You searched for subject:(spark ignited)
.
Showing records 1 – 7 of
7 total matches.
No search limiters apply to these results.

University of Michigan
1.
Martz, Jason Brian.
Simulation and Model Development for Auto-Ignition and Reaction Front Propagation in Low-Temperature High-Pressure Lean-Burn Engines.
Degree: PhD, Mechanical Engineering, 2010, University of Michigan
URL: http://hdl.handle.net/2027.42/78870
► While Homogeneous Charge Compression Ignition (HCCI) combustion is capable of highly efficient, ultra-low NOx operation, it lacks direct mechanisms for timing and burn rate control…
(more)
▼ While Homogeneous Charge Compression Ignition (HCCI) combustion is capable of highly efficient, ultra-low NOx operation, it lacks direct mechanisms for timing and burn rate control and suffers from marginal power densities. Concepts such as
Spark-Assisted Compression Ignition (SACI) combustion have shown the ability to partially address these shortcomings, however detailed SACI models are currently lacking.
To address the need for reaction front data within the ultra-dilute, high pressure and preheat temperature SACI regime, laminar premixed reaction front simulations were performed and correlations for burning velocity and front thickness were developed from the resulting dataset. Provided that preheat temperatures were elevated and that burned gas temperatures exceeded 1500 K, moderate burning velocities were observed at equivalence ratios typical of mid and high load HCCI operation. For a given burned gas temperature, burning velocities increased when moving from the SI to the SACI combustion regime, i.e. towards higher dilution and higher pre-heat temperatures.
Given the proximity of SACI pre-heat temperatures to the ignition temperature, additional simulations examined the combustion regime, structure and general behavior of the reaction front as it propagated into an auto-igniting end-gas. While significant increases in burning velocity accompanied the transition from deflagrative to chemically dominated combustion, the reaction front contributed minimally to end-gas consumption once end-gas temperatures exceeded 1100 K.
A model capable of capturing SI, SACI and HCCI combustion modes was formulated and implemented into KIVA-3V. Using the correlated laminar flame speed data, the model was capable of predicting trend-wise agreement with cylinder pressure and imaging data from an optical SACI engine. The simulated presence of flame surface density suggests that although the simulated reaction fronts are ultra-dilute, they are nevertheless within the flamelet regime during the deflagration portion of SACI combustion. End-gas auto-ignition occurred when the charge compression heating from boundary work and reaction front heat release combined to drive the end-gas to its ignition temperature, providing additional latitude for the execution and control of low temperature combustion processes. Additional simulations were performed to assess the ability of this additional deflagrative combustion mode to enable high efficiency operation with elevated work output relative to HCCI combustion.
Advisors/Committee Members: Assanis, Dionissios N. (committee member), Babajimopoulos, Aristotelis (committee member), Driscoll, James F. (committee member), Fiveland, Scott B. (committee member), Lavoie, George (committee member), Wooldridge, Margaret S. (committee member).
Subjects/Keywords: HCCI; Spark Assisted Compression Ignition; Knock; Low Temperature Combustion; Flamelet; Spark Ignited; Mechanical Engineering; Engineering
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Martz, J. B. (2010). Simulation and Model Development for Auto-Ignition and Reaction Front Propagation in Low-Temperature High-Pressure Lean-Burn Engines. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/78870
Chicago Manual of Style (16th Edition):
Martz, Jason Brian. “Simulation and Model Development for Auto-Ignition and Reaction Front Propagation in Low-Temperature High-Pressure Lean-Burn Engines.” 2010. Doctoral Dissertation, University of Michigan. Accessed December 09, 2019.
http://hdl.handle.net/2027.42/78870.
MLA Handbook (7th Edition):
Martz, Jason Brian. “Simulation and Model Development for Auto-Ignition and Reaction Front Propagation in Low-Temperature High-Pressure Lean-Burn Engines.” 2010. Web. 09 Dec 2019.
Vancouver:
Martz JB. Simulation and Model Development for Auto-Ignition and Reaction Front Propagation in Low-Temperature High-Pressure Lean-Burn Engines. [Internet] [Doctoral dissertation]. University of Michigan; 2010. [cited 2019 Dec 09].
