Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(schrodinger)`

.
Showing records 1 – 30 of
149 total matches.

Search Limiters

Dates

- 2017 – 2021 (23)
- 2012 – 2016 (62)
- 2007 – 2011 (39)
- 2002 – 2006 (21)

Department

- Mathematics (18)
- Physics (10)

▼ Search Limiters

University of Illinois – Urbana-Champaign

1. Demirbas, Seckin. A study on certain periodic Schrödinger equations.

Degree: PhD, Mathematics, 2015, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/87978

In the first part of this thesis we consider the cubic Schrödinger equation
iu_{t+Delta} u =+/-|u|^{2u}, x in T_{theta}^{2}, t∈ [-T,T],
u(x,0)=u_{0}(x) in H^{s}(T_{theta}^{2}).
T is the time of existence of the solutions and T_{theta}^{2} is the irrational torus given by R^{2}/theta_{1} Z * θ_{2} Z for theta_{1}, theta_{2} > 0 and theta_{1}/theta_{2} irrational. Our main result is an improvement of the Strichartz estimates on irrational tori using a counting argument by Huxley [43], which estimates the number of lattice points on ellipsoids. With this Strichartz estimate, we obtain a local well-posedness result in H^{s} for s>131/416. We also use energy type estimates to control the H^{s} norm of the solution and obtain improved growth bounds for higher order Sobolev norms.
In the second and the third parts of this thesis, we study the Cauchy problem for the 1d periodic fractional Schrödinger equation:
iu_{t+}(-Delta)^{alpha} u =+/- |u|^{2u}, x in T, t in R,
u(x,0)=u_{0}(x) in H^{s}(T),
where alpha in (1/2,1). First, we prove a Strichartz type estimate for this equation. Using the arguments from Chapter 3, this estimate implies local well-posedness in H^{s} for s>(1-alpha)/2. However, we prove local well-posedness using direct X^(s,b) estimates. In addition, we show the existence of global-in-time infinite energy solutions. We also show that the nonlinear evolution of the equation is smoother than the initial data. As an important consequence of this smoothing estimate, we prove that there is global well-posedness in H^{s} for s>(10*alpha+1)/(12).
Finally, for the fractional Schrödinger equation, we define an invariant probability measure mu on H^{s} for s<alpha-1/2, called a Gibbs measure. We define mu so that for any epsilon>0 there is a set Omega, a subset of H^{s}, such that mu(Omega^{c})<epsilon and the equation is globally well-posed for initial data in Omega. We achieve this by showing that for the initial data in Omega, the H^{s} norms of the solutions stay finite for all times. This fills the gap between the local well-posedness and the global well-posedness range in almost sure sense for (1-alpha)/2<alpha-1/2, i.e. alpha>2/3.
*Advisors/Committee Members: Tzirakis, Nikolaos (advisor), Erdogan, Burak (advisor), Junge, Marius (Committee Chair), Bronski, Jared C. (committee member).*

Subjects/Keywords: Periodic Schrodinger equation; Fractional Schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Demirbas, S. (2015). A study on certain periodic Schrödinger equations. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/87978

Chicago Manual of Style (16^{th} Edition):

Demirbas, Seckin. “A study on certain periodic Schrödinger equations.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed January 26, 2021. http://hdl.handle.net/2142/87978.

MLA Handbook (7^{th} Edition):

Demirbas, Seckin. “A study on certain periodic Schrödinger equations.” 2015. Web. 26 Jan 2021.

Vancouver:

Demirbas S. A study on certain periodic Schrödinger equations. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/2142/87978.

Council of Science Editors:

Demirbas S. A study on certain periodic Schrödinger equations. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/87978

2. Godet, Nicolas. Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations.

Degree: Docteur es, Mathématiques - EM2C, 2012, Cergy-Pontoise

URL: http://www.theses.fr/2012CERG0619

►

Cette thèse porte sur l'étude des phénomènes d'explosion pour certaines équations aux dérivées partielles dispersives et plus particulièrement pour l'équation de *Schrodinger* non linéaire. Ces…
(more)

Subjects/Keywords: Edp; Équation de Schrodinger; Explosion; Pde; Schrodinger equation; Blow up

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Godet, N. (2012). Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations. (Doctoral Dissertation). Cergy-Pontoise. Retrieved from http://www.theses.fr/2012CERG0619

Chicago Manual of Style (16^{th} Edition):

Godet, Nicolas. “Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations.” 2012. Doctoral Dissertation, Cergy-Pontoise. Accessed January 26, 2021. http://www.theses.fr/2012CERG0619.

MLA Handbook (7^{th} Edition):

Godet, Nicolas. “Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations.” 2012. Web. 26 Jan 2021.

