Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(solvated hydrogels). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Virginia Tech

1. Tizard, Geoffrey Alexander. Characterization of the Viscoelastic Fracture of Solvated Semi-Interpenetrating Polymer Network Silicone Hydrogels.

Degree: MS, Engineering Science and Mechanics, 2010, Virginia Tech

The unique compressive, optical, and biocompatible properties of silicone hydrogels allow them to be used in a wide variety of applications in the biomedical field. However, the relatively weak mechanical behavior, as well as the highly deformable nature of these elastomeric materials, presents a myriad of challenges when attempting to understand their constitutive and fracture properties in order to improve hydrogel manufacturing and performance in applications. In this thesis, a series of experimental techniques were developed or adapted from common engineering approaches in order to investigate the effects of rate and temperature on the viscoelastic constitutive and fracture behavior of two solvated semi-interpenetrating polymer network silicone hydrogel systems. Viscoelastic characterization of these material systems was performed by implementing a series of uniaxial tension and dynamic mechanical analysis shear tests in order to generate relevant master curves and corresponding thermal shift factors of such properties as shear relaxation modulus, dynamic moduli, and the loss factor. Concurrently, the cohesive fracture properties were studied by utilizing a Ć¢ semi-infiniteĆ¢ strip geometry under constrained tension in which thin pre-cracked sheets of these cured hydrogels were exposed to several different loading conditions. Fracture tests were performed over a relevant range of temperatures and crosshead rates to determine and generate a master curve of the subcritical strain energy release rate. Experimental methods utilizing high-speed camera images and digital image correlation to monitor viscoelastic strain recovery in the wake of a propagating crack were explored. The results from this thesis may prove useful in an investigation of the interfacial fracture of these hydrogel systems on several different polymer substrates associated with an industrial manufacturing problem. Advisors/Committee Members: Dillard, David A. (committeechair), Moore, Robert B. (committee member), Case, Scott W. (committee member), Hopson, Peyton L. (committee member).

Subjects/Keywords: constrained tension fracture; viscoelasticity; solvated hydrogels; semi-interpenetrating polymer network; time-dependent fracture

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tizard, G. A. (2010). Characterization of the Viscoelastic Fracture of Solvated Semi-Interpenetrating Polymer Network Silicone Hydrogels. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/34232

Chicago Manual of Style (16th Edition):

Tizard, Geoffrey Alexander. “Characterization of the Viscoelastic Fracture of Solvated Semi-Interpenetrating Polymer Network Silicone Hydrogels.” 2010. Masters Thesis, Virginia Tech. Accessed October 14, 2019. http://hdl.handle.net/10919/34232.

MLA Handbook (7th Edition):

Tizard, Geoffrey Alexander. “Characterization of the Viscoelastic Fracture of Solvated Semi-Interpenetrating Polymer Network Silicone Hydrogels.” 2010. Web. 14 Oct 2019.

Vancouver:

Tizard GA. Characterization of the Viscoelastic Fracture of Solvated Semi-Interpenetrating Polymer Network Silicone Hydrogels. [Internet] [Masters thesis]. Virginia Tech; 2010. [cited 2019 Oct 14]. Available from: http://hdl.handle.net/10919/34232.

Council of Science Editors:

Tizard GA. Characterization of the Viscoelastic Fracture of Solvated Semi-Interpenetrating Polymer Network Silicone Hydrogels. [Masters Thesis]. Virginia Tech; 2010. Available from: http://hdl.handle.net/10919/34232

.