Available from: http://hdl.handle.net/2027.42/78870.
Council of Science Editors:
Martz JB. Simulation and Model Development for Auto-Ignition and Reaction Front Propagation in Low-Temperature High-Pressure Lean-Burn Engines. [Doctoral Dissertation]. University of Michigan; 2010. Available from: http://hdl.handle.net/2027.42/78870

Indian Institute of Science
2.
Shivapuji, Anand M.
In-Cylinder Experimental and Modeling Studies on Producer Gas Fuelled Operation of Spark Iginited Gas Engines.
Degree: 2015, Indian Institute of Science
URL: http://etd.iisc.ernet.in/2005/3936
;
http://etd.iisc.ernet.in/abstracts/4818/G27215-Abs.pdf
► The current work, through experimental and numerical investigations, analyses the process and cycle level deviations in engine response on fuelling multi-cylinder natural gas engines with…
(more)
▼ The current work, through experimental and numerical investigations, analyses the process and cycle level deviations in engine response on fuelling multi-cylinder natural gas engines with producer gas. Producer gas is a low calorific value bio-derived alternative with composition of 19 ± 1% CO and H2, 2 ± 0.5 % CH4, 12 ± 1% CO2 and 46 ± 1% N2 and has thermo-physical properties significantly different from natural gas.
Experimental investigations primarily address the energy balance (full cycle analysis) and in-cylinder response (process specific analysis) at various operating conditions covering naturally aspirated and turbocharged mode of operation with natural gas and producer gas. Numerical investigations are based on two thermodynamic scope mathematical models, a zero dimensional model (Wiebe function) and a quasi-dimensional model (propagating flame front heat release).
A detailed diagnostic analysis on a six cylinder (E6) indicates, turbocharger mismatch, the first explicit impact of fuel thermo-physical property variation. Turbocharger matching and optimization resulted in a peak load of 72.8 kWe (BMEP 9.47) at a maximum brake torque ignition angles of 22 deg before TDC and compressor pressure ratio of 2.25. Engine energy distribution analysis indicates skewed energy balance with higher cooling load (in excess of 30%) as compared to fossil fuel operation. This is attributed to the presence of nearly 20% H2 which enhances the convective cooling through the higher thermal conductivity. Parametric variation of H2 fraction on a two cylinder engine (E2) with four different syngas compositions (mixture H2 varying from 7.1% to 14.2%) depicts enhanced cooling load from 33.5% to 37.7%. Process level comparison indicates significant deviations in the heat release profile compared to fossil fuels. It has been observed that with an increase in mixture hydrogen fraction (from 7.1% to 14.2%), the fast burn phase combustion duration reduces from 59.6% to 42.6% but the terminal stage duration increases from 25.5% to 48.9%. The enhanced cooling of the mixture (due to the presence of hydrogen), particularly in the vicinity of walls is argued to contribute towards the sluggish terminal phase combustion. Immediate implication of thermo-kinematic response variation is on the magnitude and sensitivity of combustion descriptors and the need for dependent control system calibration for producer gas fuelled operation is established. Descriptor analysis is extended to knocking pressure traces and a new simple methodology is proposed towards identifying the occurrence and regime of knock.
Analysing the implications through numerical investigation, the influence of the altered thermo-kinematic response for producer gas fuelled operation impacts 0D simulations. Zero dimensional simulations fail with conventional coefficients requiring fuel specific coefficients. Based on fuel specific coefficients, the suitability of 0D model for the simulation of varying operating conditions ranging from naturally aspirated to turbo charged…
Advisors/Committee Members: Dasappa, S.