Vancouver:

Godet N. Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations. [Internet] [Doctoral dissertation]. Cergy-Pontoise; 2012. [cited 2021 Jan 26]. Available from: http://www.theses.fr/2012CERG0619.

Council of Science Editors:

Godet N. Explosion pour certaines équations Hamiltoniennes : Blow up for some Hamiltonian equations. [Doctoral Dissertation]. Cergy-Pontoise; 2012. Available from: http://www.theses.fr/2012CERG0619

University of Oklahoma

3.
Adekoya, Oreoluwa.
PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR *SCHRODINGER* EQUATION.

Degree: PhD, 2019, University of Oklahoma

URL: http://hdl.handle.net/11244/319611

► We study the existence, uniqueness and stability of solutions to the initial-value problem for the periodic dispersion-managed nonlinear Schrödinger (DMNLS) equation, an equation that models…
(more)

Subjects/Keywords: Dispersion-managed; Dispersion; Nonlinear; Schrodinger; Periodic dispersion managed nonlinear schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Adekoya, O. (2019). PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/319611

Chicago Manual of Style (16^{th} Edition):

Adekoya, Oreoluwa. “PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION.” 2019. Doctoral Dissertation, University of Oklahoma. Accessed January 26, 2021. http://hdl.handle.net/11244/319611.

MLA Handbook (7^{th} Edition):

Adekoya, Oreoluwa. “PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION.” 2019. Web. 26 Jan 2021.

Vancouver:

Adekoya O. PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION. [Internet] [Doctoral dissertation]. University of Oklahoma; 2019. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/11244/319611.

Council of Science Editors:

Adekoya O. PERIODIC SOLUTIONS OF THE DISPERSION-MANAGED NONLINEAR SCHRODINGER EQUATION. [Doctoral Dissertation]. University of Oklahoma; 2019. Available from: http://hdl.handle.net/11244/319611

Texas A&M University

4. Rupam, Rishika. Meromorphic Inner Functions and their Applications.

Degree: PhD, Mathematics, 2015, Texas A&M University

URL: http://hdl.handle.net/1969.1/155377

► In this dissertation we study an important class of functions in complex analysis, known as Meromorphic Inner Functions (MIF) and we exploit their properties to…
(more)

Subjects/Keywords: Inner functions; Hardy spaces; Inverse spectral; Schrodinger

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rupam, R. (2015). Meromorphic Inner Functions and their Applications. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/155377

Chicago Manual of Style (16^{th} Edition):

Rupam, Rishika. “Meromorphic Inner Functions and their Applications.” 2015. Doctoral Dissertation, Texas A&M University. Accessed January 26, 2021. http://hdl.handle.net/1969.1/155377.

MLA Handbook (7^{th} Edition):

Rupam, Rishika. “Meromorphic Inner Functions and their Applications.” 2015. Web. 26 Jan 2021.

Vancouver:

Rupam R. Meromorphic Inner Functions and their Applications. [Internet] [Doctoral dissertation]. Texas A&M University; 2015. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/1969.1/155377.

Council of Science Editors:

Rupam R. Meromorphic Inner Functions and their Applications. [Doctoral Dissertation]. Texas A&M University; 2015. Available from: http://hdl.handle.net/1969.1/155377

Universidad de Chile

5. Zárate Devia, Yair Daniel. Phase shielding solitons.

Degree: 2013, Universidad de Chile

URL: http://repositorio.uchile.cl/handle/2250/115388

► Los solitones son el fen omeno universal m as profundamente estudiado, debido a los innumerables sistemas físicos en los cuales se observa. Estas soluciones corresponden…
(more)

Subjects/Keywords: Solitones; Ecuaciones de Schrodinger; Estructuras localizadas; PDNLS

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zárate Devia, Y. D. (2013). Phase shielding solitons. (Thesis). Universidad de Chile. Retrieved from http://repositorio.uchile.cl/handle/2250/115388

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Zárate Devia, Yair Daniel. “Phase shielding solitons.” 2013. Thesis, Universidad de Chile. Accessed January 26, 2021. http://repositorio.uchile.cl/handle/2250/115388.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Zárate Devia, Yair Daniel. “Phase shielding solitons.” 2013. Web. 26 Jan 2021.

