Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(stochastic partial differential equation). Showing records 1 – 30 of 13925 total matches.

[1] [2] [3] [4] [5] … [465]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters


Delft University of Technology

1. Van Leeuwen, J.P.H. A nonlinear Schrödinger equation in L² with multiplicative white noise:.

Degree: 2011, Delft University of Technology

In this thesis existence and uniqueness of the solution of a nonlinear Schrödinger equation in L² with multiplicative white noise is proven under some assumptions. Furthermore, pathwise L²-norm conservation of the solution is studied. Advisors/Committee Members: Veraar, M.C..

Subjects/Keywords: stochastic partial differential equation; nonlinear Schrödinger equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Van Leeuwen, J. P. H. (2011). A nonlinear Schrödinger equation in L² with multiplicative white noise:. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be

Chicago Manual of Style (16th Edition):

Van Leeuwen, J P H. “A nonlinear Schrödinger equation in L² with multiplicative white noise:.” 2011. Masters Thesis, Delft University of Technology. Accessed October 23, 2017. http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be.

MLA Handbook (7th Edition):

Van Leeuwen, J P H. “A nonlinear Schrödinger equation in L² with multiplicative white noise:.” 2011. Web. 23 Oct 2017.

Vancouver:

Van Leeuwen JPH. A nonlinear Schrödinger equation in L² with multiplicative white noise:. [Internet] [Masters thesis]. Delft University of Technology; 2011. [cited 2017 Oct 23]. Available from: http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be.

Council of Science Editors:

Van Leeuwen JPH. A nonlinear Schrödinger equation in L² with multiplicative white noise:. [Masters Thesis]. Delft University of Technology; 2011. Available from: http://resolver.tudelft.nl/uuid:33bc6c32-bf78-4a99-82a4-f315b21781be


Cornell University

2. Chen, Peng. Novel Uncertainty Quantification Techniques For Problems Described By Stochastic Partial Differential Equations .

Degree: 2014, Cornell University

 Uncertainty propagation (UP) in physical systems governed by PDEs is a challenging problem. This thesis addresses the development of a number of innovative techniques that… (more)

Subjects/Keywords: Uncertainty quantification; stochastic partial differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, P. (2014). Novel Uncertainty Quantification Techniques For Problems Described By Stochastic Partial Differential Equations . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/38898

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chen, Peng. “Novel Uncertainty Quantification Techniques For Problems Described By Stochastic Partial Differential Equations .” 2014. Thesis, Cornell University. Accessed October 23, 2017. http://hdl.handle.net/1813/38898.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chen, Peng. “Novel Uncertainty Quantification Techniques For Problems Described By Stochastic Partial Differential Equations .” 2014. Web. 23 Oct 2017.

Vancouver:

Chen P. Novel Uncertainty Quantification Techniques For Problems Described By Stochastic Partial Differential Equations . [Internet] [Thesis]. Cornell University; 2014. [cited 2017 Oct 23]. Available from: http://hdl.handle.net/1813/38898.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen P. Novel Uncertainty Quantification Techniques For Problems Described By Stochastic Partial Differential Equations . [Thesis]. Cornell University; 2014. Available from: http://hdl.handle.net/1813/38898

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Alberta

3. Huang, Hanlin. Optimal Portfolio-Consumption with Habit Formation under Partial Observations.

Degree: MS, Department of Mathematical and Statistical Sciences, 2016, University of Alberta

 The aim of my thesis consists of characterizing explicitly the optimal consumption and investment strategy for an investor, when her habit level process is incorporated… (more)

Subjects/Keywords: Habit formation; partial observation; stochastic differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, H. (2016). Optimal Portfolio-Consumption with Habit Formation under Partial Observations. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/cmc87pq439

Chicago Manual of Style (16th Edition):

Huang, Hanlin. “Optimal Portfolio-Consumption with Habit Formation under Partial Observations.” 2016. Masters Thesis, University of Alberta. Accessed October 23, 2017. https://era.library.ualberta.ca/files/cmc87pq439.

MLA Handbook (7th Edition):

Huang, Hanlin. “Optimal Portfolio-Consumption with Habit Formation under Partial Observations.” 2016. Web. 23 Oct 2017.

Vancouver:

Huang H. Optimal Portfolio-Consumption with Habit Formation under Partial Observations. [Internet] [Masters thesis]. University of Alberta; 2016. [cited 2017 Oct 23]. Available from: https://era.library.ualberta.ca/files/cmc87pq439.

Council of Science Editors:

Huang H. Optimal Portfolio-Consumption with Habit Formation under Partial Observations. [Masters Thesis]. University of Alberta; 2016. Available from: https://era.library.ualberta.ca/files/cmc87pq439


University of Waterloo

4. Tang, Herbert Hoi Chi. The Effects of Extrinsic and Intrinsic Noise on a Tumour and a Proposed Metastasis Model.

Degree: 2015, University of Waterloo

 Cancer is a ubiquitous disease that afflicts millions of people worldwide and we will undoubtedly encounter it at some point in our lives, whether it… (more)

Subjects/Keywords: Stochastic Differential Equation; Partial Differential Equation; Stochastic Processes; Master Equation; Mathematical Biology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tang, H. H. C. (2015). The Effects of Extrinsic and Intrinsic Noise on a Tumour and a Proposed Metastasis Model. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/10023

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Tang, Herbert Hoi Chi. “The Effects of Extrinsic and Intrinsic Noise on a Tumour and a Proposed Metastasis Model.” 2015. Thesis, University of Waterloo. Accessed October 23, 2017. http://hdl.handle.net/10012/10023.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Tang, Herbert Hoi Chi. “The Effects of Extrinsic and Intrinsic Noise on a Tumour and a Proposed Metastasis Model.” 2015. Web. 23 Oct 2017.

Vancouver:

Tang HHC. The Effects of Extrinsic and Intrinsic Noise on a Tumour and a Proposed Metastasis Model. [Internet] [Thesis]. University of Waterloo; 2015. [cited 2017 Oct 23]. Available from: http://hdl.handle.net/10012/10023.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tang HHC. The Effects of Extrinsic and Intrinsic Noise on a Tumour and a Proposed Metastasis Model. [Thesis]. University of Waterloo; 2015. Available from: http://hdl.handle.net/10012/10023

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Kim, Chanwoo. Initial Boundary Value Problem of the Boltzmann Equation.

Degree: PhD, Mathematics, 2011, Brown University

 In this thesis, we study some boundary problems of the Boltzmann equation and the Boltzmann equation with the large external potential.If the gas is contained… (more)

Subjects/Keywords: partial differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kim, C. (2011). Initial Boundary Value Problem of the Boltzmann Equation. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:11308/

Chicago Manual of Style (16th Edition):

Kim, Chanwoo. “Initial Boundary Value Problem of the Boltzmann Equation.” 2011. Doctoral Dissertation, Brown University. Accessed October 23, 2017. https://repository.library.brown.edu/studio/item/bdr:11308/.