Subjects/Keywords: Spark Ignited Gas Engines; Producer Gas Fuelled Engines; Internal Combustion Engines; Syngas; Bio-Derived Gaseous Fuel; Natural Gas Spark Ignited Engine; SI Gas Engine; Multi-Cylinder Natural Gas Engines; Internal Combustion Engines; Spark-ignited Engines; Gas-fuelled Multi-cylinder Engine; Producer Gas Fuelled SI Engines; Producer Gas Fuelled SI Engine; Gaseous Fuels; Sustainable Technology
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Shivapuji, A. M. (2015). In-Cylinder Experimental and Modeling Studies on Producer Gas Fuelled Operation of Spark Iginited Gas Engines. (Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ernet.in/2005/3936 ; http://etd.iisc.ernet.in/abstracts/4818/G27215-Abs.pdf
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Shivapuji, Anand M. “In-Cylinder Experimental and Modeling Studies on Producer Gas Fuelled Operation of Spark Iginited Gas Engines.” 2015. Thesis, Indian Institute of Science. Accessed December 09, 2019.
http://etd.iisc.ernet.in/2005/3936 ; http://etd.iisc.ernet.in/abstracts/4818/G27215-Abs.pdf.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Shivapuji, Anand M. “In-Cylinder Experimental and Modeling Studies on Producer Gas Fuelled Operation of Spark Iginited Gas Engines.” 2015. Web. 09 Dec 2019.
Vancouver:
Shivapuji AM. In-Cylinder Experimental and Modeling Studies on Producer Gas Fuelled Operation of Spark Iginited Gas Engines. [Internet] [Thesis]. Indian Institute of Science; 2015. [cited 2019 Dec 09].
Available from: http://etd.iisc.ernet.in/2005/3936 ; http://etd.iisc.ernet.in/abstracts/4818/G27215-Abs.pdf.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Shivapuji AM. In-Cylinder Experimental and Modeling Studies on Producer Gas Fuelled Operation of Spark Iginited Gas Engines. [Thesis]. Indian Institute of Science; 2015. Available from: http://etd.iisc.ernet.in/2005/3936 ; http://etd.iisc.ernet.in/abstracts/4818/G27215-Abs.pdf
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

KTH
3.
Kittur, Rohan.
Heavy-Duty Spark-Ignited Single Cylinder Engine Fueling System.
Degree: Machine Design (Dept.), 2018, KTH
URL: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232481
► Forskning inom motorutveckling bedrivs för att möta kommande emissionskrav och samtidigt minska bränsleförbrukningen. Kommande förbud mot dieseldrivna fordon planeras i flera städer runt om…
(more)
▼ Forskning inom motorutveckling bedrivs för att möta kommande emissionskrav och samtidigt minska bränsleförbrukningen. Kommande förbud mot dieseldrivna fordon planeras i flera städer runt om i världen. Alternativa bränsle som exempelvis naturgas ses som en lovande ersättning även för tunga fordon. Metan som är huvudkomponenten av naturgas har en fördelaktigt förhållande mellan väte och kol vilket gör den attraktiv för CO2-reducering. Hur som helst, bränslets låga cetantal och den höga aktiveringsenergin som krävs för att tända naturgas förutsätter tändstiftsantändning.En fördel av att använda en encylindrig motor inom forskning är möjligheten att studera fenomen utan negativa gasväxlingsinteraktioner från intilliggande cylindrar. Jämfört med en fullmotor möjliggörs även ett snabbare utbyte av motordelar samt lägre bränsleförbrukning.Fokus för detta examensarbete var genomförandet av ett flexibelt bränslesystem för en tändstiftsantänd encylindrig motor. Motorn är en tändstiftsantänd Scania 9 liters som modifieras för encylinder körning. Flexibilitet som t.ex. laddningshomogenitet, selektiv fyllning av inloppsporter och förberedelser för direktinsprutning av flytande bränsle realiserades. För enkel användning är motorn styrd av en eftermarknadsmotorstyrenhet som använder ett användarvänligt grafiskt gränssnitt för ändring av driftsparametrar. Säkerhetshänsyn vid blandning av gasformiga bränsle och luft långt innan inloppsporterna har implementerats.