Vancouver:

Zárate Devia YD. Phase shielding solitons. [Internet] [Thesis]. Universidad de Chile; 2013. [cited 2021 Jan 26]. Available from: http://repositorio.uchile.cl/handle/2250/115388.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zárate Devia YD. Phase shielding solitons. [Thesis]. Universidad de Chile; 2013. Available from: http://repositorio.uchile.cl/handle/2250/115388

Not specified: Masters Thesis or Doctoral Dissertation

University of Ontario Institute of Technology

6. Metherall, Brady. A new method of modelling tuneable lasers with functional composition.

Degree: 2019, University of Ontario Institute of Technology

URL: http://hdl.handle.net/10155/1073

► A new nonlinear model is proposed for tuneable lasers. Using the generalized nonlinear *Schrodinger* equation as a starting point, expressions for the transformations undergone by…
(more)

Subjects/Keywords: Tuneable lasers; Nonlinear Schrodinger equation; Laser cavity

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Metherall, B. (2019). A new method of modelling tuneable lasers with functional composition. (Thesis). University of Ontario Institute of Technology. Retrieved from http://hdl.handle.net/10155/1073

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Metherall, Brady. “A new method of modelling tuneable lasers with functional composition.” 2019. Thesis, University of Ontario Institute of Technology. Accessed January 26, 2021. http://hdl.handle.net/10155/1073.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Metherall, Brady. “A new method of modelling tuneable lasers with functional composition.” 2019. Web. 26 Jan 2021.

Vancouver:

Metherall B. A new method of modelling tuneable lasers with functional composition. [Internet] [Thesis]. University of Ontario Institute of Technology; 2019. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/10155/1073.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Metherall B. A new method of modelling tuneable lasers with functional composition. [Thesis]. University of Ontario Institute of Technology; 2019. Available from: http://hdl.handle.net/10155/1073

Not specified: Masters Thesis or Doctoral Dissertation

Universidade Estadual de Campinas

7.
Luciana Maria Mendonça Bragança.
O problema de Cauchy para um sistema de equações do tipo *Schrodinger* não linear de terceira ordem.

Degree: Instituto de Matemática, Estatística e Computação Científica, 2007, Universidade Estadual de Campinas

URL: http://libdigi.unicamp.br/document/?code=vtls000417496

►

In this work we study the Cauchy problem associated to a system of coupled third-order nonlinear *Schrodinger* equation. We establish local well-posedness results for the…
(more)

Subjects/Keywords: Cauchy; Schrodinger; Nonlinear differential equtions; Equações diferenciais não-lineares; Cauchy problem; Problemas de; Equações de; Schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bragança, L. M. M. (2007). O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem. (Thesis). Universidade Estadual de Campinas. Retrieved from http://libdigi.unicamp.br/document/?code=vtls000417496

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bragança, Luciana Maria Mendonça. “O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem.” 2007. Thesis, Universidade Estadual de Campinas. Accessed January 26, 2021. http://libdigi.unicamp.br/document/?code=vtls000417496.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bragança, Luciana Maria Mendonça. “O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem.” 2007. Web. 26 Jan 2021.

Vancouver:

Bragança LMM. O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem. [Internet] [Thesis]. Universidade Estadual de Campinas; 2007. [cited 2021 Jan 26]. Available from: http://libdigi.unicamp.br/document/?code=vtls000417496.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bragança LMM. O problema de Cauchy para um sistema de equações do tipo Schrodinger não linear de terceira ordem. [Thesis]. Universidade Estadual de Campinas; 2007. Available from: http://libdigi.unicamp.br/document/?code=vtls000417496

Not specified: Masters Thesis or Doctoral Dissertation

NSYSU

8. Lee, Yuanhan. Block elimination algorithms for bordered linear systems and its applications.

Degree: Master, Applied Mathematics, 2013, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623

► Many applications need to solve a number of large bordered linear systems such as the prediction and correction processes in continuation method.If the original linear…
(more)

Subjects/Keywords: Block elimination algorithm; bordered linear system; nonlinear Schrodinger equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, Y. (2013). Block elimination algorithms for bordered linear systems and its applications. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lee, Yuanhan. “Block elimination algorithms for bordered linear systems and its applications.” 2013. Thesis, NSYSU. Accessed January 26, 2021. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lee, Yuanhan. “Block elimination algorithms for bordered linear systems and its applications.” 2013. Web. 26 Jan 2021.

Vancouver:

Lee Y. Block elimination algorithms for bordered linear systems and its applications. [Internet] [Thesis]. NSYSU; 2013. [cited 2021 Jan 26]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lee Y. Block elimination algorithms for bordered linear systems and its applications. [Thesis]. NSYSU; 2013. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720113-145623

Not specified: Masters Thesis or Doctoral Dissertation

9. Pachouri, Dipti. Equation of state and microscopic optical potential; -.

Degree: Physics, 2012, Aligarh Muslim University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/55629

Subjects/Keywords: Scattering; Feshbach; Repulsive; Schrodinger; Monotonic

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pachouri, D. (2012). Equation of state and microscopic optical potential; -. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/55629

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pachouri, Dipti. “Equation of state and microscopic optical potential; -.” 2012. Thesis, Aligarh Muslim University. Accessed January 26, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/55629.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pachouri, Dipti. “Equation of state and microscopic optical potential; -.” 2012. Web. 26 Jan 2021.

