Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(support varieties). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Georgia

1. Bagci, Irfan. Cohomology and support varieties for Lie superalgebras.

Degree: 2014, University of Georgia

 Boe, Kujawa and Nakano recently investigated relative cohomology for classical Lie superalgebras and developed a theory of support varieties. The dimensions of these support varieties(more)

Subjects/Keywords: Lie superalgebras; cohomology; support varieties; rank varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bagci, I. (2014). Cohomology and support varieties for Lie superalgebras. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/25377

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bagci, Irfan. “Cohomology and support varieties for Lie superalgebras.” 2014. Thesis, University of Georgia. Accessed September 21, 2020. http://hdl.handle.net/10724/25377.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bagci, Irfan. “Cohomology and support varieties for Lie superalgebras.” 2014. Web. 21 Sep 2020.

Vancouver:

Bagci I. Cohomology and support varieties for Lie superalgebras. [Internet] [Thesis]. University of Georgia; 2014. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10724/25377.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bagci I. Cohomology and support varieties for Lie superalgebras. [Thesis]. University of Georgia; 2014. Available from: http://hdl.handle.net/10724/25377

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Georgia

2. Cooper, Bobbe Jane. Support varieties of tilting modules over GLn.

Degree: 2014, University of Georgia

 Let G be a reductive algebraic group scheme defined over the finite field Fp, with Frobenius kernel G1. The tilting modules of G are defined… (more)

Subjects/Keywords: algebraic groups; tilting modules; support varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cooper, B. J. (2014). Support varieties of tilting modules over GLn. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/24586

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cooper, Bobbe Jane. “Support varieties of tilting modules over GLn.” 2014. Thesis, University of Georgia. Accessed September 21, 2020. http://hdl.handle.net/10724/24586.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cooper, Bobbe Jane. “Support varieties of tilting modules over GLn.” 2014. Web. 21 Sep 2020.

Vancouver:

Cooper BJ. Support varieties of tilting modules over GLn. [Internet] [Thesis]. University of Georgia; 2014. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10724/24586.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cooper BJ. Support varieties of tilting modules over GLn. [Thesis]. University of Georgia; 2014. Available from: http://hdl.handle.net/10724/24586

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Washington

3. Stark, James. Sheaves on support varieties and varieties of elementary subalgebras.

Degree: PhD, 2015, University of Washington

 We present several results about two closely related types of objects: the projectivized scheme \PG of one parameter subgroups of an infinitesimal group scheme G… (more)

Subjects/Keywords: Lie Algebras; Representation Theory; Sheaves; Support Varieties; Mathematics; mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stark, J. (2015). Sheaves on support varieties and varieties of elementary subalgebras. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/34026

Chicago Manual of Style (16th Edition):

Stark, James. “Sheaves on support varieties and varieties of elementary subalgebras.” 2015. Doctoral Dissertation, University of Washington. Accessed September 21, 2020. http://hdl.handle.net/1773/34026.

MLA Handbook (7th Edition):

Stark, James. “Sheaves on support varieties and varieties of elementary subalgebras.” 2015. Web. 21 Sep 2020.

Vancouver:

Stark J. Sheaves on support varieties and varieties of elementary subalgebras. [Internet] [Doctoral dissertation]. University of Washington; 2015. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/1773/34026.

Council of Science Editors:

Stark J. Sheaves on support varieties and varieties of elementary subalgebras. [Doctoral Dissertation]. University of Washington; 2015. Available from: http://hdl.handle.net/1773/34026


University of Georgia

4. Hardesty, William Dietrich. On support varieties for algebraic groups.

Degree: 2016, University of Georgia

 Let G be a reductive algebraic group scheme defined over 𝔽p and let G1 denote the Frobenius kernel of G. To each finite-dimensional G-module M,… (more)

Subjects/Keywords: Representation Theory; Algebraic Groups; Support Varieties; Tilting Modules

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hardesty, W. D. (2016). On support varieties for algebraic groups. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/36129

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hardesty, William Dietrich. “On support varieties for algebraic groups.” 2016. Thesis, University of Georgia. Accessed September 21, 2020. http://hdl.handle.net/10724/36129.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hardesty, William Dietrich. “On support varieties for algebraic groups.” 2016. Web. 21 Sep 2020.

