Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(superconvergence). Showing records 1 – 14 of 14 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Gallinato Contino, Olivier. Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne : Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian grid.

Degree: Docteur es, Mathématiques appliquées et calcul scientifique, 2016, Bordeaux

Cette thèse présente des travaux concernant des phénomènes d'invasion tumorale, aux échelles tissulaire et cellulaire. La première partie est consacrée à deux modèles mathématiques continus.… (more)

Subjects/Keywords: Cancer; Invadopodia; Problème d’interface mobile; Superconvergence; Cancer; Invadopodia; Free-boundary problem; Superconvergence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gallinato Contino, O. (2016). Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne : Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian grid. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2016BORD0257

Chicago Manual of Style (16th Edition):

Gallinato Contino, Olivier. “Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne : Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian grid.” 2016. Doctoral Dissertation, Bordeaux. Accessed August 23, 2019. http://www.theses.fr/2016BORD0257.

MLA Handbook (7th Edition):

Gallinato Contino, Olivier. “Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne : Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian grid.” 2016. Web. 23 Aug 2019.

Vancouver:

Gallinato Contino O. Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne : Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian grid. [Internet] [Doctoral dissertation]. Bordeaux; 2016. [cited 2019 Aug 23]. Available from: http://www.theses.fr/2016BORD0257.

Council of Science Editors:

Gallinato Contino O. Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne : Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian grid. [Doctoral Dissertation]. Bordeaux; 2016. Available from: http://www.theses.fr/2016BORD0257


University of Waterloo

2. Chalmers, Noel. Superconvergence, Superaccuracy, and Stability of the Discontinuous Galerkin Finite Element Method.

Degree: 2015, University of Waterloo

 This thesis is concerned with the investigation of the superconvergence, superaccuracy, and stability properties of the discontinuous Galerkin (DG) finite element method in one and… (more)

Subjects/Keywords: finite element; discontinuous Galerkin; dissipation; dispersion; superconvergence; CFL condition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chalmers, N. (2015). Superconvergence, Superaccuracy, and Stability of the Discontinuous Galerkin Finite Element Method. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/9652

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chalmers, Noel. “Superconvergence, Superaccuracy, and Stability of the Discontinuous Galerkin Finite Element Method.” 2015. Thesis, University of Waterloo. Accessed August 23, 2019. http://hdl.handle.net/10012/9652.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chalmers, Noel. “Superconvergence, Superaccuracy, and Stability of the Discontinuous Galerkin Finite Element Method.” 2015. Web. 23 Aug 2019.

Vancouver:

Chalmers N. Superconvergence, Superaccuracy, and Stability of the Discontinuous Galerkin Finite Element Method. [Internet] [Thesis]. University of Waterloo; 2015. [cited 2019 Aug 23]. Available from: http://hdl.handle.net/10012/9652.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chalmers N. Superconvergence, Superaccuracy, and Stability of the Discontinuous Galerkin Finite Element Method. [Thesis]. University of Waterloo; 2015. Available from: http://hdl.handle.net/10012/9652

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


The Ohio State University

3. Conroy, Colton J. hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport.

Degree: PhD, Civil Engineering, 2014, The Ohio State University

 In this dissertation, we present the development and implementation of a high-order, discontinuous Galerkin (DG), three-dimensional coastal ocean circulation and transport model. The model solves… (more)

Subjects/Keywords: Applied Mathematics; Civil Engineering; discontinuous Galerkin, coastal ocean circulation, finite element methods, superconvergence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Conroy, C. J. (2014). hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743

Chicago Manual of Style (16th Edition):

Conroy, Colton J. “hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport.” 2014. Doctoral Dissertation, The Ohio State University. Accessed August 23, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743.

MLA Handbook (7th Edition):

Conroy, Colton J. “hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport.” 2014. Web. 23 Aug 2019.

Vancouver:

Conroy CJ. hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport. [Internet] [Doctoral dissertation]. The Ohio State University; 2014. [cited 2019 Aug 23]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743.