Vancouver:

Pachouri D. Equation of state and microscopic optical potential; -. [Internet] [Thesis]. Aligarh Muslim University; 2012. [cited 2021 Jan 26]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/55629.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pachouri D. Equation of state and microscopic optical potential; -. [Thesis]. Aligarh Muslim University; 2012. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/55629

Not specified: Masters Thesis or Doctoral Dissertation

10. Irismar Goncalves da Paz. Ondas de matéria e propagação paraxial da luz.

Degree: 2006, Universidade Federal de Minas Gerais

URL: http://hdl.handle.net/1843/ESCZ-6XXHBP

► Características quânticas intrínsecas podem ser observadas em experimentos simples, como por exemplo, na difração de pacotes gaussianos. A evolução livre desses estados contém um tempo…
(more)

Subjects/Keywords: Ondas eletromagnéticas; Ótica quântica; Luz Propagação; Equação de Schrodinger

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Paz, I. G. d. (2006). Ondas de matéria e propagação paraxial da luz. (Thesis). Universidade Federal de Minas Gerais. Retrieved from http://hdl.handle.net/1843/ESCZ-6XXHBP

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Paz, Irismar Goncalves da. “Ondas de matéria e propagação paraxial da luz.” 2006. Thesis, Universidade Federal de Minas Gerais. Accessed January 26, 2021. http://hdl.handle.net/1843/ESCZ-6XXHBP.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Paz, Irismar Goncalves da. “Ondas de matéria e propagação paraxial da luz.” 2006. Web. 26 Jan 2021.

Vancouver:

Paz IGd. Ondas de matéria e propagação paraxial da luz. [Internet] [Thesis]. Universidade Federal de Minas Gerais; 2006. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/1843/ESCZ-6XXHBP.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Paz IGd. Ondas de matéria e propagação paraxial da luz. [Thesis]. Universidade Federal de Minas Gerais; 2006. Available from: http://hdl.handle.net/1843/ESCZ-6XXHBP

Not specified: Masters Thesis or Doctoral Dissertation

University of California – San Diego

11. Pizzo, Nicholas Edward. Properties of nonlinear and breaking deep-water surface waves.

Degree: Oceanography, 2015, University of California – San Diego

URL: http://www.escholarship.org/uc/item/0g45s3j6

► In this thesis we study nonlinear and breaking deep-water surface waves. First, we consider the vorticity generated by an individual breaking wave, drawing on classical…
(more)

Subjects/Keywords: Physical oceanography; Applied mathematics; Nonlinear Schrodinger Equation; Physical Oceanography; Wave breaking

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pizzo, N. E. (2015). Properties of nonlinear and breaking deep-water surface waves. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/0g45s3j6

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pizzo, Nicholas Edward. “Properties of nonlinear and breaking deep-water surface waves.” 2015. Thesis, University of California – San Diego. Accessed January 26, 2021. http://www.escholarship.org/uc/item/0g45s3j6.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pizzo, Nicholas Edward. “Properties of nonlinear and breaking deep-water surface waves.” 2015. Web. 26 Jan 2021.

Vancouver:

Pizzo NE. Properties of nonlinear and breaking deep-water surface waves. [Internet] [Thesis]. University of California – San Diego; 2015. [cited 2021 Jan 26]. Available from: http://www.escholarship.org/uc/item/0g45s3j6.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pizzo NE. Properties of nonlinear and breaking deep-water surface waves. [Thesis]. University of California – San Diego; 2015. Available from: http://www.escholarship.org/uc/item/0g45s3j6

Not specified: Masters Thesis or Doctoral Dissertation

University of Alberta

12. Dosser, Hayley V. Propagation and breaking of nonlinear internal gravity waves.

Degree: MS, Department of Physics, 2010, University of Alberta

URL: https://era.library.ualberta.ca/files/hh63sx19v

► Internal gravity waves grow in amplitude as they propagate upwards in a non-Boussinesq fluid and weakly nonlinear effects develop due to interactions with an induced…
(more)

Subjects/Keywords: internal gravity wave; anelastic; modulational; atmosphere; nonlinear; Schrodinger; non-Boussinesq

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dosser, H. V. (2010). Propagation and breaking of nonlinear internal gravity waves. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/hh63sx19v

Chicago Manual of Style (16^{th} Edition):

Dosser, Hayley V. “Propagation and breaking of nonlinear internal gravity waves.” 2010. Masters Thesis, University of Alberta. Accessed January 26, 2021. https://era.library.ualberta.ca/files/hh63sx19v.