MLA Handbook (7th Edition):

Kim, Chanwoo. “Initial Boundary Value Problem of the Boltzmann Equation.” 2011. Web. 23 Oct 2017.

Vancouver:

Kim C. Initial Boundary Value Problem of the Boltzmann Equation. [Internet] [Doctoral dissertation]. Brown University; 2011. [cited 2017 Oct 23]. Available from: https://repository.library.brown.edu/studio/item/bdr:11308/.

Council of Science Editors:

Kim C. Initial Boundary Value Problem of the Boltzmann Equation. [Doctoral Dissertation]. Brown University; 2011. Available from: https://repository.library.brown.edu/studio/item/bdr:11308/


Texas Tech University

6. Dogan, Elife. INVESTIGATION OF STOCHASTIC REACTION-DIFFUSION PARTIAL DIFFERENTIAL EQUATIONS AND OF CONSISTENT STOCHASTIC DIFFERENTIAL EQUATION MODELS FOR ONE-LOCUS AND TWO-LOCI POPULATION GENETICS.

Degree: Mathematics and Statistics, 2011, Texas Tech University

 There are two main parts in this work separated into chapters 2 and 3 and chapters 4 and 5, respectively. In the first part, stochastic(more)

Subjects/Keywords: Stochastic partial differential equation; Population genetics; It^o system; Stochastic model; Reaction-diffusion

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dogan, E. (2011). INVESTIGATION OF STOCHASTIC REACTION-DIFFUSION PARTIAL DIFFERENTIAL EQUATIONS AND OF CONSISTENT STOCHASTIC DIFFERENTIAL EQUATION MODELS FOR ONE-LOCUS AND TWO-LOCI POPULATION GENETICS. (Doctoral Dissertation). Texas Tech University. Retrieved from http://hdl.handle.net/2346/ETD-TTU-2011-08-1628

Chicago Manual of Style (16th Edition):

Dogan, Elife. “INVESTIGATION OF STOCHASTIC REACTION-DIFFUSION PARTIAL DIFFERENTIAL EQUATIONS AND OF CONSISTENT STOCHASTIC DIFFERENTIAL EQUATION MODELS FOR ONE-LOCUS AND TWO-LOCI POPULATION GENETICS.” 2011. Doctoral Dissertation, Texas Tech University. Accessed October 23, 2017. http://hdl.handle.net/2346/ETD-TTU-2011-08-1628.

MLA Handbook (7th Edition):

Dogan, Elife. “INVESTIGATION OF STOCHASTIC REACTION-DIFFUSION PARTIAL DIFFERENTIAL EQUATIONS AND OF CONSISTENT STOCHASTIC DIFFERENTIAL EQUATION MODELS FOR ONE-LOCUS AND TWO-LOCI POPULATION GENETICS.” 2011. Web. 23 Oct 2017.

Vancouver:

Dogan E. INVESTIGATION OF STOCHASTIC REACTION-DIFFUSION PARTIAL DIFFERENTIAL EQUATIONS AND OF CONSISTENT STOCHASTIC DIFFERENTIAL EQUATION MODELS FOR ONE-LOCUS AND TWO-LOCI POPULATION GENETICS. [Internet] [Doctoral dissertation]. Texas Tech University; 2011. [cited 2017 Oct 23]. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-08-1628.

Council of Science Editors:

Dogan E. INVESTIGATION OF STOCHASTIC REACTION-DIFFUSION PARTIAL DIFFERENTIAL EQUATIONS AND OF CONSISTENT STOCHASTIC DIFFERENTIAL EQUATION MODELS FOR ONE-LOCUS AND TWO-LOCI POPULATION GENETICS. [Doctoral Dissertation]. Texas Tech University; 2011. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-08-1628


University of Kansas

7. Le, Khoa Nguyen. Nonlinear Integrals, Diffusion in Random Environments and Stochastic Partial Differential Equations.

Degree: PhD, Mathematics, 2015, University of Kansas

 In this dissertation, we investigate various problems in the analysis of stochastic (partial) differential equations. A part of the dissertation introduces several notions of nonlinear… (more)

Subjects/Keywords: Mathematics; Feynman-Kac formula; Garsia-Rodemich-Rumsey inequality; random environment; stochastic partial differential equation; transport differential equation; young integration

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Le, K. N. (2015). Nonlinear Integrals, Diffusion in Random Environments and Stochastic Partial Differential Equations. (Doctoral Dissertation). University of Kansas. Retrieved from http://hdl.handle.net/1808/19176

Chicago Manual of Style (16th Edition):

Le, Khoa Nguyen. “Nonlinear Integrals, Diffusion in Random Environments and Stochastic Partial Differential Equations.” 2015. Doctoral Dissertation, University of Kansas. Accessed October 23, 2017. http://hdl.handle.net/1808/19176.

MLA Handbook (7th Edition):

Le, Khoa Nguyen. “Nonlinear Integrals, Diffusion in Random Environments and Stochastic Partial Differential Equations.” 2015. Web. 23 Oct 2017.

Vancouver:

Le KN. Nonlinear Integrals, Diffusion in Random Environments and Stochastic Partial Differential Equations. [Internet] [Doctoral dissertation]. University of Kansas; 2015. [cited 2017 Oct 23]. Available from: http://hdl.handle.net/1808/19176.

Council of Science Editors:

Le KN. Nonlinear Integrals, Diffusion in Random Environments and Stochastic Partial Differential Equations. [Doctoral Dissertation]. University of Kansas; 2015. Available from: http://hdl.handle.net/1808/19176


University of Notre Dame

8. Sujin Khomrutai. Regularity of Singular Solutions to Sigma_k-Yamabe Problems.

Degree: PhD, Mathematics, 2009, University of Notre Dame

  We prove some regularity results for singular solutions of σk-Yamabe problem, where the singular set is a compact hypersurface in a Riemannian manifold. This… (more)

Subjects/Keywords: partial differential equation; singular solutions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khomrutai, S. (2009). Regularity of Singular Solutions to Sigma_k-Yamabe Problems. (Doctoral Dissertation). University of Notre Dame. Retrieved from https://curate.nd.edu/show/wd375t37b4z

Chicago Manual of Style (16th Edition):

Khomrutai, Sujin. “Regularity of Singular Solutions to Sigma_k-Yamabe Problems.” 2009. Doctoral Dissertation, University of Notre Dame. Accessed October 23, 2017. https://curate.nd.edu/show/wd375t37b4z.

MLA Handbook (7th Edition):

Khomrutai, Sujin. “Regularity of Singular Solutions to Sigma_k-Yamabe Problems.” 2009. Web. 23 Oct 2017.

