Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(stiff system)`

.
Showing records 1 – 4 of
4 total matches.

▼ Search Limiters

Delft University of Technology

1.
Wang, Xiaozhe (author).
Reproducibility Verification of Ship Propulsion *System* Model: The ship propulsion simulation models’ reproducibility in python.

Degree: 2019, Delft University of Technology

URL: http://resolver.tudelft.nl/uuid:4c684c67-1fb5-497a-8e42-b71b48511b67

►

The ship propulsion *system* model is simulated by MATLAB/Simulink initially and is required to reproduce the simulation results in python. This master graduation project deals…
(more)

Subjects/Keywords: reproducibility; propulsion system; python; stiff system; verification

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang, X. (. (2019). Reproducibility Verification of Ship Propulsion System Model: The ship propulsion simulation models’ reproducibility in python. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:4c684c67-1fb5-497a-8e42-b71b48511b67

Chicago Manual of Style (16^{th} Edition):

Wang, Xiaozhe (author). “Reproducibility Verification of Ship Propulsion System Model: The ship propulsion simulation models’ reproducibility in python.” 2019. Masters Thesis, Delft University of Technology. Accessed December 04, 2020. http://resolver.tudelft.nl/uuid:4c684c67-1fb5-497a-8e42-b71b48511b67.

MLA Handbook (7^{th} Edition):

Wang, Xiaozhe (author). “Reproducibility Verification of Ship Propulsion System Model: The ship propulsion simulation models’ reproducibility in python.” 2019. Web. 04 Dec 2020.

Vancouver:

Wang X(. Reproducibility Verification of Ship Propulsion System Model: The ship propulsion simulation models’ reproducibility in python. [Internet] [Masters thesis]. Delft University of Technology; 2019. [cited 2020 Dec 04]. Available from: http://resolver.tudelft.nl/uuid:4c684c67-1fb5-497a-8e42-b71b48511b67.

Council of Science Editors:

Wang X(. Reproducibility Verification of Ship Propulsion System Model: The ship propulsion simulation models’ reproducibility in python. [Masters Thesis]. Delft University of Technology; 2019. Available from: http://resolver.tudelft.nl/uuid:4c684c67-1fb5-497a-8e42-b71b48511b67

Brno University of Technology

2. Sehnalová, Pavla. Konvergence řešení soustav algebraických rovnic: Algebraic Equations Solution Convergence.

Degree: 2018, Brno University of Technology

URL: http://hdl.handle.net/11012/53940

► The work describes techniques for solving systems of linear and differential equations. It explains the definition of conversion from *system* of linear to *system* of…
(more)

Subjects/Keywords: Lineární algebraická rovnice; diferenciální rovnice; soustava rovnic; numerické metody; přímé metody; iterační metody; konvergence; tuhé systémy; TKSL; TKSL/C; TKSL/C - SLAR.; Linear algebraic equation; differential equation; system of equations; numeric method; direct method; iterative method; convergence; stiff system; TKSL; TKSL/C; TKSL/C - SLAR.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sehnalová, P. (2018). Konvergence řešení soustav algebraických rovnic: Algebraic Equations Solution Convergence. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/53940

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sehnalová, Pavla. “Konvergence řešení soustav algebraických rovnic: Algebraic Equations Solution Convergence.” 2018. Thesis, Brno University of Technology. Accessed December 04, 2020. http://hdl.handle.net/11012/53940.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sehnalová, Pavla. “Konvergence řešení soustav algebraických rovnic: Algebraic Equations Solution Convergence.” 2018. Web. 04 Dec 2020.

Vancouver:

Sehnalová P. Konvergence řešení soustav algebraických rovnic: Algebraic Equations Solution Convergence. [Internet] [Thesis]. Brno University of Technology; 2018. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/11012/53940.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sehnalová P. Konvergence řešení soustav algebraických rovnic: Algebraic Equations Solution Convergence. [Thesis]. Brno University of Technology; 2018. Available from: http://hdl.handle.net/11012/53940

Not specified: Masters Thesis or Doctoral Dissertation

University of Illinois – Chicago

3. Aboubakr, Ahmed K. Use of Non-inertial Coordinates and Implicit Integration for Efficient Solution of Multibody Systems.

Degree: 2015, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/19332

► Development of computational methods, formulations, and algorithms to study interconnected bodies that undergo large deformation, translational, and rotational displacements is the main focus for this…
(more)

Subjects/Keywords: Non-inertial Coordinates; longitudinal train forces; coupler geometric nonlinearities; railroad vehicle dynamics; multibody systems. TLISMNI implicit numerical integration; multibody system differential /algebraic equations; sparse matrix implementation; Jacobian-free Newton-Krylov, stiff equations.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Aboubakr, A. K. (2015). Use of Non-inertial Coordinates and Implicit Integration for Efficient Solution of Multibody Systems. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/19332

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Aboubakr, Ahmed K. “Use of Non-inertial Coordinates and Implicit Integration for Efficient Solution of Multibody Systems.” 2015. Thesis, University of Illinois – Chicago. Accessed December 04, 2020. http://hdl.handle.net/10027/19332.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Aboubakr, Ahmed K. “Use of Non-inertial Coordinates and Implicit Integration for Efficient Solution of Multibody Systems.” 2015. Web. 04 Dec 2020.

Vancouver:

Aboubakr AK. Use of Non-inertial Coordinates and Implicit Integration for Efficient Solution of Multibody Systems. [Internet] [Thesis]. University of Illinois – Chicago; 2015. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/10027/19332.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Aboubakr AK. Use of Non-inertial Coordinates and Implicit Integration for Efficient Solution of Multibody Systems. [Thesis]. University of Illinois – Chicago; 2015. Available from: http://hdl.handle.net/10027/19332

Not specified: Masters Thesis or Doctoral Dissertation

4.
Shen, Xuefeng.
Geometric Integrators for *Stiff* Systems, Lie Groups and Control Systems.

Degree: Mathematics, 2019, University of California – San Diego

URL: http://www.escholarship.org/uc/item/9g2730gd

► The main idea of a geometric integrator is to adopt a geometric viewpoint of the problem and to construct integrators that preserve the geometric properties…
(more)

Subjects/Keywords: Mathematics; geometric reduction; kalman filter; lie group; stiff system; symplectic integrator; variational integrator

…THE DISSERTATION
Geometric Integrators for *Stiff* Systems, Lie Groups
and Control Systems
by… …preserve the geometric properties of the continuous dynamical
*system*. For classical mechanics… …that are adapted to
three special settings. One is the case of *stiff* systems of the form, q̇… …responsible for the stiffness of the *system*,
while the nonlinear term f (q) is relatively… …x28;q), where J T = −J, DT = D, and JD = DJ. Then, the
*system* is described by q̇ = J…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shen, X. (2019). Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/9g2730gd

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Shen, Xuefeng. “Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.” 2019. Thesis, University of California – San Diego. Accessed December 04, 2020. http://www.escholarship.org/uc/item/9g2730gd.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Shen, Xuefeng. “Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.” 2019. Web. 04 Dec 2020.

Vancouver:

Shen X. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. [Internet] [Thesis]. University of California – San Diego; 2019. [cited 2020 Dec 04]. Available from: http://www.escholarship.org/uc/item/9g2730gd.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shen X. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. [Thesis]. University of California – San Diego; 2019. Available from: http://www.escholarship.org/uc/item/9g2730gd

Not specified: Masters Thesis or Doctoral Dissertation