MLA Handbook (7^{th} Edition):

Dosser, Hayley V. “Propagation and breaking of nonlinear internal gravity waves.” 2010. Web. 26 Jan 2021.

Vancouver:

Dosser HV. Propagation and breaking of nonlinear internal gravity waves. [Internet] [Masters thesis]. University of Alberta; 2010. [cited 2021 Jan 26]. Available from: https://era.library.ualberta.ca/files/hh63sx19v.

Council of Science Editors:

Dosser HV. Propagation and breaking of nonlinear internal gravity waves. [Masters Thesis]. University of Alberta; 2010. Available from: https://era.library.ualberta.ca/files/hh63sx19v

13.
Sohani, Vijay Kumar.
Nonlinear *schrodinger* equation and the twisted
laplacian; -.

Degree: Mathematical Sciences, 2013, INFLIBNET

URL: http://shodhganga.inflibnet.ac.in/handle/10603/37405

Subjects/Keywords: equation; Nonlinear; schrodinger; twisted laplacian

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sohani, V. K. (2013). Nonlinear schrodinger equation and the twisted laplacian; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/37405

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sohani, Vijay Kumar. “Nonlinear schrodinger equation and the twisted laplacian; -.” 2013. Thesis, INFLIBNET. Accessed January 26, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/37405.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sohani, Vijay Kumar. “Nonlinear schrodinger equation and the twisted laplacian; -.” 2013. Web. 26 Jan 2021.

Vancouver:

Sohani VK. Nonlinear schrodinger equation and the twisted laplacian; -. [Internet] [Thesis]. INFLIBNET; 2013. [cited 2021 Jan 26]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/37405.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sohani VK. Nonlinear schrodinger equation and the twisted laplacian; -. [Thesis]. INFLIBNET; 2013. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/37405

Not specified: Masters Thesis or Doctoral Dissertation

Stellenbosch University

14. Wessels, Gert Jermia Cornelus. A numerical and analytical investigation into non-Hermitian Hamiltonians.

Degree: Mathematical Sciences, 2009, Stellenbosch University

URL: http://hdl.handle.net/10019.1/2894

►

Thesis (MSc (Physical and Mathematical Analysis)) – University of Stellenbosch, 2009.

In this thesis we aim to show that the Schr odinger equation, which is a… (more)

Subjects/Keywords: Mathematics; Schrodinger equation; Perturbation (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wessels, G. J. C. (2009). A numerical and analytical investigation into non-Hermitian Hamiltonians. (Thesis). Stellenbosch University. Retrieved from http://hdl.handle.net/10019.1/2894

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wessels, Gert Jermia Cornelus. “A numerical and analytical investigation into non-Hermitian Hamiltonians.” 2009. Thesis, Stellenbosch University. Accessed January 26, 2021. http://hdl.handle.net/10019.1/2894.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wessels, Gert Jermia Cornelus. “A numerical and analytical investigation into non-Hermitian Hamiltonians.” 2009. Web. 26 Jan 2021.

Vancouver:

Wessels GJC. A numerical and analytical investigation into non-Hermitian Hamiltonians. [Internet] [Thesis]. Stellenbosch University; 2009. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/10019.1/2894.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wessels GJC. A numerical and analytical investigation into non-Hermitian Hamiltonians. [Thesis]. Stellenbosch University; 2009. Available from: http://hdl.handle.net/10019.1/2894

Not specified: Masters Thesis or Doctoral Dissertation

McMaster University

15. miladinovic, nick k. Adiabatic Transfer of Light in a Double Cavity.

Degree: MS, 2011, McMaster University

URL: http://hdl.handle.net/11375/9154

►

The goal of this thesis is to perform a simple theoretical analysis of the problem of two optical cavities coupled by a common mirror… (more)

Subjects/Keywords: Adiabatic; Maxwell; Schrodinger; Cavity; Landau-Zener; Light; Optics; Optics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

miladinovic, n. k. (2011). Adiabatic Transfer of Light in a Double Cavity. (Masters Thesis). McMaster University. Retrieved from http://hdl.handle.net/11375/9154

Chicago Manual of Style (16^{th} Edition):

miladinovic, nick k. “Adiabatic Transfer of Light in a Double Cavity.” 2011. Masters Thesis, McMaster University. Accessed January 26, 2021. http://hdl.handle.net/11375/9154.

MLA Handbook (7^{th} Edition):

miladinovic, nick k. “Adiabatic Transfer of Light in a Double Cavity.” 2011. Web. 26 Jan 2021.

