vista à sua reabilitação. [Internet] [Thesis]. Repositório Científico do Instituto Politécnico de Lisboa; 2014. [cited 2020 Aug 06]. Available from: http://www.rcaap.pt/detail.jsp?id=oai:repositorio.ipl.pt:10400.21/3543.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Amaral MMd. Caracterização e modelação de fissuras em edifícios utilizando 3D laser scanning, com vista à sua reabilitação. [Thesis]. Repositório Científico do Instituto Politécnico de Lisboa; 2014. Available from: http://www.rcaap.pt/detail.jsp?id=oai:repositorio.ipl.pt:10400.21/3543

Not specified: Masters Thesis or Doctoral Dissertation

27.
Tasić Milan.
* Computation* of generalized inveses.

Degree: PhD, Science, 2003, University of Niš

URL: http://dx.doi.org/10.2298/NI20030321TASIC ; http://eteze.ni.ac.rs/application/showtheses?thesesId=159 ; https://fedorani.ni.ac.rs/fedora/get/o:701/bdef:Content/get ; http://vbs.rs/scripts/cobiss?command=SEARCH&base=99999&select=ID=533043350

► Moj cilj nije bio da ispitujem implementaciju svih poznatih metoda za izračunavanje generalisanih metoda. Takođe mi nije bio cilj da poredim direktne i iterativne metode.…
(more)

Subjects/Keywords: symbolic computation; applied mathematics; generalized inverses; simboličko izračunavanje; primenjena matematika; generalisani inverzi

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Milan, T. (2003). Computation of generalized inveses. (Doctoral Dissertation). University of Niš. Retrieved from http://dx.doi.org/10.2298/NI20030321TASIC ; http://eteze.ni.ac.rs/application/showtheses?thesesId=159 ; https://fedorani.ni.ac.rs/fedora/get/o:701/bdef:Content/get ; http://vbs.rs/scripts/cobiss?command=SEARCH&base=99999&select=ID=533043350

Chicago Manual of Style (16^{th} Edition):

Milan, Tasić. “Computation of generalized inveses.” 2003. Doctoral Dissertation, University of Niš. Accessed August 06, 2020. http://dx.doi.org/10.2298/NI20030321TASIC ; http://eteze.ni.ac.rs/application/showtheses?thesesId=159 ; https://fedorani.ni.ac.rs/fedora/get/o:701/bdef:Content/get ; http://vbs.rs/scripts/cobiss?command=SEARCH&base=99999&select=ID=533043350.

MLA Handbook (7^{th} Edition):

Milan, Tasić. “Computation of generalized inveses.” 2003. Web. 06 Aug 2020.

Vancouver:

Milan T. Computation of generalized inveses. [Internet] [Doctoral dissertation]. University of Niš; 2003. [cited 2020 Aug 06]. Available from: http://dx.doi.org/10.2298/NI20030321TASIC ; http://eteze.ni.ac.rs/application/showtheses?thesesId=159 ; https://fedorani.ni.ac.rs/fedora/get/o:701/bdef:Content/get ; http://vbs.rs/scripts/cobiss?command=SEARCH&base=99999&select=ID=533043350.

Council of Science Editors:

Milan T. Computation of generalized inveses. [Doctoral Dissertation]. University of Niš; 2003. Available from: http://dx.doi.org/10.2298/NI20030321TASIC ; http://eteze.ni.ac.rs/application/showtheses?thesesId=159 ; https://fedorani.ni.ac.rs/fedora/get/o:701/bdef:Content/get ; http://vbs.rs/scripts/cobiss?command=SEARCH&base=99999&select=ID=533043350

Universitat de Girona

28. Ferrer Mallorquí, Inès. Modal interval based package for robust control.

Degree: 2016, Universitat de Girona

URL: http://hdl.handle.net/10803/392159

► Els sistemes complexes sovint contenen incerteses que fan que sigui difícil obtenir-ne el seu model i moltes vegades fins i tot ho fan impossible. Un…
(more)

Subjects/Keywords: Modal interval analysis; Anàlisi intervalar modal; Análisis intervalar modal; Robust control; Control robust; Controlador robusto; Symbolic computation; Càlcul simbòlic; Cálculo simbólico; Uncertainty; Incertesa; Incertidumbre; 68

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ferrer Mallorquí, I. (2016). Modal interval based package for robust control. (Thesis). Universitat de Girona. Retrieved from http://hdl.handle.net/10803/392159

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ferrer Mallorquí, Inès. “Modal interval based package for robust control.” 2016. Thesis, Universitat de Girona. Accessed August 06, 2020. http://hdl.handle.net/10803/392159.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ferrer Mallorquí, Inès. “Modal interval based package for robust control.” 2016. Web. 06 Aug 2020.

Vancouver:

Ferrer Mallorquí I. Modal interval based package for robust control. [Internet] [Thesis]. Universitat de Girona; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10803/392159.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ferrer Mallorquí I. Modal interval based package for robust control. [Thesis]. Universitat de Girona; 2016. Available from: http://hdl.handle.net/10803/392159

Not specified: Masters Thesis or Doctoral Dissertation

University of Waterloo

29.
Bombardier, William.
* Symbolic* Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads.

Degree: 2009, University of Waterloo

URL: http://hdl.handle.net/10012/4818

► In recent years, there has been a push by automotive manufacturers to improve the efficiency of the vehicle development process. This can be accomplished by…
(more)

Subjects/Keywords: Symbolic Computation; Vehicle Dynamics; Road Models; Tire Models; Graph Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bombardier, W. (2009). Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/4818

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bombardier, William. “Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads.” 2009. Thesis, University of Waterloo. Accessed August 06, 2020. http://hdl.handle.net/10012/4818.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bombardier, William. “Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads.” 2009. Web. 06 Aug 2020.

Vancouver:

Bombardier W. Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads. [Internet] [Thesis]. University of Waterloo; 2009. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10012/4818.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bombardier W. Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads. [Thesis]. University of Waterloo; 2009. Available from: http://hdl.handle.net/10012/4818

Not specified: Masters Thesis or Doctoral Dissertation

University of Arizona

30. Linfoot, Andy James. A Case Study of A Multithreaded Buchberger Normal Form Algorithm .

Degree: 2006, University of Arizona

URL: http://hdl.handle.net/10150/305141

► Groebner bases have many applications in mathematics, science, and engineering. This dissertation deals with the algorithmic aspects of computing these bases. The dissertation begins with…
(more)

Subjects/Keywords: Applied Mathematics; Symbolic Computation; Groebner Bases; Parallel Computing; Computer Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Linfoot, A. J. (2006). A Case Study of A Multithreaded Buchberger Normal Form Algorithm . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/305141

Chicago Manual of Style (16^{th} Edition):

Linfoot, Andy James. “A Case Study of A Multithreaded Buchberger Normal Form Algorithm .” 2006. Doctoral Dissertation, University of Arizona. Accessed August 06, 2020. http://hdl.handle.net/10150/305141.

MLA Handbook (7^{th} Edition):

Linfoot, Andy James. “A Case Study of A Multithreaded Buchberger Normal Form Algorithm .” 2006. Web. 06 Aug 2020.

Vancouver:

Linfoot AJ. A Case Study of A Multithreaded Buchberger Normal Form Algorithm . [Internet] [Doctoral dissertation]. University of Arizona; 2006. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10150/305141.

Council of Science Editors:

Linfoot AJ. A Case Study of A Multithreaded Buchberger Normal Form Algorithm . [Doctoral Dissertation]. University of Arizona; 2006. Available from: http://hdl.handle.net/10150/305141