Vancouver:

Khomrutai S. Regularity of Singular Solutions to Sigma_k-Yamabe Problems. [Internet] [Doctoral dissertation]. University of Notre Dame; 2009. [cited 2017 Oct 23]. Available from: https://curate.nd.edu/show/wd375t37b4z.

Council of Science Editors:

Khomrutai S. Regularity of Singular Solutions to Sigma_k-Yamabe Problems. [Doctoral Dissertation]. University of Notre Dame; 2009. Available from: https://curate.nd.edu/show/wd375t37b4z


University of Oxford

9. Schwarz, Daniel Christopher. Price modelling and asset valuation in carbon emission and electricity markets.

Degree: PhD, 2012, University of Oxford

 This thesis is concerned with the mathematical analysis of electricity and carbon emission markets. We introduce a novel, versatile and tractable stochastic framework for the… (more)

Subjects/Keywords: 333.793; Mathematics; Mathematical finance; Probability theory and stochastic processes; Derivative Pricing; Emission Market; Electricity; Forward-Backward Stochastic Differential Equation; Non-linear Partial Differential Equation; Commodity Market

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schwarz, D. C. (2012). Price modelling and asset valuation in carbon emission and electricity markets. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:7de118d2-a61b-4125-a615-29ff82ac7316 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655012

Chicago Manual of Style (16th Edition):

Schwarz, Daniel Christopher. “Price modelling and asset valuation in carbon emission and electricity markets.” 2012. Doctoral Dissertation, University of Oxford. Accessed October 23, 2017. http://ora.ox.ac.uk/objects/uuid:7de118d2-a61b-4125-a615-29ff82ac7316 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655012.

MLA Handbook (7th Edition):

Schwarz, Daniel Christopher. “Price modelling and asset valuation in carbon emission and electricity markets.” 2012. Web. 23 Oct 2017.

Vancouver:

Schwarz DC. Price modelling and asset valuation in carbon emission and electricity markets. [Internet] [Doctoral dissertation]. University of Oxford; 2012. [cited 2017 Oct 23]. Available from: http://ora.ox.ac.uk/objects/uuid:7de118d2-a61b-4125-a615-29ff82ac7316 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655012.

Council of Science Editors:

Schwarz DC. Price modelling and asset valuation in carbon emission and electricity markets. [Doctoral Dissertation]. University of Oxford; 2012. Available from: http://ora.ox.ac.uk/objects/uuid:7de118d2-a61b-4125-a615-29ff82ac7316 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655012


University of Notre Dame

10. Melissa Davidson. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation.

Degree: PhD, Mathematics, 2013, University of Notre Dame

  It is shown that the data-to-solution map for the generalized reduced Ostrovsky (gRO) equation is not uniformly continuous on bounded sets in Sobolev spaces… (more)

Subjects/Keywords: wave equation; soliton; partial differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Davidson, M. (2013). Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation. (Doctoral Dissertation). University of Notre Dame. Retrieved from https://curate.nd.edu/show/9p29086334c

Chicago Manual of Style (16th Edition):

Davidson, Melissa. “Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation.” 2013. Doctoral Dissertation, University of Notre Dame. Accessed October 23, 2017. https://curate.nd.edu/show/9p29086334c.

MLA Handbook (7th Edition):

Davidson, Melissa. “Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation.” 2013. Web. 23 Oct 2017.

Vancouver:

Davidson M. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation. [Internet] [Doctoral dissertation]. University of Notre Dame; 2013. [cited 2017 Oct 23]. Available from: https://curate.nd.edu/show/9p29086334c.

Council of Science Editors:

Davidson M. Continuity Properties of the Solution Map for the Generalized Reduced Ostrovsky Equation. [Doctoral Dissertation]. University of Notre Dame; 2013. Available from: https://curate.nd.edu/show/9p29086334c


Johannes Gutenberg Universität Mainz

11. Denz, Markus. Convergence results for stochastic particle systems with social interaction.

Degree: 2013, Johannes Gutenberg Universität Mainz

We consider stochastic individual-based models for social behaviour of groups of animals. In these models the trajectory of each animal is given by a stochastic(more)

Subjects/Keywords: stochastisches Partikelsystem; nichtlineare partielle Differentialgleichung; Schwarmverhalten; stochastic particle system; nonlinear partial differential equation; swarm behaviour; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Denz, M. (2013). Convergence results for stochastic particle systems with social interaction. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2014/3647/

Chicago Manual of Style (16th Edition):

Denz, Markus. “Convergence results for stochastic particle systems with social interaction.” 2013. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed October 23, 2017. http://ubm.opus.hbz-nrw.de/volltexte/2014/3647/.

MLA Handbook (7th Edition):

Denz, Markus. “Convergence results for stochastic particle systems with social interaction.” 2013. Web. 23 Oct 2017.

Vancouver:

Denz M. Convergence results for stochastic particle systems with social interaction. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2013. [cited 2017 Oct 23]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2014/3647/.

Council of Science Editors:

Denz M. Convergence results for stochastic particle systems with social interaction. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2013. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2014/3647/


East Carolina University

12. Steely, Kristin Michelle. Applications of Stochastic Processes to Cancer Research.

Degree: 2013, East Carolina University

 The purpose of this thesis is to implement stochastic models that are currently used to analyze the impact of different drug treatments on cancer and… (more)

Subjects/Keywords: Mathematics; Applied mathematics; Medicine; Kolmogorov forward equation; Markov processes; Ordinary differential equations; Partial differential equations; Probability generating function; Stochastic processes; Stochastic analysis; Drug resistance in cancer cells

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Steely, K. M. (2013). Applications of Stochastic Processes to Cancer Research. (Thesis). East Carolina University. Retrieved from http://hdl.handle.net/10342/1764

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Steely, Kristin Michelle. “Applications of Stochastic Processes to Cancer Research.” 2013. Thesis, East Carolina University. Accessed October 23, 2017. http://hdl.handle.net/10342/1764.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Steely, Kristin Michelle. “Applications of Stochastic Processes to Cancer Research.” 2013. Web. 23 Oct 2017.

Vancouver:

Steely KM. Applications of Stochastic Processes to Cancer Research. [Internet] [Thesis]. East Carolina University; 2013. [cited 2017 Oct 23]. Available from: http://hdl.handle.net/10342/1764.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Steely KM. Applications of Stochastic Processes to Cancer Research. [Thesis]. East Carolina University; 2013. Available from: http://hdl.handle.net/10342/1764

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Bulut, Gul. Derivation of stochastic partial differential equations for correlated random walk models and stochastic differential equation models for phylogenetic trees.