Council of Science Editors:

Conroy CJ. hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport. [Doctoral Dissertation]. The Ohio State University; 2014. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743


Virginia Tech

4. Mechaii, Idir. A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes.

Degree: PhD, Mathematics, 2012, Virginia Tech

 In this thesis, we present a simple and efficient \emph{a posteriori} error estimation procedure for a discontinuous finite element method applied to scalar first-order hyperbolic… (more)

Subjects/Keywords: a posteriori error estimation; Discontinuous Galerkin method; hyperbolic problems; superconvergence; tetrahedral meshes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mechaii, I. (2012). A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/77344

Chicago Manual of Style (16th Edition):

Mechaii, Idir. “A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes.” 2012. Doctoral Dissertation, Virginia Tech. Accessed August 23, 2019. http://hdl.handle.net/10919/77344.

MLA Handbook (7th Edition):

Mechaii, Idir. “A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes.” 2012. Web. 23 Aug 2019.

Vancouver:

Mechaii I. A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes. [Internet] [Doctoral dissertation]. Virginia Tech; 2012. [cited 2019 Aug 23]. Available from: http://hdl.handle.net/10919/77344.

Council of Science Editors:

Mechaii I. A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes. [Doctoral Dissertation]. Virginia Tech; 2012. Available from: http://hdl.handle.net/10919/77344


University of California – San Diego

5. Li, Yuwen. Some superconvergence estimates of mixed and nonconforming finite element methods.

Degree: Mathematics, 2019, University of California – San Diego

 In this dissertation, we develop new superconvergence estimates of mixed and nonconforming finite element methods on mildly structured grids, where most pairs of adjacent triangles… (more)

Subjects/Keywords: Mathematics; Applied mathematics; elliptic equations; mildly structured grids; mixed methods; nonconforming methods; recovery; superconvergence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, Y. (2019). Some superconvergence estimates of mixed and nonconforming finite element methods. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/93k1n9pf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Li, Yuwen. “Some superconvergence estimates of mixed and nonconforming finite element methods.” 2019. Thesis, University of California – San Diego. Accessed August 23, 2019. http://www.escholarship.org/uc/item/93k1n9pf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Li, Yuwen. “Some superconvergence estimates of mixed and nonconforming finite element methods.” 2019. Web. 23 Aug 2019.

Vancouver:

Li Y. Some superconvergence estimates of mixed and nonconforming finite element methods. [Internet] [Thesis]. University of California – San Diego; 2019. [cited 2019 Aug 23]. Available from: http://www.escholarship.org/uc/item/93k1n9pf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Li Y. Some superconvergence estimates of mixed and nonconforming finite element methods. [Thesis]. University of California – San Diego; 2019. Available from: http://www.escholarship.org/uc/item/93k1n9pf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Padilla, Peter A. Superconvergence in Iterated Solutions of Integral Equations.

Degree: PhD, Mathematics and Statistics, 1998, Old Dominion University

  In this thesis, we investigate the superconvergence phenomenon of the iterated numerical solutions for the Fredholm integral equations of the second kind as well… (more)

Subjects/Keywords: Fredholm equations; Galerkin methods; Hammerstein equations; Superconvergence; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Padilla, P. A. (1998). Superconvergence in Iterated Solutions of Integral Equations. (Doctoral Dissertation). Old Dominion University. Retrieved from 9780599059580 ; https://digitalcommons.odu.edu/mathstat_etds/44

Chicago Manual of Style (16th Edition):

Padilla, Peter A. “Superconvergence in Iterated Solutions of Integral Equations.” 1998. Doctoral Dissertation, Old Dominion University. Accessed August 23, 2019. 9780599059580 ; https://digitalcommons.odu.edu/mathstat_etds/44.

MLA Handbook (7th Edition):

Padilla, Peter A. “Superconvergence in Iterated Solutions of Integral Equations.” 1998. Web. 23 Aug 2019.

Vancouver:

Padilla PA. Superconvergence in Iterated Solutions of Integral Equations. [Internet] [Doctoral dissertation]. Old Dominion University; 1998. [cited 2019 Aug 23]. Available from: 9780599059580 ; https://digitalcommons.odu.edu/mathstat_etds/44.