Vancouver:

miladinovic nk. Adiabatic Transfer of Light in a Double Cavity. [Internet] [Masters thesis]. McMaster University; 2011. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/11375/9154.

Council of Science Editors:

miladinovic nk. Adiabatic Transfer of Light in a Double Cavity. [Masters Thesis]. McMaster University; 2011. Available from: http://hdl.handle.net/11375/9154

University of Toronto

16.
Rifkind, Benjamin Amichai.
Two Random Multiplicative Processes: Multiplicative Cascades and Eigenvectors of the Random *Schrodinger* Operator.

Degree: PhD, 2014, University of Toronto

URL: http://hdl.handle.net/1807/68309

► In this thesis we focus on two distinct random processes constructed using a sequence of independent identically distributed random variables along with a product structure…
(more)

Subjects/Keywords: Point Processes; Probability; Random Measures; Random Schrodinger Operators; Stochastic Process; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rifkind, B. A. (2014). Two Random Multiplicative Processes: Multiplicative Cascades and Eigenvectors of the Random Schrodinger Operator. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/68309

Chicago Manual of Style (16^{th} Edition):

Rifkind, Benjamin Amichai. “Two Random Multiplicative Processes: Multiplicative Cascades and Eigenvectors of the Random Schrodinger Operator.” 2014. Doctoral Dissertation, University of Toronto. Accessed January 26, 2021. http://hdl.handle.net/1807/68309.

MLA Handbook (7^{th} Edition):

Rifkind, Benjamin Amichai. “Two Random Multiplicative Processes: Multiplicative Cascades and Eigenvectors of the Random Schrodinger Operator.” 2014. Web. 26 Jan 2021.

Vancouver:

Rifkind BA. Two Random Multiplicative Processes: Multiplicative Cascades and Eigenvectors of the Random Schrodinger Operator. [Internet] [Doctoral dissertation]. University of Toronto; 2014. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/1807/68309.

Council of Science Editors:

Rifkind BA. Two Random Multiplicative Processes: Multiplicative Cascades and Eigenvectors of the Random Schrodinger Operator. [Doctoral Dissertation]. University of Toronto; 2014. Available from: http://hdl.handle.net/1807/68309

Texas Tech University

17.
Walker, John David.
An investigation into the possibility of an integral solution to the radical *Schrodinger* equation.

Degree: Physics, 1964, Texas Tech University

URL: http://hdl.handle.net/2346/13431

Subjects/Keywords: Schrodinger equation; Scattering (Physics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Walker, J. D. (1964). An investigation into the possibility of an integral solution to the radical Schrodinger equation. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/13431

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Walker, John David. “An investigation into the possibility of an integral solution to the radical Schrodinger equation.” 1964. Thesis, Texas Tech University. Accessed January 26, 2021. http://hdl.handle.net/2346/13431.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Walker, John David. “An investigation into the possibility of an integral solution to the radical Schrodinger equation.” 1964. Web. 26 Jan 2021.

Vancouver:

Walker JD. An investigation into the possibility of an integral solution to the radical Schrodinger equation. [Internet] [Thesis]. Texas Tech University; 1964. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/2346/13431.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Walker JD. An investigation into the possibility of an integral solution to the radical Schrodinger equation. [Thesis]. Texas Tech University; 1964. Available from: http://hdl.handle.net/2346/13431

Not specified: Masters Thesis or Doctoral Dissertation

Clemson University

18. Gao, Zhe. Component Mode Synthesis Approach for Quantum Mechanical Electrostatic and Transport Analysis of Nanoscale Structures and Devices.

Degree: MS, Mechanical Engineering, 2012, Clemson University

URL: https://tigerprints.clemson.edu/all_theses/1417

► As the dimensions of commonly used semiconductor devices have shrunk into nanometer regime, it is recognized that the influence of quantum effects on their…
(more)

Subjects/Keywords: Boundary; CMS; Poisson; Quantum; Schrodinger; Transmitting; Nanoscience and Nanotechnology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gao, Z. (2012). Component Mode Synthesis Approach for Quantum Mechanical Electrostatic and Transport Analysis of Nanoscale Structures and Devices. (Masters Thesis). Clemson University. Retrieved from https://tigerprints.clemson.edu/all_theses/1417

Chicago Manual of Style (16^{th} Edition):

Gao, Zhe. “Component Mode Synthesis Approach for Quantum Mechanical Electrostatic and Transport Analysis of Nanoscale Structures and Devices.” 2012. Masters Thesis, Clemson University. Accessed January 26, 2021. https://tigerprints.clemson.edu/all_theses/1417.