Degree: 2012, Texas Tech University

 This work has two parts. In the first part, stochastic partial differential equations for the one-dimensional telegraph equation and the two-dimensional linear transport equation are… (more)

Subjects/Keywords: Stochastic differential equation; Stochastic partial differential equation; Telegraph equation; Transport equation; Macroevolutionary process

…OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS FOR CORRELATED RANDOM WALK MODELS Usually… …the two-dimensional linear transport equation. These equations are deterministic partial… …independent variables are allowed to go to zero. The resulting stochastic partial differential… …equation is an SPDE model for a correlated random walk. In this chapter, a stochastic version of… …the telegraph equation is derived and a stochastic version of the two-dimensional linear… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bulut, G. (2012). Derivation of stochastic partial differential equations for correlated random walk models and stochastic differential equation models for phylogenetic trees. (Doctoral Dissertation). Texas Tech University. Retrieved from http://hdl.handle.net/2346/50749

Chicago Manual of Style (16th Edition):

Bulut, Gul. “Derivation of stochastic partial differential equations for correlated random walk models and stochastic differential equation models for phylogenetic trees.” 2012. Doctoral Dissertation, Texas Tech University. Accessed October 23, 2017. http://hdl.handle.net/2346/50749.

MLA Handbook (7th Edition):

Bulut, Gul. “Derivation of stochastic partial differential equations for correlated random walk models and stochastic differential equation models for phylogenetic trees.” 2012. Web. 23 Oct 2017.

Vancouver:

Bulut G. Derivation of stochastic partial differential equations for correlated random walk models and stochastic differential equation models for phylogenetic trees. [Internet] [Doctoral dissertation]. Texas Tech University; 2012. [cited 2017 Oct 23]. Available from: http://hdl.handle.net/2346/50749.

Council of Science Editors:

Bulut G. Derivation of stochastic partial differential equations for correlated random walk models and stochastic differential equation models for phylogenetic trees. [Doctoral Dissertation]. Texas Tech University; 2012. Available from: http://hdl.handle.net/2346/50749


University of Southern California

14. Liu, Wei. Statistical inference for stochastic hyperbolic equations.

Degree: PhD, Mathematics, 2010, University of Southern California

 A parameter estimation problem is considered for a stochastic wave equation and a linear stochastic hyperbolic driven by additive space-time Gaussian white noise. The damping/amplification… (more)

Subjects/Keywords: maximum likelihood estimators; ordinary differential equation; partial differential equation; diffusion process

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, W. (2010). Statistical inference for stochastic hyperbolic equations. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/408442/rec/6014

Chicago Manual of Style (16th Edition):

Liu, Wei. “Statistical inference for stochastic hyperbolic equations.” 2010. Doctoral Dissertation, University of Southern California. Accessed October 23, 2017. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/408442/rec/6014.

MLA Handbook (7th Edition):

Liu, Wei. “Statistical inference for stochastic hyperbolic equations.” 2010. Web. 23 Oct 2017.

Vancouver:

Liu W. Statistical inference for stochastic hyperbolic equations. [Internet] [Doctoral dissertation]. University of Southern California; 2010. [cited 2017 Oct 23]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/408442/rec/6014.

Council of Science Editors:

Liu W. Statistical inference for stochastic hyperbolic equations. [Doctoral Dissertation]. University of Southern California; 2010. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/408442/rec/6014


Loughborough University

15. Yeadon, Cyrus. Approximating solutions of backward doubly stochastic differential equations with measurable coefficients using a time discretization scheme.

Degree: PhD, 2015, Loughborough University

 It has been shown that backward doubly stochastic differential equations (BDSDEs) provide a probabilistic representation for a certain class of nonlinear parabolic stochastic partial differential(more)

Subjects/Keywords: 519.2; Backward doubly stochastic differential equations; Stochastic partial differential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yeadon, C. (2015). Approximating solutions of backward doubly stochastic differential equations with measurable coefficients using a time discretization scheme. (Doctoral Dissertation). Loughborough University. Retrieved from https://dspace.lboro.ac.uk/2134/20643 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.682529

Chicago Manual of Style (16th Edition):

Yeadon, Cyrus. “Approximating solutions of backward doubly stochastic differential equations with measurable coefficients using a time discretization scheme.” 2015. Doctoral Dissertation, Loughborough University. Accessed October 23, 2017. https://dspace.lboro.ac.uk/2134/20643 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.682529.

MLA Handbook (7th Edition):

Yeadon, Cyrus. “Approximating solutions of backward doubly stochastic differential equations with measurable coefficients using a time discretization scheme.” 2015. Web. 23 Oct 2017.

Vancouver:

Yeadon C. Approximating solutions of backward doubly stochastic differential equations with measurable coefficients using a time discretization scheme. [Internet] [Doctoral dissertation]. Loughborough University; 2015. [cited 2017 Oct 23]. Available from: https://dspace.lboro.ac.uk/2134/20643 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.682529.

Council of Science Editors:

Yeadon C. Approximating solutions of backward doubly stochastic differential equations with measurable coefficients using a time discretization scheme. [Doctoral Dissertation]. Loughborough University; 2015. Available from: https://dspace.lboro.ac.uk/2134/20643 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.682529


University of Wollongong

16. Mofarreh, Fatemah. Fully nonlinear curvature flow of axially symmetric hypersurfaces.

Degree: PhD, 2015, University of Wollongong

  In this thesis we consider axially symmetric evolving hypersurfaces mostly with boundary conditions between two parallel planes. The speed function is a fully nonlinear… (more)

Subjects/Keywords: hypersurface; curvature flow; parabolic partial differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mofarreh, F. (2015). Fully nonlinear curvature flow of axially symmetric hypersurfaces. (Doctoral Dissertation). University of Wollongong. Retrieved from 010102 Algebraic and Differential Geometry, 010110 Partial Differential Equations ; http://ro.uow.edu.au/theses/4699

Chicago Manual of Style (16th Edition):

Mofarreh, Fatemah. “Fully nonlinear curvature flow of axially symmetric hypersurfaces.” 2015. Doctoral Dissertation, University of Wollongong. Accessed October 23, 2017. 010102 Algebraic and Differential Geometry, 010110 Partial Differential Equations ; http://ro.uow.edu.au/theses/4699.

MLA Handbook (7th Edition):

Mofarreh, Fatemah. “Fully nonlinear curvature flow of axially symmetric hypersurfaces.” 2015. Web. 23 Oct 2017.

Vancouver:

Mofarreh F. Fully nonlinear curvature flow of axially symmetric hypersurfaces. [Internet] [Doctoral dissertation]. University of Wollongong; 2015. [cited 2017 Oct 23]. Available from: 010102 Algebraic and Differential Geometry, 010110 Partial Differential Equations ; http://ro.uow.edu.au/theses/4699.

Council of Science Editors:

Mofarreh F. Fully nonlinear curvature flow of axially symmetric hypersurfaces. [Doctoral Dissertation]. University of Wollongong; 2015. Available from: 010102 Algebraic and Differential Geometry, 010110 Partial Differential Equations ; http://ro.uow.edu.au/theses/4699


EPFL

17. Bartezzaghi, Andrea. Isogeometric Analysis for High Order Geometric Partial Differential Equations with Applications.