Council of Science Editors:

Padilla PA. Superconvergence in Iterated Solutions of Integral Equations. [Doctoral Dissertation]. Old Dominion University; 1998. Available from: 9780599059580 ; https://digitalcommons.odu.edu/mathstat_etds/44

7. Steiner, Christophe. Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation.

Degree: Docteur es, Mathématiques appliquées, 2014, Université de Strasbourg

Cette thèse propose et analyse des méthodes numériques pour la résolution de l'équation de Vlasov. Cette équation modélise l'évolution d'une espèce de particules chargées sous… (more)

Subjects/Keywords: Equation de Vlasov; Méthodes semi-Lagrangiennes; Equations équivalentes; Superconvergence; GPU; Gyromoyenne; Equation de quasi-neutralité; Modèle gyrocinétique; Vlasov equation; Semi-Lagrangian methods; Equivalent equations; Superconvergence; GPU; Gyrokinetic model; Gyroaverage; Quasi-neutrality equation; 515; 518; 533.7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Steiner, C. (2014). Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2014STRAD033

Chicago Manual of Style (16th Edition):

Steiner, Christophe. “Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation.” 2014. Doctoral Dissertation, Université de Strasbourg. Accessed August 23, 2019. http://www.theses.fr/2014STRAD033.

MLA Handbook (7th Edition):

Steiner, Christophe. “Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation.” 2014. Web. 23 Aug 2019.

Vancouver:

Steiner C. Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2014. [cited 2019 Aug 23]. Available from: http://www.theses.fr/2014STRAD033.

Council of Science Editors:

Steiner C. Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov : Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equation. [Doctoral Dissertation]. Université de Strasbourg; 2014. Available from: http://www.theses.fr/2014STRAD033


Delft University of Technology

8. Li, X. Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity.

Degree: 2015, Delft University of Technology

 In this dissertation, we focus on exploiting superconvergence for discontinuous Galerkin methods and constructing a superconvergence extraction technique, in particular, Smoothness-Increasing Accuracy-Conserving (SIAC) filtering. The… (more)

Subjects/Keywords: Discontinuous Galerkin method; post-processing; superconvergence; nonuniform meshes; SIAC filtering; boundaries

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, X. (2015). Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a

Chicago Manual of Style (16th Edition):

Li, X. “Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity.” 2015. Doctoral Dissertation, Delft University of Technology. Accessed August 23, 2019. http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a.

MLA Handbook (7th Edition):

Li, X. “Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity.” 2015. Web. 23 Aug 2019.

Vancouver:

Li X. Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity. [Internet] [Doctoral dissertation]. Delft University of Technology; 2015. [cited 2019 Aug 23]. Available from: http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a.

Council of Science Editors:

Li X. Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity. [Doctoral Dissertation]. Delft University of Technology; 2015. Available from: http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; urn:NBN:nl:ui:24-uuid:9f05eba0-6f66-438a-9abc-109dae23842a ; http://resolver.tudelft.nl/uuid:9f05eba0-6f66-438a-9abc-109dae23842a


Virginia Tech

9. Temimi, Helmi. A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation.

Degree: PhD, Mathematics, 2008, Virginia Tech

 We propose a new discontinuous finite element method for higher-order initial value problems where the finite element solution exhibits an optimal convergence rate in the… (more)

Subjects/Keywords: Superconvergence; Discontinuous Galerkin Method; a posteriori error estimation; wave equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Temimi, H. (2008). A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26454

Chicago Manual of Style (16th Edition):

Temimi, Helmi. “A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation.” 2008. Doctoral Dissertation, Virginia Tech. Accessed August 23, 2019. http://hdl.handle.net/10919/26454.

MLA Handbook (7th Edition):

Temimi, Helmi. “A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation.” 2008. Web. 23 Aug 2019.

Vancouver:

Temimi H. A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation. [Internet] [Doctoral dissertation]. Virginia Tech; 2008. [cited 2019 Aug 23]. Available from: http://hdl.handle.net/10919/26454.

