Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(stiff system). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Delft University of Technology

1. Wang, Xiaozhe (author). Reproducibility Verification of Ship Propulsion System Model: The ship propulsion simulation models’ reproducibility in python.

Degree: 2019, Delft University of Technology

The ship propulsion system model is simulated by MATLAB/Simulink initially and is required to reproduce the simulation results in python. This master graduation project deals… (more)

Subjects/Keywords: reproducibility; propulsion system; python; stiff system; verification

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, X. (. (2019). Reproducibility Verification of Ship Propulsion System Model: The ship propulsion simulation models’ reproducibility in python. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:4c684c67-1fb5-497a-8e42-b71b48511b67

Chicago Manual of Style (16th Edition):

Wang, Xiaozhe (author). “Reproducibility Verification of Ship Propulsion System Model: The ship propulsion simulation models’ reproducibility in python.” 2019. Masters Thesis, Delft University of Technology. Accessed December 04, 2020. http://resolver.tudelft.nl/uuid:4c684c67-1fb5-497a-8e42-b71b48511b67.

MLA Handbook (7th Edition):

Wang, Xiaozhe (author). “Reproducibility Verification of Ship Propulsion System Model: The ship propulsion simulation models’ reproducibility in python.” 2019. Web. 04 Dec 2020.

Vancouver:

Wang X(. Reproducibility Verification of Ship Propulsion System Model: The ship propulsion simulation models’ reproducibility in python. [Internet] [Masters thesis]. Delft University of Technology; 2019. [cited 2020 Dec 04]. Available from: http://resolver.tudelft.nl/uuid:4c684c67-1fb5-497a-8e42-b71b48511b67.

Council of Science Editors:

Wang X(. Reproducibility Verification of Ship Propulsion System Model: The ship propulsion simulation models’ reproducibility in python. [Masters Thesis]. Delft University of Technology; 2019. Available from: http://resolver.tudelft.nl/uuid:4c684c67-1fb5-497a-8e42-b71b48511b67


Brno University of Technology

2. Sehnalová, Pavla. Konvergence řešení soustav algebraických rovnic: Algebraic Equations Solution Convergence.

Degree: 2018, Brno University of Technology

 The work describes techniques for solving systems of linear and differential equations. It explains the definition of conversion from system of linear to system of… (more)

Subjects/Keywords: Lineární algebraická rovnice; diferenciální rovnice; soustava rovnic; numerické metody; přímé metody; iterační metody; konvergence; tuhé systémy; TKSL; TKSL/C; TKSL/C - SLAR.; Linear algebraic equation; differential equation; system of equations; numeric method; direct method; iterative method; convergence; stiff system; TKSL; TKSL/C; TKSL/C - SLAR.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sehnalová, P. (2018). Konvergence řešení soustav algebraických rovnic: Algebraic Equations Solution Convergence. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/53940

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sehnalová, Pavla. “Konvergence řešení soustav algebraických rovnic: Algebraic Equations Solution Convergence.” 2018. Thesis, Brno University of Technology. Accessed December 04, 2020. http://hdl.handle.net/11012/53940.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sehnalová, Pavla. “Konvergence řešení soustav algebraických rovnic: Algebraic Equations Solution Convergence.” 2018. Web. 04 Dec 2020.

Vancouver:

Sehnalová P. Konvergence řešení soustav algebraických rovnic: Algebraic Equations Solution Convergence. [Internet] [Thesis]. Brno University of Technology; 2018. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/11012/53940.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sehnalová P. Konvergence řešení soustav algebraických rovnic: Algebraic Equations Solution Convergence. [Thesis]. Brno University of Technology; 2018. Available from: http://hdl.handle.net/11012/53940

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

3. Aboubakr, Ahmed K. Use of Non-inertial Coordinates and Implicit Integration for Efficient Solution of Multibody Systems.

Degree: 2015, University of Illinois – Chicago

 Development of computational methods, formulations, and algorithms to study interconnected bodies that undergo large deformation, translational, and rotational displacements is the main focus for this… (more)

Subjects/Keywords: Non-inertial Coordinates; longitudinal train forces; coupler geometric nonlinearities; railroad vehicle dynamics; multibody systems. TLISMNI implicit numerical integration; multibody system differential /algebraic equations; sparse matrix implementation; Jacobian-free Newton-Krylov, stiff equations.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Aboubakr, A. K. (2015). Use of Non-inertial Coordinates and Implicit Integration for Efficient Solution of Multibody Systems. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/19332

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Aboubakr, Ahmed K. “Use of Non-inertial Coordinates and Implicit Integration for Efficient Solution of Multibody Systems.” 2015. Thesis, University of Illinois – Chicago. Accessed December 04, 2020. http://hdl.handle.net/10027/19332.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Aboubakr, Ahmed K. “Use of Non-inertial Coordinates and Implicit Integration for Efficient Solution of Multibody Systems.” 2015. Web. 04 Dec 2020.

Vancouver:

Aboubakr AK. Use of Non-inertial Coordinates and Implicit Integration for Efficient Solution of Multibody Systems. [Internet] [Thesis]. University of Illinois – Chicago; 2015. [cited 2020 Dec 04]. Available from: http://hdl.handle.net/10027/19332.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Aboubakr AK. Use of Non-inertial Coordinates and Implicit Integration for Efficient Solution of Multibody Systems. [Thesis]. University of Illinois – Chicago; 2015. Available from: http://hdl.handle.net/10027/19332

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Shen, Xuefeng. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.

Degree: Mathematics, 2019, University of California – San Diego

 The main idea of a geometric integrator is to adopt a geometric viewpoint of the problem and to construct integrators that preserve the geometric properties… (more)

Subjects/Keywords: Mathematics; geometric reduction; kalman filter; lie group; stiff system; symplectic integrator; variational integrator

…THE DISSERTATION Geometric Integrators for Stiff Systems, Lie Groups and Control Systems by… …preserve the geometric properties of the continuous dynamical system. For classical mechanics… …that are adapted to three special settings. One is the case of stiff systems of the form, q̇… …responsible for the stiffness of the system, while the nonlinear term f (q) is relatively… …x28;q), where J T = −J, DT = D, and JD = DJ. Then, the system is described by q̇ = J… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shen, X. (2019). Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/9g2730gd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Shen, Xuefeng. “Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.” 2019. Thesis, University of California – San Diego. Accessed December 04, 2020. http://www.escholarship.org/uc/item/9g2730gd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Shen, Xuefeng. “Geometric Integrators for Stiff Systems, Lie Groups and Control Systems.” 2019. Web. 04 Dec 2020.

Vancouver:

Shen X. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. [Internet] [Thesis]. University of California – San Diego; 2019. [cited 2020 Dec 04]. Available from: http://www.escholarship.org/uc/item/9g2730gd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shen X. Geometric Integrators for Stiff Systems, Lie Groups and Control Systems. [Thesis]. University of California – San Diego; 2019. Available from: http://www.escholarship.org/uc/item/9g2730gd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.