Most of the fundamental research in internal combustion engines is driven by the ever-increasing stringency of emissions regulations along with the need for increased fuel economy. The proposed ban on diesel vehicles in several cities around the world combined with extensive availability, has made natural gas a promising substitute even for heavy-duty applications. The high hydrogen-to-carbon ratio of methane, the major component of natural gas, makes it attractive from an emissions reduction perspective. CO2 emissions from natural gas combustion are particularly low. However, the low cetane number and high activation energy required to ignite natural gas, requires spark-ignition.In a research setting, it is often advantageous to have a single cylinder engine. The main benefit is the ability to study phenomena without adverse interactions which multi-cylinder operation may cause. This is especially important for gas-exchange studies. Quicker replacement of parts and lower fuel consumption are secondary benefits.The focus of this thesis was the implementation of a flexible fueling system for a single cylinder spark-ignited engine. The engine is a Scania 9-liter spark-ignited engine modified for single cylinder operation. Flexibility in terms of charge homogeneity, selective intake port filling and provisions for liquid fuel direct injection have been provided. For ease of use, the engine is controlled by an aftermarket engine control unit with a graphical user interface for configuration. Safety considerations when mixing gaseous fuels and air well upstream of…
Subjects/Keywords: Fueling system; heavy-duty; spark-ignited; single cylinder engine; aftermarket engine control unit; fuel-air mixture safety; bränslesystem; tunga fordon; tändstiftsantändning; encylinder motor; eftermarknadsmotorstyrenhet; bränsle-luft blandningssäkerhet; Mechanical Engineering; Maskinteknik
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Kittur, R. (2018). Heavy-Duty Spark-Ignited Single Cylinder Engine Fueling System. (Thesis). KTH. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232481
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Kittur, Rohan. “Heavy-Duty Spark-Ignited Single Cylinder Engine Fueling System.” 2018. Thesis, KTH. Accessed December 09, 2019.
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232481.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Kittur, Rohan. “Heavy-Duty Spark-Ignited Single Cylinder Engine Fueling System.” 2018. Web. 09 Dec 2019.
Vancouver:
Kittur R. Heavy-Duty Spark-Ignited Single Cylinder Engine Fueling System. [Internet] [Thesis]. KTH; 2018. [cited 2019 Dec 09].
Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232481.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Kittur R. Heavy-Duty Spark-Ignited Single Cylinder Engine Fueling System. [Thesis]. KTH; 2018. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232481
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Indian Institute of Science
4.
Kapadia, Bhavin Kanaiyalal.
Development Of A Single Cylinder SI Engine For 100% Biogas Operation.
Degree: 2006, Indian Institute of Science
URL: http://hdl.handle.net/2005/283
► This work concerns a systematic study of IC engine operation with 100% biogas as fuel (as opposed to the dual-fuel mode) with particular emphasis on…
(more)
▼ This work concerns a systematic study of IC engine operation with 100% biogas as fuel (as opposed to the dual-fuel mode) with particular emphasis on operational issues and the quest for high efficiency strategies. As a first step, a commercially available 1.2 kW genset engine is modified for biogas operation. The conventional premixing of air and biogas is compared with a new manifold injection strategy. The effect of biogas composition on engine performance is also studied.
Results from the genset engine study indicate a very low overall efficiency of the system. This is mainly due to the very low compression ratio (4.5) of the engine. To gain further insight into factors that contribute to this low efficiency, thermodynamic engine simulations are conducted. Reasonable agreement with experiments is obtained after incorporating estimated combustion durations. Subsequently, the model is used as a tool to predict effect of different parameters such as compression ratio,
spark timing and combustion durations on engine performance and efficiency. Simulations show that significant improvement in performance can be obtained at high compression ratios.
As a step towards developing a more efficient system and based on insight obtained from simulations, a high compression ratio (9.2) engine is selected. This engine is coupled to a 3 kW alternator and operated on 100% biogas. Both strategies, i.e., premixing and manifold injection are implemented. The results show very high overall (chemical to electrical) efficiencies with a maximum value of 22% at 1.4 kW with the manifold injection strategy. The new manifold injection strategy proposed here is found to be clearly superior to the conventional premixing method. The main reasons are the higher volumetric efficiency (25% higher than that for the premixing mode of supply) and overall lean operation of the engine across the entire load range. Predictions show excellent agreement with measurements, enabling the model to be used as a tool for further study. Simulations suggest that a higher compression ratio (up to 13) and appropriate
spark advance can lead to higher engine power output and efficiency.
Advisors/Committee Members: Ravikrishna, R V.