Council of Science Editors:

Temimi H. A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation. [Doctoral Dissertation]. Virginia Tech; 2008. Available from: http://hdl.handle.net/10919/26454


Virginia Tech

10. Baccouch, Mahboub. Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes.

Degree: PhD, Mathematics, 2008, Virginia Tech

 In this thesis, we present new superconvergence properties of discontinuous Galerkin (DG) methods for two-dimensional hyperbolic problems. We investigate the superconvergence properties of the DG… (more)

Subjects/Keywords: hyperbolic problems; a posteriori errorestimates; Discontinuous Galerkin method; triangular meshes; superconvergence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baccouch, M. (2008). Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26331

Chicago Manual of Style (16th Edition):

Baccouch, Mahboub. “Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes.” 2008. Doctoral Dissertation, Virginia Tech. Accessed August 23, 2019. http://hdl.handle.net/10919/26331.

MLA Handbook (7th Edition):

Baccouch, Mahboub. “Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes.” 2008. Web. 23 Aug 2019.

Vancouver:

Baccouch M. Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes. [Internet] [Doctoral dissertation]. Virginia Tech; 2008. [cited 2019 Aug 23]. Available from: http://hdl.handle.net/10919/26331.

Council of Science Editors:

Baccouch M. Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes. [Doctoral Dissertation]. Virginia Tech; 2008. Available from: http://hdl.handle.net/10919/26331

11. Novaprateep, Boriboon. Superconvergence of Iterated Solutions for Linear and Nonlinear Integral Equations: Wavelet Applications.

Degree: PhD, Mathematics and Statistics, 2003, Old Dominion University

  In this dissertation, we develop the Petrov-Galerkin method and the iterated Petrov-Galerkin method for a class of nonlinear Hammerstein equation. We also investigate the… (more)

Subjects/Keywords: Integral equations; Iterated solutions; Linear integral equations; Nonlinear integral equations; Superconvergence; Wavelet; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Novaprateep, B. (2003). Superconvergence of Iterated Solutions for Linear and Nonlinear Integral Equations: Wavelet Applications. (Doctoral Dissertation). Old Dominion University. Retrieved from 9780496584963 ; https://digitalcommons.odu.edu/mathstat_etds/31

Chicago Manual of Style (16th Edition):

Novaprateep, Boriboon. “Superconvergence of Iterated Solutions for Linear and Nonlinear Integral Equations: Wavelet Applications.” 2003. Doctoral Dissertation, Old Dominion University. Accessed August 23, 2019. 9780496584963 ; https://digitalcommons.odu.edu/mathstat_etds/31.

MLA Handbook (7th Edition):

Novaprateep, Boriboon. “Superconvergence of Iterated Solutions for Linear and Nonlinear Integral Equations: Wavelet Applications.” 2003. Web. 23 Aug 2019.

Vancouver:

Novaprateep B. Superconvergence of Iterated Solutions for Linear and Nonlinear Integral Equations: Wavelet Applications. [Internet] [Doctoral dissertation]. Old Dominion University; 2003. [cited 2019 Aug 23]. Available from: 9780496584963 ; https://digitalcommons.odu.edu/mathstat_etds/31.

Council of Science Editors:

Novaprateep B. Superconvergence of Iterated Solutions for Linear and Nonlinear Integral Equations: Wavelet Applications. [Doctoral Dissertation]. Old Dominion University; 2003. Available from: 9780496584963 ; https://digitalcommons.odu.edu/mathstat_etds/31


NSYSU

12. Huang, Hung-Tsai. Global Superconvergence of Finite Element Methods for Elliptic Equations.

Degree: PhD, Applied Mathematics, 2003, NSYSU

 In the dissertation we discuss the rectangular elements, Adini's elements and p-order Lagrange elements, which were constructed in the rectangular finite spaces. The special rectangular… (more)

Subjects/Keywords: global superconvergence; Lagrange elements; singularity; combined methods; posteriori interpolant; Adiniâs element; finite element methods; blending curves.; elliptic equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, H. (2003). Global Superconvergence of Finite Element Methods for Elliptic Equations. (Doctoral Dissertation). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0606103-220737

Chicago Manual of Style (16th Edition):

Huang, Hung-Tsai. “Global Superconvergence of Finite Element Methods for Elliptic Equations.” 2003. Doctoral Dissertation, NSYSU. Accessed August 23, 2019. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0606103-220737.