Vancouver:

Hardesty WD. On support varieties for algebraic groups. [Internet] [Thesis]. University of Georgia; 2016. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10724/36129.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hardesty WD. On support varieties for algebraic groups. [Thesis]. University of Georgia; 2016. Available from: http://hdl.handle.net/10724/36129

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Southern California

5. Warner, Harry Jared, IV. Springer isomorphisms and the variety of elementary subalgebras.

Degree: PhD, Mathematics, 2015, University of Southern California

 Over a field of large enough characteristic, we use the canonical Springer isomorphism between the unipotent variety of a connected, reductive group and the nilpotent… (more)

Subjects/Keywords: affine group schemes; representation theory; support varieties; Springer isomorphism; algebraic groups; elementary subalgebras; restricted Lie algebras; elementary Abelian subgroups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Warner, Harry Jared, I. (2015). Springer isomorphisms and the variety of elementary subalgebras. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023

Chicago Manual of Style (16th Edition):

Warner, Harry Jared, IV. “Springer isomorphisms and the variety of elementary subalgebras.” 2015. Doctoral Dissertation, University of Southern California. Accessed September 21, 2020. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023.

MLA Handbook (7th Edition):

Warner, Harry Jared, IV. “Springer isomorphisms and the variety of elementary subalgebras.” 2015. Web. 21 Sep 2020.

Vancouver:

Warner, Harry Jared I. Springer isomorphisms and the variety of elementary subalgebras. [Internet] [Doctoral dissertation]. University of Southern California; 2015. [cited 2020 Sep 21]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023.

Council of Science Editors:

Warner, Harry Jared I. Springer isomorphisms and the variety of elementary subalgebras. [Doctoral Dissertation]. University of Southern California; 2015. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/541250/rec/6023


Uniwersytet im. Adama Mickiewicza w Poznaniu

6. Rzonsowski, Piotr. Arytmetyka Grupy Mordella-Weila na rozmaitości abelowej nad ciałem skończenie generowanym nad Q .

Degree: 2010, Uniwersytet im. Adama Mickiewicza w Poznaniu

 Niniejsza rozprawa jest poświęcona rozwiązaniu dwóch problemów. Pierwszym zagadnieniem jakie jest rozważany w rozprawie jest problem nośnika. Jako pierwszy sformułował go P. Erdös w następujący… (more)

Subjects/Keywords: rozmaitości abelowe; abelian varieties; schematy abelowe; abelian scheme; nośnik; support

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rzonsowski, P. (2010). Arytmetyka Grupy Mordella-Weila na rozmaitości abelowej nad ciałem skończenie generowanym nad Q . (Doctoral Dissertation). Uniwersytet im. Adama Mickiewicza w Poznaniu. Retrieved from http://hdl.handle.net/10593/433

Chicago Manual of Style (16th Edition):

Rzonsowski, Piotr. “Arytmetyka Grupy Mordella-Weila na rozmaitości abelowej nad ciałem skończenie generowanym nad Q .” 2010. Doctoral Dissertation, Uniwersytet im. Adama Mickiewicza w Poznaniu. Accessed September 21, 2020. http://hdl.handle.net/10593/433.

MLA Handbook (7th Edition):

Rzonsowski, Piotr. “Arytmetyka Grupy Mordella-Weila na rozmaitości abelowej nad ciałem skończenie generowanym nad Q .” 2010. Web. 21 Sep 2020.

Vancouver:

Rzonsowski P. Arytmetyka Grupy Mordella-Weila na rozmaitości abelowej nad ciałem skończenie generowanym nad Q . [Internet] [Doctoral dissertation]. Uniwersytet im. Adama Mickiewicza w Poznaniu; 2010. [cited 2020 Sep 21]. Available from: http://hdl.handle.net/10593/433.

Council of Science Editors:

Rzonsowski P. Arytmetyka Grupy Mordella-Weila na rozmaitości abelowej nad ciałem skończenie generowanym nad Q . [Doctoral Dissertation]. Uniwersytet im. Adama Mickiewicza w Poznaniu; 2010. Available from: http://hdl.handle.net/10593/433

.