MLA Handbook (7^{th} Edition):

Gao, Zhe. “Component Mode Synthesis Approach for Quantum Mechanical Electrostatic and Transport Analysis of Nanoscale Structures and Devices.” 2012. Web. 26 Jan 2021.

Vancouver:

Gao Z. Component Mode Synthesis Approach for Quantum Mechanical Electrostatic and Transport Analysis of Nanoscale Structures and Devices. [Internet] [Masters thesis]. Clemson University; 2012. [cited 2021 Jan 26]. Available from: https://tigerprints.clemson.edu/all_theses/1417.

Council of Science Editors:

Gao Z. Component Mode Synthesis Approach for Quantum Mechanical Electrostatic and Transport Analysis of Nanoscale Structures and Devices. [Masters Thesis]. Clemson University; 2012. Available from: https://tigerprints.clemson.edu/all_theses/1417

University of Kansas

19. Claassen, Kyle Matthew. Stability of Periodic Waves in Nonlocal Dispersive Equations.

Degree: PhD, Mathematics, 2018, University of Kansas

URL: http://hdl.handle.net/1808/27876

► In this work consisting of joint projects with my advisor, Dr. Mathew Johnson, we study the existence and stability of periodic waves in equations that…
(more)

Subjects/Keywords: Mathematics; Bidirectional Whitham models; Dispersive Equations; Fractional Nonlinear Schrodinger Equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Claassen, K. M. (2018). Stability of Periodic Waves in Nonlocal Dispersive Equations. (Doctoral Dissertation). University of Kansas. Retrieved from http://hdl.handle.net/1808/27876

Chicago Manual of Style (16^{th} Edition):

Claassen, Kyle Matthew. “Stability of Periodic Waves in Nonlocal Dispersive Equations.” 2018. Doctoral Dissertation, University of Kansas. Accessed January 26, 2021. http://hdl.handle.net/1808/27876.

MLA Handbook (7^{th} Edition):

Claassen, Kyle Matthew. “Stability of Periodic Waves in Nonlocal Dispersive Equations.” 2018. Web. 26 Jan 2021.

Vancouver:

Claassen KM. Stability of Periodic Waves in Nonlocal Dispersive Equations. [Internet] [Doctoral dissertation]. University of Kansas; 2018. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/1808/27876.

Council of Science Editors:

Claassen KM. Stability of Periodic Waves in Nonlocal Dispersive Equations. [Doctoral Dissertation]. University of Kansas; 2018. Available from: http://hdl.handle.net/1808/27876

University of Kentucky

20. Music, Michael. Inverse Scattering For The Zero-Energy Novikov-Veselov Equation.

Degree: 2016, University of Kentucky

URL: https://uknowledge.uky.edu/math_etds/40

► For certain initial data, we solve the Novikov-Veselov equation by the inverse scat- tering method. This is a (2+1)-dimensional completely integrable system that gen- eralizes…
(more)

Subjects/Keywords: inverse scattering; Novikov-Veselov equation; Schrodinger equation; Analysis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Music, M. (2016). Inverse Scattering For The Zero-Energy Novikov-Veselov Equation. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/40

Chicago Manual of Style (16^{th} Edition):

Music, Michael. “Inverse Scattering For The Zero-Energy Novikov-Veselov Equation.” 2016. Doctoral Dissertation, University of Kentucky. Accessed January 26, 2021. https://uknowledge.uky.edu/math_etds/40.

MLA Handbook (7^{th} Edition):

Music, Michael. “Inverse Scattering For The Zero-Energy Novikov-Veselov Equation.” 2016. Web. 26 Jan 2021.

Vancouver:

Music M. Inverse Scattering For The Zero-Energy Novikov-Veselov Equation. [Internet] [Doctoral dissertation]. University of Kentucky; 2016. [cited 2021 Jan 26]. Available from: https://uknowledge.uky.edu/math_etds/40.

Council of Science Editors:

Music M. Inverse Scattering For The Zero-Energy Novikov-Veselov Equation. [Doctoral Dissertation]. University of Kentucky; 2016. Available from: https://uknowledge.uky.edu/math_etds/40

Virginia Tech

21.
Ran, Yu.
Nonhomogeneous Initial Boundary Value Problems for Two-Dimensional Nonlinear *Schrodinger* Equations.

Degree: PhD, Mathematics, 2014, Virginia Tech

URL: http://hdl.handle.net/10919/47930

► The dissertation focuses on the initial boundary value problems (IBVPs) of a class of nonlinear *Schrodinger* equations posed on a half plane R x R+…
(more)

Subjects/Keywords: Nonlinear Schrodinger Equations; Nonhomogeneous Boundary Value Problem; Harmonic Analysis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ran, Y. (2014). Nonhomogeneous Initial Boundary Value Problems for Two-Dimensional Nonlinear Schrodinger Equations. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/47930

Chicago Manual of Style (16^{th} Edition):

Ran, Yu. “Nonhomogeneous Initial Boundary Value Problems for Two-Dimensional Nonlinear Schrodinger Equations.” 2014. Doctoral Dissertation, Virginia Tech. Accessed January 26, 2021. http://hdl.handle.net/10919/47930.