MLA Handbook (7th Edition):

Huang, Hung-Tsai. “Global Superconvergence of Finite Element Methods for Elliptic Equations.” 2003. Web. 23 Aug 2019.

Vancouver:

Huang H. Global Superconvergence of Finite Element Methods for Elliptic Equations. [Internet] [Doctoral dissertation]. NSYSU; 2003. [cited 2019 Aug 23]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0606103-220737.

Council of Science Editors:

Huang H. Global Superconvergence of Finite Element Methods for Elliptic Equations. [Doctoral Dissertation]. NSYSU; 2003. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0606103-220737


Virginia Tech

13. Weinhart, Thomas. A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws.

Degree: PhD, Mathematics, 2009, Virginia Tech

 In this dissertation we present an analysis for the discontinuous Galerkin discretization error of multi-dimensional first-order linear symmetric and symmetrizable hyperbolic systems of conservation laws.… (more)

Subjects/Keywords: hyperbolic systems of conservation laws; a posteriori error estimation; superconvergence; adaptivity; discontinuous Galerkin method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Weinhart, T. (2009). A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26571

Chicago Manual of Style (16th Edition):

Weinhart, Thomas. “A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws.” 2009. Doctoral Dissertation, Virginia Tech. Accessed August 23, 2019. http://hdl.handle.net/10919/26571.

MLA Handbook (7th Edition):

Weinhart, Thomas. “A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws.” 2009. Web. 23 Aug 2019.

Vancouver:

Weinhart T. A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws. [Internet] [Doctoral dissertation]. Virginia Tech; 2009. [cited 2019 Aug 23]. Available from: http://hdl.handle.net/10919/26571.

Council of Science Editors:

Weinhart T. A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws. [Doctoral Dissertation]. Virginia Tech; 2009. Available from: http://hdl.handle.net/10919/26571

14. Guo, Hailong. Recovery Techniques For Finite Element Methods And Their Applications.

Degree: PhD, Mathematics, 2015, Wayne State University

  Recovery techniques are important post-processing methods to obtain improved approximate solutions from primary data with reasonable cost. The practical us- age of recovery techniques… (more)

Subjects/Keywords: finite element; gradient recovery; Hessian recovery; polynomial preserving; superconvergence; ultraconvergence; Mathematics

superconvergence property. This chapter is based on our submitted paper [51]. 4 CHAPTER 2… …important role in superconvergence analysis [32, 71, 109]. Meshes can also be… …presented to illustrate superconvergence of the proposed gradient recovery method in Section 3.4… …prove O(h1.5 ) superconvergence for the simple averaging method on uniform mesh of… …and Raviart-Thomas element [76] and the superconvergence result of RaviartThomas… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guo, H. (2015). Recovery Techniques For Finite Element Methods And Their Applications. (Doctoral Dissertation). Wayne State University. Retrieved from https://digitalcommons.wayne.edu/oa_dissertations/1313

Chicago Manual of Style (16th Edition):

Guo, Hailong. “Recovery Techniques For Finite Element Methods And Their Applications.” 2015. Doctoral Dissertation, Wayne State University. Accessed August 23, 2019. https://digitalcommons.wayne.edu/oa_dissertations/1313.

MLA Handbook (7th Edition):

Guo, Hailong. “Recovery Techniques For Finite Element Methods And Their Applications.” 2015. Web. 23 Aug 2019.

Vancouver:

Guo H. Recovery Techniques For Finite Element Methods And Their Applications. [Internet] [Doctoral dissertation]. Wayne State University; 2015. [cited 2019 Aug 23]. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1313.

Council of Science Editors:

Guo H. Recovery Techniques For Finite Element Methods And Their Applications. [Doctoral Dissertation]. Wayne State University; 2015. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1313

.