Degree: 2017, EPFL

 In this thesis, we consider the numerical approximation of high order geometric Partial Differential Equations (PDEs). We first consider high order PDEs defined on surfaces… (more)

Subjects/Keywords: High order Partial Differential Equation; Geometric Partial Differential Equation; Surface; NURBS; Isogeometric Analysis; Biomembrane

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bartezzaghi, A. (2017). Isogeometric Analysis for High Order Geometric Partial Differential Equations with Applications. (Thesis). EPFL. Retrieved from http://infoscience.epfl.ch/record/231045

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bartezzaghi, Andrea. “Isogeometric Analysis for High Order Geometric Partial Differential Equations with Applications.” 2017. Thesis, EPFL. Accessed October 23, 2017. http://infoscience.epfl.ch/record/231045.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bartezzaghi, Andrea. “Isogeometric Analysis for High Order Geometric Partial Differential Equations with Applications.” 2017. Web. 23 Oct 2017.

Vancouver:

Bartezzaghi A. Isogeometric Analysis for High Order Geometric Partial Differential Equations with Applications. [Internet] [Thesis]. EPFL; 2017. [cited 2017 Oct 23]. Available from: http://infoscience.epfl.ch/record/231045.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bartezzaghi A. Isogeometric Analysis for High Order Geometric Partial Differential Equations with Applications. [Thesis]. EPFL; 2017. Available from: http://infoscience.epfl.ch/record/231045

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Edinburgh

18. Dareiotis, Anastasios Constantinos. Stochastic partial differential and integro-differential equations.

Degree: PhD, 2015, University of Edinburgh

 In this work we present some new results concerning stochastic partial differential and integro-differential equations (SPDEs and SPIDEs) that appear in non-linear filtering. We prove… (more)

Subjects/Keywords: 519.2; stochastic partial differential equations; stochastic partial integro-differential equations; SPDEs; SPIDEs

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dareiotis, A. C. (2015). Stochastic partial differential and integro-differential equations. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/14186

Chicago Manual of Style (16th Edition):

Dareiotis, Anastasios Constantinos. “Stochastic partial differential and integro-differential equations.” 2015. Doctoral Dissertation, University of Edinburgh. Accessed October 23, 2017. http://hdl.handle.net/1842/14186.

MLA Handbook (7th Edition):

Dareiotis, Anastasios Constantinos. “Stochastic partial differential and integro-differential equations.” 2015. Web. 23 Oct 2017.

Vancouver:

Dareiotis AC. Stochastic partial differential and integro-differential equations. [Internet] [Doctoral dissertation]. University of Edinburgh; 2015. [cited 2017 Oct 23]. Available from: http://hdl.handle.net/1842/14186.

Council of Science Editors:

Dareiotis AC. Stochastic partial differential and integro-differential equations. [Doctoral Dissertation]. University of Edinburgh; 2015. Available from: http://hdl.handle.net/1842/14186

19. Catellier, Rémi. Perturbations irrégulières et systèmes différentiels rugueux : Irregular Perturbations and Rough Differential Systems.

Degree: Docteur es, Mathématiques et informatique appliquées aux sciences sociales (miass), 2014, Paris 9

Ce travail, à la frontière de l’analyse et des probabilités, s’intéresse à l’étude de systèmes différentiels a priori mal posés. Nous cherchons, grâce à des… (more)

Subjects/Keywords: Integrale de Young; Chemins Contrôlés; Regularization by noise; Mouvement brownien Fractionaire; Equation différentielles stochastiquess; Équation différentielles partielles stochastiques; Chemins rugueux; Paraproduits; Espaces de Besov; Bruit blanc; Equation de quantisation stochastique; Young integral; Controlled Path; Regularization by noise; Fractional Brownian motion; Stochastic differential equation; Partial stochastic differential equation; Rough path; Paraproducts; Besov spaces; White noise; Stochastic quantisation equation; 519.5

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Catellier, R. (2014). Perturbations irrégulières et systèmes différentiels rugueux : Irregular Perturbations and Rough Differential Systems. (Doctoral Dissertation). Paris 9. Retrieved from http://www.theses.fr/2014PA090032

Chicago Manual of Style (16th Edition):

Catellier, Rémi. “Perturbations irrégulières et systèmes différentiels rugueux : Irregular Perturbations and Rough Differential Systems.” 2014. Doctoral Dissertation, Paris 9. Accessed October 23, 2017. http://www.theses.fr/2014PA090032.

MLA Handbook (7th Edition):

Catellier, Rémi. “Perturbations irrégulières et systèmes différentiels rugueux : Irregular Perturbations and Rough Differential Systems.” 2014. Web. 23 Oct 2017.

Vancouver:

Catellier R. Perturbations irrégulières et systèmes différentiels rugueux : Irregular Perturbations and Rough Differential Systems. [Internet] [Doctoral dissertation]. Paris 9; 2014. [cited 2017 Oct 23]. Available from: http://www.theses.fr/2014PA090032.

Council of Science Editors:

Catellier R. Perturbations irrégulières et systèmes différentiels rugueux : Irregular Perturbations and Rough Differential Systems. [Doctoral Dissertation]. Paris 9; 2014. Available from: http://www.theses.fr/2014PA090032

20. Bruned, Yvain. Equations Singulières de type KPZ : Singular KPZ Type Equations.

Degree: Docteur es, Mathématiques, 2015, Université Pierre et Marie Curie – Paris VI

Dans cette thèse, on s'intéresse à l'existence et à l'unicité d'une solution pour l'équation KPZ généralisée. On utilise la théorie récente des structures de régularité… (more)

Subjects/Keywords: Equations différentielles partielles stochastiques; Equation KPZ généralisée; Structures de Régularité; Groupe de Renormalisation; Algèbre de Hopf; Diagrammes de Feynman; Partial stochastic differential equations; Generalised KPZ equation; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bruned, Y. (2015). Equations Singulières de type KPZ : Singular KPZ Type Equations. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2015PA066517

Chicago Manual of Style (16th Edition):

Bruned, Yvain. “Equations Singulières de type KPZ : Singular KPZ Type Equations.” 2015. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed October 23, 2017. http://www.theses.fr/2015PA066517.

MLA Handbook (7th Edition):

Bruned, Yvain. “Equations Singulières de type KPZ : Singular KPZ Type Equations.” 2015. Web. 23 Oct 2017.

Vancouver:

Bruned Y. Equations Singulières de type KPZ : Singular KPZ Type Equations. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2015. [cited 2017 Oct 23]. Available from: http://www.theses.fr/2015PA066517.

