Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(super geometric convergence). Showing records 1 – 2 of 2 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


NSYSU

1. Weng, Zhi-hong. Double-geometric Convergent Methods for ODEs.

Degree: Master, Applied Mathematics, 2013, NSYSU

We first review all possible convergent speeds of existing numerical methods. Then we focus on super-geometric convergent behaviors, which is faster than exponential one, of spectral, Kansaâs and Picardâs methods for solving ordinary differential equations. We discover that Newtonâs method on power series domain possesses the fastest double-exponential convergence. Advisors/Committee Members: Hung-Tsai Huang (chair), Tsung-Lin Lee (chair), Tzon-Tzer Lu (committee member), Chieh-Sen Huang (chair).

Subjects/Keywords: spectral method; Picardâs iteration; radial basis function; ordinary differential equation; speed of convergence; Newtonâs method; super-geometric convergence; double-geometric convergence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Weng, Z. (2013). Double-geometric Convergent Methods for ODEs. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0611113-231801

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Weng, Zhi-hong. “Double-geometric Convergent Methods for ODEs.” 2013. Thesis, NSYSU. Accessed November 15, 2019. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0611113-231801.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Weng, Zhi-hong. “Double-geometric Convergent Methods for ODEs.” 2013. Web. 15 Nov 2019.

Vancouver:

Weng Z. Double-geometric Convergent Methods for ODEs. [Internet] [Thesis]. NSYSU; 2013. [cited 2019 Nov 15]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0611113-231801.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Weng Z. Double-geometric Convergent Methods for ODEs. [Thesis]. NSYSU; 2013. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0611113-231801

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


NSYSU

2. Yan, Kang-Ming. Super-geometric Convergence of Trefftz Method for Helmholtz Equation.

Degree: Master, Applied Mathematics, 2012, NSYSU

In literature Trefftz method normally has geometric (exponential) convergence. Recently many scholars have found that spectral method in some cases can converge faster than exponential, which is called super-geometric convergence. Since Trefftz method can be regarded as a kind of spectral method, we expect it might possess super-geometric convergence too. In this thesis, we classify all types of super-geometric convergence and compare their speeds. We develop a method to decide the convergent type of given error data. Finally we can observe in many numerical experiments the super-geometric convergence of Trefftz method to solve Helmholtz boundary value problems. Advisors/Committee Members: Zi-Cai Li (chair), Tzon-Tzer Lu (committee member), Chien-Sen Huang (chair).

Subjects/Keywords: super-geometric convergence; rate of convergence; singularity analysis; Trefftz method; Helmholtz equation; boundary value problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yan, K. (2012). Super-geometric Convergence of Trefftz Method for Helmholtz Equation. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0807112-112527

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yan, Kang-Ming. “Super-geometric Convergence of Trefftz Method for Helmholtz Equation.” 2012. Thesis, NSYSU. Accessed November 15, 2019. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0807112-112527.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yan, Kang-Ming. “Super-geometric Convergence of Trefftz Method for Helmholtz Equation.” 2012. Web. 15 Nov 2019.

Vancouver:

Yan K. Super-geometric Convergence of Trefftz Method for Helmholtz Equation. [Internet] [Thesis]. NSYSU; 2012. [cited 2019 Nov 15]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0807112-112527.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yan K. Super-geometric Convergence of Trefftz Method for Helmholtz Equation. [Thesis]. NSYSU; 2012. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0807112-112527

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.