Subjects/Keywords: Internal Combustion Engine; Biogas; Genset Engine; High Compression Ratio Engine; Spark Ignition Engines; Biogas Generation; Spark-Ignition Engine; Gaseous Fuels; Gasoline; IC Engine; SI Engine; Engines - Performance; Spark-Ignited Engine; Heat Engineering
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Kapadia, B. K. (2006). Development Of A Single Cylinder SI Engine For 100% Biogas Operation. (Thesis). Indian Institute of Science. Retrieved from http://hdl.handle.net/2005/283
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Kapadia, Bhavin Kanaiyalal. “Development Of A Single Cylinder SI Engine For 100% Biogas Operation.” 2006. Thesis, Indian Institute of Science. Accessed December 09, 2019.
http://hdl.handle.net/2005/283.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Kapadia, Bhavin Kanaiyalal. “Development Of A Single Cylinder SI Engine For 100% Biogas Operation.” 2006. Web. 09 Dec 2019.
Vancouver:
Kapadia BK. Development Of A Single Cylinder SI Engine For 100% Biogas Operation. [Internet] [Thesis]. Indian Institute of Science; 2006. [cited 2019 Dec 09].
Available from: http://hdl.handle.net/2005/283.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Kapadia BK. Development Of A Single Cylinder SI Engine For 100% Biogas Operation. [Thesis]. Indian Institute of Science; 2006. Available from: http://hdl.handle.net/2005/283
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

KTH
5.
Sharma, Nishchay.
Knock model evaluation - Gas engine.
Degree: Internal Combustion Engines, 2018, KTH
URL: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246102
► Knack i en förbränningsmotor är en typ av onormal förbränning. Det är ett komplicerat fenomen som beror på flera fysiska faktorer och resulterar i…
(more)
▼ Knack i en förbränningsmotor är en typ av onormal förbränning. Det är ett komplicerat fenomen som beror på flera fysiska faktorer och resulterar i högfrekventa tryckoscillationer inuti förbränningskammaren. Dessa oscillationer kan skada motorn och fenomenet hämmar motorns effektivitet. Knack kan uppstå på två sätt i en Otto-motor och detta examensarbete kommer att handla om självantändning. Självantändning, i detta fall, är när ändgasen börjar brinna utan att ha blivit påverkad av flamfronten eller gnistan från tändstiftet. Det finns flera olika matematiska modeller som i olika grader kan prediktera knackfenomenet. I detta examensarbete studeras några av de tidigare publicerade prediktionsmodellerna för knack i Otto-förbränning och modelleras för analys. Huvudsyftet med detta projekt är således att bedöma noggrannheten hos olika typer av knackmodeller. Extra fokus har lagts på empiriska korrelationsmodeller, särskilt till de som är baserade på kemisk kinetik avseende förbränningsprocessen av metan. Dessa modeller förutsäger den tid det tar för ändgasen att självantända, baserat på dess koncentration av luft och bränsle. Knackmodellerna bedöms sedan utifrån det beteende som de förutsäger över motorns driftområde och dess överensstämmelse med kända motorkalibreringsstrategier. Resultatet av knackpredikteringen för de olika knackmodellerna utvärderas och valideras i en motorsimuleringsmodell i mjukvaran AVL BOOST. BOOST-modellen kalibreras mot experimentellt uppmätta motortestdata. Baserat på resultaten från de valda knockmodellerna så blev den modell som bäst korrelerar med kända motorkalibreringsstrategier analyserad djupare. Den utvalda modellen var en ECM modell och den utvärderas ytterligare med avseende på variation i predikterad knack-parameter. Detta görs genom att modifiera två förbränningsparametrar: tändvinkel och förbränningsduration. Det visade sig att modellerna predikterade en linjär ökning då tändningen tidigareläggs och ett linjärt minskande vid längre förbränningsduration, vilket är i enlighet med motortestdata. Vidare visade det sig att variationer i tändvinkel resulterade i en högre gradient i knackpredikteringen vid högre motorbelastningar och korresponderande minskning vid lägre belastning.