Council of Science Editors:

Bruned Y. Equations Singulières de type KPZ : Singular KPZ Type Equations. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2015. Available from: http://www.theses.fr/2015PA066517


University of Vienna

21. Aichinger, Claus. A sparse grid stochastic collocation FEM for uncertainty quantification in a nanowire sensor model.

Degree: 2013, University of Vienna

In this thesis, we aim to enhance numerical simulation methods for nanowire sensors by estimating the impact of uncertainties (or noise and fluctuations) in the… (more)

Subjects/Keywords: 31.45 Partielle Differentialgleichungen; 31.70 Wahrscheinlichkeitsrechnung; 31.76 Numerische Mathematik; stochastische partielle Differentialgleichung / Finite-Elemente Methode / numerische Integration / stochastische Kollokation; stochastic partial differential equation / Finite Element Method / numerical integration / stochastic collocation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Aichinger, C. (2013). A sparse grid stochastic collocation FEM for uncertainty quantification in a nanowire sensor model. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/27774/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Aichinger, Claus. “A sparse grid stochastic collocation FEM for uncertainty quantification in a nanowire sensor model.” 2013. Thesis, University of Vienna. Accessed October 23, 2017. http://othes.univie.ac.at/27774/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Aichinger, Claus. “A sparse grid stochastic collocation FEM for uncertainty quantification in a nanowire sensor model.” 2013. Web. 23 Oct 2017.

Vancouver:

Aichinger C. A sparse grid stochastic collocation FEM for uncertainty quantification in a nanowire sensor model. [Internet] [Thesis]. University of Vienna; 2013. [cited 2017 Oct 23]. Available from: http://othes.univie.ac.at/27774/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Aichinger C. A sparse grid stochastic collocation FEM for uncertainty quantification in a nanowire sensor model. [Thesis]. University of Vienna; 2013. Available from: http://othes.univie.ac.at/27774/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

22. Scotti, Simone. Applications of the error theory using Dirichlet forms : Application de la théorie d'erreur par formes de Dirichlet.

Degree: Docteur es, Mathématiques, 2008, Université Paris-Est

Cette thèse est consacrée à l'étude des applications de la théorie des erreurs par formes de Dirichlet. Notre travail se divise en trois parties. La… (more)

Subjects/Keywords: Calcul d’erreur; Dirichlet, Formes de; Opérateur carré du champ; Biais; Sensibilité; Equations différentielles stochastiques; Modèles financières; Modèles de liquidité; Equations aux dérivées partielles; EDP non-linéaires; Equations stochastiques aux dérivées partielles; Error calculus financial model; Dirichlet form; Bias; Sensitivity; Stochastic differential equation; Financial model; Liquidity model; Bid-ask spread; Partial differential equation; Non-linear PDE; Stochastic partial differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scotti, S. (2008). Applications of the error theory using Dirichlet forms : Application de la théorie d'erreur par formes de Dirichlet. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2008PEST0255

Chicago Manual of Style (16th Edition):

Scotti, Simone. “Applications of the error theory using Dirichlet forms : Application de la théorie d'erreur par formes de Dirichlet.” 2008. Doctoral Dissertation, Université Paris-Est. Accessed October 23, 2017. http://www.theses.fr/2008PEST0255.

MLA Handbook (7th Edition):

Scotti, Simone. “Applications of the error theory using Dirichlet forms : Application de la théorie d'erreur par formes de Dirichlet.” 2008. Web. 23 Oct 2017.

Vancouver:

Scotti S. Applications of the error theory using Dirichlet forms : Application de la théorie d'erreur par formes de Dirichlet. [Internet] [Doctoral dissertation]. Université Paris-Est; 2008. [cited 2017 Oct 23]. Available from: http://www.theses.fr/2008PEST0255.

Council of Science Editors:

Scotti S. Applications of the error theory using Dirichlet forms : Application de la théorie d'erreur par formes de Dirichlet. [Doctoral Dissertation]. Université Paris-Est; 2008. Available from: http://www.theses.fr/2008PEST0255

23. Mtiraoui, Ahmed. I. Etude des EDDSRs surlinéaires II. Contrôle des EDSPRs couplées : I. Study of a BDSDE with a superlinear growth generator. II. Coupled controlled FSDEs.

Degree: Docteur es, Mathématiques appliquées, 2016, Toulon; Université de Sfax. Faculté des sciences. Département de mathématiques

Cette thèse aborde deux sujets de recherches, le premier est sur l’existence et l’unicité des solutions des Équations Différentielles Doublement Stochastiques Rétrogrades (EDDSRs) et les… (more)

Subjects/Keywords: Equations differentielles stochastiques rétrogrades; Equations différentielles stochastiques progressives rétrogrades; Equations aux dérivées partielles stochastiques semi-linéaires; Contrôles stochastiques; Multidimensional backward doubly stochastic differential equations; Coupled forward-backward stochastic differential equation; Semi-linear stochastic partial differential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mtiraoui, A. (2016). I. Etude des EDDSRs surlinéaires II. Contrôle des EDSPRs couplées : I. Study of a BDSDE with a superlinear growth generator. II. Coupled controlled FSDEs. (Doctoral Dissertation). Toulon; Université de Sfax. Faculté des sciences. Département de mathématiques. Retrieved from http://www.theses.fr/2016TOUL0010

Chicago Manual of Style (16th Edition):

Mtiraoui, Ahmed. “I. Etude des EDDSRs surlinéaires II. Contrôle des EDSPRs couplées : I. Study of a BDSDE with a superlinear growth generator. II. Coupled controlled FSDEs.” 2016. Doctoral Dissertation, Toulon; Université de Sfax. Faculté des sciences. Département de mathématiques. Accessed October 23, 2017. http://www.theses.fr/2016TOUL0010.

MLA Handbook (7th Edition):

Mtiraoui, Ahmed. “I. Etude des EDDSRs surlinéaires II. Contrôle des EDSPRs couplées : I. Study of a BDSDE with a superlinear growth generator. II. Coupled controlled FSDEs.” 2016. Web. 23 Oct 2017.

Vancouver:

Mtiraoui A. I. Etude des EDDSRs surlinéaires II. Contrôle des EDSPRs couplées : I. Study of a BDSDE with a superlinear growth generator. II. Coupled controlled FSDEs. [Internet] [Doctoral dissertation]. Toulon; Université de Sfax. Faculté des sciences. Département de mathématiques; 2016. [cited 2017 Oct 23]. Available from: http://www.theses.fr/2016TOUL0010.

Council of Science Editors:

Mtiraoui A. I. Etude des EDDSRs surlinéaires II. Contrôle des EDSPRs couplées : I. Study of a BDSDE with a superlinear growth generator. II. Coupled controlled FSDEs. [Doctoral Dissertation]. Toulon; Université de Sfax. Faculté des sciences. Département de mathématiques; 2016. Available from: http://www.theses.fr/2016TOUL0010

24. Youmbi Tchuenkam, Lord Bienvenu. Étude de méthodes précises d'approximation d'équations différentielles stochastiques ou d'équations aux dérivées partielles déterministes en Finance : Study of precise methods of approximation of stochastic differential equations or deterministic partial differential equations in Finance.

