Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Dates: Last 2 Years

You searched for subject:(swing phase). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Iowa State University

1. Taghavi, Nazita. A device for sensing and balance augmentation using functional electrical stimulation.

Degree: 2020, Iowa State University

Based on World Health Organization (WHO) report, between 250,000 and 500,000 people suffer from disabilities caused by spinal cord injuries each year. The result of this study is development of a medical device to restore walking in such patients using Functional Electrical Stimulation (FES). We selected dogs as our animal subject. This device uses FES to prevent an affected dog with limited walking abilities from falling during walking. The final version of the device includes a sensing core consisted of four Inertial Measurement Units (IMUs) attached to the hip, femur, tibia and metatarsus of our test subject. Using this sensory system, the device tracks and measures the hip, knee and hock joint angles in real time. We use a commercial microcontroller as our analytical core to provide suitable stimulation commands and provide appropriate voltage/current for delivery to target muscles. Data from IMUs are received by microcontroller using I2C bus communication. An advanced embedded C code is developed to program the microcontroller. We discuss a method to recognize the swing and stance phases of the dog gait during walking and propose several balancing strategies to be used for gait control during the stance and swing phase before falling occurs. We design and build a robodog to be compatible with the medical device. We use this robot to program and test the different cores of the device. We test our balancing strategies on our bionic test-bed before applying them on an actual animal subject. Results show the device can provide suitable sensing and stimulation control to balance the body of a dog that has limited ambulation abilities.

Subjects/Keywords: functional electrical stimulation; gait; spinal cord injuries; stance phase; swing phase; wearable body balancing device

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Taghavi, N. (2020). A device for sensing and balance augmentation using functional electrical stimulation. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/17862

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Taghavi, Nazita. “A device for sensing and balance augmentation using functional electrical stimulation.” 2020. Thesis, Iowa State University. Accessed April 15, 2021. https://lib.dr.iastate.edu/etd/17862.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Taghavi, Nazita. “A device for sensing and balance augmentation using functional electrical stimulation.” 2020. Web. 15 Apr 2021.

Vancouver:

Taghavi N. A device for sensing and balance augmentation using functional electrical stimulation. [Internet] [Thesis]. Iowa State University; 2020. [cited 2021 Apr 15]. Available from: https://lib.dr.iastate.edu/etd/17862.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Taghavi N. A device for sensing and balance augmentation using functional electrical stimulation. [Thesis]. Iowa State University; 2020. Available from: https://lib.dr.iastate.edu/etd/17862

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.