Knocking is a type of abnormal combustion which depends on several physical factors and results in high frequency pressure oscillations inside the combustion chamber of a spark-ignited internal combustion engine (ICE). These oscillations can damage the engine and hamper its efficiency, which is why it is important for automakers to understand the knocking behavior so that it can be avoided during engine operation. Due to the catastrophic outcomes of knocking a lot of research has been done in the past on prediction of its occurrence. There can be several causes of knocking but when it occurs due to auto-ignition of fuel in the end-gas it’s called spark-knock. There are various mathematical models that predict the phenomenon of spark-knock. In this thesis, several of the previously…
Subjects/Keywords: Knocking; Spark-Ignited; Internal Combustion Engine; Spark-Knock; Empirical Correlation Models; BOOST; Combustion Phasing; Spark-advance; Combustion Duration; Knock Prediction Parameter.; Knack; Otto-förbränning; Förbränningsmotor; Empiriska korrelationsmodeller; BOOST; Förbränningsfasning; Tändvinkel; Förbränningsduration; Knackprediktering; Mechanical Engineering; Maskinteknik
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Sharma, N. (2018). Knock model evaluation - Gas engine. (Thesis). KTH. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246102
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Sharma, Nishchay. “Knock model evaluation - Gas engine.” 2018. Thesis, KTH. Accessed December 09, 2019.
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246102.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Sharma, Nishchay. “Knock model evaluation - Gas engine.” 2018. Web. 09 Dec 2019.
Vancouver:
Sharma N. Knock model evaluation - Gas engine. [Internet] [Thesis]. KTH; 2018. [cited 2019 Dec 09].
Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246102.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Sharma N. Knock model evaluation - Gas engine. [Thesis]. KTH; 2018. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246102
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

KTH
6.
Sharma, Nishchay.
Knock Model Evaluation – Gas Engine.
Degree: Machine Design (Div.), 2018, KTH
URL: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237133
► Knocking is a type of abnormal combustion which depends on several physical factors and results in high frequency pressure oscillations inside the combustion chamber…
(more)
▼ Knocking is a type of abnormal combustion which depends on several physical factors and results in high frequency pressure oscillations inside the combustion chamber of a spark-ignited internal combustion engine (ICE). These oscillations can damage the engine and hamper its efficiency, which is why it is important for automakers to understand the knocking behavior so that it can be avoided during engine operation. Due to the catastrophic outcomes of knocking a lot of research has been done in the past on prediction of its occurrence. There can be several causes of knocking but when it occurs due to auto-ignition of fuel in the end-gas it’s called spark-knock. There are various mathematical models that predict the phenomenon of spark-knock. In this thesis, several of the previously published knock prediction models for heavy-duty natural-gas engine are studied and analyzed. The main objective of this project is to assess the accuracy of different types of knock prediction models.Amongst all the types of knock prediction models emphasize has been given to empirical correlation models, particularly to the ones which are based on chemical kinetics pertaining to the combustion process of methane. These are the models that claim to predict ignition delay time based on concentration of air and fuel in the unburned zone of the cylinder. The models are assessed based on the knocking behavior they represent across the engine operation range. Results pertaining to the knock prediction models are evaluated in a 1D engine simulation model using AVL BOOST. The BOOST performance prediction model is calibrated against experimentally measured engine test-cell data and the same data is used to assess the knock prediction models.The knock prediction model whose results correlate with experimental observations is analyzed further while other models are discarded. Using the validated model, variation in knock occurrence is evaluated with change in the combustion phasing. Two of the parameter that are used to define the combustion phasing are spark-advance and combustion duration. It was found that when the brake mean effective pressure is kept constant the knock prediction parameter increases linearly with increase in spark advance and decreases linearly with increase in combustion duration. The variation of knock prediction parameter with spark advance showed increasing gradient with increase in engine torque.