Degree: Docteur es, Mathématiques, 2016, Côte d'Azur

Les travaux exposés dans cette thèse sont consacrés à l’étude de méthodesprécises pour approcher des équations différentielles stochastiques ou deséquations aux dérivées partielles (EDP) déterministes.… (more)

Subjects/Keywords: Biais; Équation différentielle stochastique; Expansion stochastique; Expansion de type Nagar; Processus de diffusion; Équation aux dérivées partielles; Méthodes ROCK (Runge-Orthogonal-Chebyshev-Kutta); Bias; Stochastic differential equation; Stochastic expansion; Nagar's type expansion; Diffusion processes; Partial differential equation; ROCK methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Youmbi Tchuenkam, L. B. (2016). Étude de méthodes précises d'approximation d'équations différentielles stochastiques ou d'équations aux dérivées partielles déterministes en Finance : Study of precise methods of approximation of stochastic differential equations or deterministic partial differential equations in Finance. (Doctoral Dissertation). Côte d'Azur. Retrieved from http://www.theses.fr/2016AZUR4126

Chicago Manual of Style (16th Edition):

Youmbi Tchuenkam, Lord Bienvenu. “Étude de méthodes précises d'approximation d'équations différentielles stochastiques ou d'équations aux dérivées partielles déterministes en Finance : Study of precise methods of approximation of stochastic differential equations or deterministic partial differential equations in Finance.” 2016. Doctoral Dissertation, Côte d'Azur. Accessed October 23, 2017. http://www.theses.fr/2016AZUR4126.

MLA Handbook (7th Edition):

Youmbi Tchuenkam, Lord Bienvenu. “Étude de méthodes précises d'approximation d'équations différentielles stochastiques ou d'équations aux dérivées partielles déterministes en Finance : Study of precise methods of approximation of stochastic differential equations or deterministic partial differential equations in Finance.” 2016. Web. 23 Oct 2017.

Vancouver:

Youmbi Tchuenkam LB. Étude de méthodes précises d'approximation d'équations différentielles stochastiques ou d'équations aux dérivées partielles déterministes en Finance : Study of precise methods of approximation of stochastic differential equations or deterministic partial differential equations in Finance. [Internet] [Doctoral dissertation]. Côte d'Azur; 2016. [cited 2017 Oct 23]. Available from: http://www.theses.fr/2016AZUR4126.

Council of Science Editors:

Youmbi Tchuenkam LB. Étude de méthodes précises d'approximation d'équations différentielles stochastiques ou d'équations aux dérivées partielles déterministes en Finance : Study of precise methods of approximation of stochastic differential equations or deterministic partial differential equations in Finance. [Doctoral Dissertation]. Côte d'Azur; 2016. Available from: http://www.theses.fr/2016AZUR4126


University of KwaZulu-Natal

25. [No author]. Applications of symmetry analysis of partial differential and stochastic differential equations arising from mathematics of finance.

Degree: Mathematics, 2011, University of KwaZulu-Natal

 In the standard modeling of the pricing of options and derivatives as generally understood these days the underlying process is taken to be a Wiener… (more)

Subjects/Keywords: Stochastic differential equations.; Differential equations, Partial.; Lie groups.; Mathematics.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

author], [. (2011). Applications of symmetry analysis of partial differential and stochastic differential equations arising from mathematics of finance. (Thesis). University of KwaZulu-Natal. Retrieved from http://hdl.handle.net/10413/9865

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

author], [No. “Applications of symmetry analysis of partial differential and stochastic differential equations arising from mathematics of finance. ” 2011. Thesis, University of KwaZulu-Natal. Accessed October 23, 2017. http://hdl.handle.net/10413/9865.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

author], [No. “Applications of symmetry analysis of partial differential and stochastic differential equations arising from mathematics of finance. ” 2011. Web. 23 Oct 2017.

Vancouver:

author] [. Applications of symmetry analysis of partial differential and stochastic differential equations arising from mathematics of finance. [Internet] [Thesis]. University of KwaZulu-Natal; 2011. [cited 2017 Oct 23]. Available from: http://hdl.handle.net/10413/9865.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

author] [. Applications of symmetry analysis of partial differential and stochastic differential equations arising from mathematics of finance. [Thesis]. University of KwaZulu-Natal; 2011. Available from: http://hdl.handle.net/10413/9865

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

26. Gyurko, Lajos Gergely. Numerical methods for approximating solutions to rough differential equations.

Degree: 2008, University of Oxford

 The main motivation behind writing this thesis was to construct numerical methods to approximate solutions to differential equations driven by rough paths, where the solution… (more)

Subjects/Keywords: 510; Mathematics : Approximations and expansions : Mathematical finance : Numerical analysis : Partial differential equations : Probability theory and stochastic processes : Stochastic differential equations : numerical solution : weak approximation : cubature : Wiener space : rough paths : rough differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gyurko, L. G. (2008). Numerical methods for approximating solutions to rough differential equations. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:d977be17-76c6-46d6-8691-6d3b7bd51f7a ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496902

Chicago Manual of Style (16th Edition):

Gyurko, Lajos Gergely. “Numerical methods for approximating solutions to rough differential equations.” 2008. Doctoral Dissertation, University of Oxford. Accessed October 23, 2017. http://ora.ox.ac.uk/objects/uuid:d977be17-76c6-46d6-8691-6d3b7bd51f7a ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496902.

MLA Handbook (7th Edition):

Gyurko, Lajos Gergely. “Numerical methods for approximating solutions to rough differential equations.” 2008. Web. 23 Oct 2017.

Vancouver:

Gyurko LG. Numerical methods for approximating solutions to rough differential equations. [Internet] [Doctoral dissertation]. University of Oxford; 2008. [cited 2017 Oct 23]. Available from: http://ora.ox.ac.uk/objects/uuid:d977be17-76c6-46d6-8691-6d3b7bd51f7a ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496902.

Council of Science Editors:

Gyurko LG. Numerical methods for approximating solutions to rough differential equations. [Doctoral Dissertation]. University of Oxford; 2008. Available from: http://ora.ox.ac.uk/objects/uuid:d977be17-76c6-46d6-8691-6d3b7bd51f7a ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496902


University of Waterloo

27. Niu, Shilei. Economics of Ramping Rate Restrictions at Hydro Power Plants: Balancing Profitability and Environmental Concerns.