Knack i en förbränningsmotor är en typ av onormal förbränning. Det är ett komplicerat fenomen som beror på flera fysiska faktorer och resulterar i högfrekventa tryckoscillationer inuti förbränningskammaren. Dessa oscillationer kan skada motorn och fenomenet hämmar motorns effektivitet. Knack kan uppstå på två sätt i en Otto-motor och detta examensarbete kommer att handla om självantändning. Självantändning, i detta fall, är när ändgasen börjar brinna utan att ha blivit påverkad av flamfronten eller gnistan från tändstiftet. Det finns flera olika matematiska modeller som i olika grader kan prediktera knackfenomenet. I…
Subjects/Keywords: Knocking; Spark-Ignited; Internal Combustion Engine; Spark-Knock; Empirical Correlation Models; BOOST; Combustion Phasing; Spark-advance; Combustion Duration; Knock Prediction Parameter.; Knack; Otto-förbränning; Förbränningsmotor; Empiriska korrelationsmodeller; BOOST; Förbränningsfasning; Tändvinkel; Förbränningsduration; Knackprediktering.; Other Mechanical Engineering; Annan maskinteknik
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Sharma, N. (2018). Knock Model Evaluation – Gas Engine. (Thesis). KTH. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237133
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Sharma, Nishchay. “Knock Model Evaluation – Gas Engine.” 2018. Thesis, KTH. Accessed December 09, 2019.
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237133.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Sharma, Nishchay. “Knock Model Evaluation – Gas Engine.” 2018. Web. 09 Dec 2019.
Vancouver:
Sharma N. Knock Model Evaluation – Gas Engine. [Internet] [Thesis]. KTH; 2018. [cited 2019 Dec 09].
Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237133.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Sharma N. Knock Model Evaluation – Gas Engine. [Thesis]. KTH; 2018. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237133
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
7.
Klasén, Erik.
Modeling and Estimation of Long Route EGR Mass Flow in a Turbocharged Gasoline Engine.
Degree: Vehicular Systems, 2016, Linköping University
URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131102
► Due to the continuous work in the automobile industry to reduce the environmental impact, reduce fuel consumption and increase efficiency, new technologies need to…
(more)
▼ Due to the continuous work in the automobile industry to reduce the environmental impact, reduce fuel consumption and increase efficiency, new technologies need to be developed and implemented in vehicles. For spark ignited engines, one technology that has received more attention in recent years is long route Exhaust Gas Recirculation (EGR), which means that exhaust gases after the turbine are transported back to the volume before the compressor in the air intake system of the engine. In this work, the components of the long route EGR system is modeled with mean value engine models in Simulink, and implemented in a existing Simulink engine model. Then different methods for estimating the mass flow over the long route EGR system are compared, and the transport delays for the recirculated exhaust gases in the engines air intake system are modeled. This work is based on measurements done on an engine rig, on which a long route EGR system was installed. Finally, some ideas on how a long route EGR system on a gasoline engine can be controlled are presented based on the results in this thesis work.
Subjects/Keywords: Long Route Low Pressure LR LP EGR SI Gasoline Spark Ignited Engines Modeling Modelling Mass Flow Estimation
…Engine
ECU
LR EGR
iVVT
eVVT
SiC-FET
Meaning
Spark Ignited Engine
Engine Controller Unit
Long… …1
2
1
1.1
Introduction
Problem formulation
Since the spark ignited gasoline engine… …EGR systems for spark ignited engines in Simulink, and
Wahlström and Eriksson [16]… …was a four cylinder turbocharged
direct injected spark ignited engine with variable phasing…
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Klasén, E. (2016). Modeling and Estimation of Long Route EGR Mass Flow in a Turbocharged Gasoline Engine. (Thesis). Linköping University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131102
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Klasén, Erik. “Modeling and Estimation of Long Route EGR Mass Flow in a Turbocharged Gasoline Engine.” 2016. Thesis, Linköping University. Accessed December 09, 2019.
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131102.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Klasén, Erik. “Modeling and Estimation of Long Route EGR Mass Flow in a Turbocharged Gasoline Engine.” 2016. Web. 09 Dec 2019.
Vancouver:
Klasén E. Modeling and Estimation of Long Route EGR Mass Flow in a Turbocharged Gasoline Engine. [Internet] [Thesis]. Linköping University; 2016. [cited 2019 Dec 09].
Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131102.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Klasén E. Modeling and Estimation of Long Route EGR Mass Flow in a Turbocharged Gasoline Engine. [Thesis]. Linköping University; 2016. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131102
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
.