Degree: 2014, University of Waterloo

 This thesis consists of three essays on the economics of ramping rate restrictions at hydro power plants. The first essay examines the impact of ramping… (more)

Subjects/Keywords: electricity; ramping rate; hydroelectrical power; hydro-peaking; aquatic ecosystems; thermal generation; cost-benefit analysis; regime switching; real options; stochastic control; Hamilton Jacobi Bellman-Partial Differential Equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Niu, S. (2014). Economics of Ramping Rate Restrictions at Hydro Power Plants: Balancing Profitability and Environmental Concerns. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/8593

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Niu, Shilei. “Economics of Ramping Rate Restrictions at Hydro Power Plants: Balancing Profitability and Environmental Concerns.” 2014. Thesis, University of Waterloo. Accessed October 23, 2017. http://hdl.handle.net/10012/8593.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Niu, Shilei. “Economics of Ramping Rate Restrictions at Hydro Power Plants: Balancing Profitability and Environmental Concerns.” 2014. Web. 23 Oct 2017.

Vancouver:

Niu S. Economics of Ramping Rate Restrictions at Hydro Power Plants: Balancing Profitability and Environmental Concerns. [Internet] [Thesis]. University of Waterloo; 2014. [cited 2017 Oct 23]. Available from: http://hdl.handle.net/10012/8593.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Niu S. Economics of Ramping Rate Restrictions at Hydro Power Plants: Balancing Profitability and Environmental Concerns. [Thesis]. University of Waterloo; 2014. Available from: http://hdl.handle.net/10012/8593

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Lund

28. Pirzamanbein, Behnaz. Reconstruction of Past European Land Cover Based on Fossil Pollen Data : Gaussian Markov Random Field Models for Compositional Data.

Degree: 2016, University of Lund

 The aim of this thesis is to develop statistical models to reconstruct past land cover composition and human land use based on fossil pollen records… (more)

Subjects/Keywords: Miljövetenskap; Sannolikhetsteori och statistik; Klimatforskning; Spatial Statistics; Adaptive Markov Chain Monte Carlo; Dirichlet Observation; Confidence Region; Palaeoecology; Past Human Land Use; Stochastic Partial Differential Equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pirzamanbein, B. (2016). Reconstruction of Past European Land Cover Based on Fossil Pollen Data : Gaussian Markov Random Field Models for Compositional Data. (Doctoral Dissertation). University of Lund. Retrieved from http://lup.lub.lu.se/record/c2980af3-a480-45be-a346-80a33a8dd315 ; http://portal.research.lu.se/ws/files/17262380/Behnaz_P_incl_cover.pdf

Chicago Manual of Style (16th Edition):

Pirzamanbein, Behnaz. “Reconstruction of Past European Land Cover Based on Fossil Pollen Data : Gaussian Markov Random Field Models for Compositional Data.” 2016. Doctoral Dissertation, University of Lund. Accessed October 23, 2017. http://lup.lub.lu.se/record/c2980af3-a480-45be-a346-80a33a8dd315 ; http://portal.research.lu.se/ws/files/17262380/Behnaz_P_incl_cover.pdf.

MLA Handbook (7th Edition):

Pirzamanbein, Behnaz. “Reconstruction of Past European Land Cover Based on Fossil Pollen Data : Gaussian Markov Random Field Models for Compositional Data.” 2016. Web. 23 Oct 2017.

Vancouver:

Pirzamanbein B. Reconstruction of Past European Land Cover Based on Fossil Pollen Data : Gaussian Markov Random Field Models for Compositional Data. [Internet] [Doctoral dissertation]. University of Lund; 2016. [cited 2017 Oct 23]. Available from: http://lup.lub.lu.se/record/c2980af3-a480-45be-a346-80a33a8dd315 ; http://portal.research.lu.se/ws/files/17262380/Behnaz_P_incl_cover.pdf.

Council of Science Editors:

Pirzamanbein B. Reconstruction of Past European Land Cover Based on Fossil Pollen Data : Gaussian Markov Random Field Models for Compositional Data. [Doctoral Dissertation]. University of Lund; 2016. Available from: http://lup.lub.lu.se/record/c2980af3-a480-45be-a346-80a33a8dd315 ; http://portal.research.lu.se/ws/files/17262380/Behnaz_P_incl_cover.pdf


Rice University

29. Zheng, Liheng. Development and Application of Stochastic Methods for Radiation Belt Simulations.

Degree: 2015, Rice University

 This thesis describes a method for modeling radiation belt electron diffusion, which solves the radiation belt Fokker-Planck equation using its equivalent stochastic differential equations, and… (more)

Subjects/Keywords: radiation belt; electron diffusion; Fokker-Planck equation; stochastic differential equation; modeling

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zheng, L. (2015). Development and Application of Stochastic Methods for Radiation Belt Simulations. (Thesis). Rice University. Retrieved from http://hdl.handle.net/1911/88411

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zheng, Liheng. “Development and Application of Stochastic Methods for Radiation Belt Simulations.” 2015. Thesis, Rice University. Accessed October 23, 2017. http://hdl.handle.net/1911/88411.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zheng, Liheng. “Development and Application of Stochastic Methods for Radiation Belt Simulations.” 2015. Web. 23 Oct 2017.

Vancouver:

Zheng L. Development and Application of Stochastic Methods for Radiation Belt Simulations. [Internet] [Thesis]. Rice University; 2015. [cited 2017 Oct 23]. Available from: http://hdl.handle.net/1911/88411.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zheng L. Development and Application of Stochastic Methods for Radiation Belt Simulations. [Thesis]. Rice University; 2015. Available from: http://hdl.handle.net/1911/88411

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of New South Wales

30. Glass, Timothy. Affine processes: invariant measures and convergence.

Degree: Mathematics & Statistics, 2013, University of New South Wales

 Affine processes have been of great interest to researchers and financial practitioners for many years due to their flexibility and the analytic tractability of the… (more)

Subjects/Keywords: Stationary distribution; Affine process; Stochastic differential equation; Riccati equation; Characteristic function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Glass, T. (2013). Affine processes: invariant measures and convergence. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/53286

Chicago Manual of Style (16th Edition):

Glass, Timothy. “Affine processes: invariant measures and convergence.” 2013. Doctoral Dissertation, University of New South Wales. Accessed October 23, 2017. http://handle.unsw.edu.au/1959.4/53286.

MLA Handbook (7th Edition):

Glass, Timothy. “Affine processes: invariant measures and convergence.” 2013. Web. 23 Oct 2017.

Vancouver:

Glass T. Affine processes: invariant measures and convergence. [Internet] [Doctoral dissertation]. University of New South Wales; 2013. [cited 2017 Oct 23]. Available from: http://handle.unsw.edu.au/1959.4/53286.

Council of Science Editors:

Glass T. Affine processes: invariant measures and convergence. [Doctoral Dissertation]. University of New South Wales; 2013. Available from: http://handle.unsw.edu.au/1959.4/53286

[1] [2] [3] [4] [5] … [465]

.