MLA Handbook (7^{th} Edition):

Ran, Yu. “Nonhomogeneous Initial Boundary Value Problems for Two-Dimensional Nonlinear Schrodinger Equations.” 2014. Web. 26 Jan 2021.

Vancouver:

Ran Y. Nonhomogeneous Initial Boundary Value Problems for Two-Dimensional Nonlinear Schrodinger Equations. [Internet] [Doctoral dissertation]. Virginia Tech; 2014. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/10919/47930.

Council of Science Editors:

Ran Y. Nonhomogeneous Initial Boundary Value Problems for Two-Dimensional Nonlinear Schrodinger Equations. [Doctoral Dissertation]. Virginia Tech; 2014. Available from: http://hdl.handle.net/10919/47930

University of Illinois – Urbana-Champaign

22.
Toprak, Ebru.
Global dynamics of *Schrodinger* and Dirac equations.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/101665

► In this document, we study the linear Schrödinger operator and linear massive Dirac operator in the L^{1} → L^∞ settings. In Chapter~I, we focus on the…
(more)

Subjects/Keywords: Schrodinger equation; Dirac equation; dispersive estimate; threshold-energy obstruction

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Toprak, E. (2018). Global dynamics of Schrodinger and Dirac equations. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101665

Chicago Manual of Style (16^{th} Edition):

Toprak, Ebru. “Global dynamics of Schrodinger and Dirac equations.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed January 26, 2021. http://hdl.handle.net/2142/101665.

MLA Handbook (7^{th} Edition):

Toprak, Ebru. “Global dynamics of Schrodinger and Dirac equations.” 2018. Web. 26 Jan 2021.

Vancouver:

Toprak E. Global dynamics of Schrodinger and Dirac equations. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/2142/101665.

Council of Science Editors:

Toprak E. Global dynamics of Schrodinger and Dirac equations. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101665

23.
Pliakis, Dimitris.
Asymptotic behaniour of *Schrodinger* and Euler Lagrange equations near singular points.

Degree: 2000, University of Crete (UOC); Πανεπιστήμιο Κρήτης

URL: http://hdl.handle.net/10442/hedi/30218

► Στη διατριβή αυτή αντιμετωπίζονται προβλήματα ιδιομορφιών που συναντώνται στις εξισώσεις *Schrodinger* και Euler-Lagrange, παρέχονται δε ασυμπτωτικά αναπτύγματα συναρτήσεων που έχουν ενδιαφέρον στη Φυσική. Συγκεκριμένα στο…
(more)

Subjects/Keywords: Εξίσωση schrodinger; Εξίσωση Euler-Lagrange

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pliakis, D. (2000). Asymptotic behaniour of Schrodinger and Euler Lagrange equations near singular points. (Thesis). University of Crete (UOC); Πανεπιστήμιο Κρήτης. Retrieved from http://hdl.handle.net/10442/hedi/30218

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pliakis, Dimitris. “Asymptotic behaniour of Schrodinger and Euler Lagrange equations near singular points.” 2000. Thesis, University of Crete (UOC); Πανεπιστήμιο Κρήτης. Accessed January 26, 2021. http://hdl.handle.net/10442/hedi/30218.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pliakis, Dimitris. “Asymptotic behaniour of Schrodinger and Euler Lagrange equations near singular points.” 2000. Web. 26 Jan 2021.

Vancouver:

Pliakis D. Asymptotic behaniour of Schrodinger and Euler Lagrange equations near singular points. [Internet] [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/10442/hedi/30218.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pliakis D. Asymptotic behaniour of Schrodinger and Euler Lagrange equations near singular points. [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. Available from: http://hdl.handle.net/10442/hedi/30218

Not specified: Masters Thesis or Doctoral Dissertation

University of Sydney

24. Marting, Zechariah Lanka. Targeting the ‘Oligomerization Region’ of the Epidermal Growth Factor Receptor using Small Molecule Inhibitors as Novel Anticancer Agents .

Degree: 2015, University of Sydney

URL: http://hdl.handle.net/2123/14162

► There are two main types of ErbB-RTK subfamily inhibitors, viz, a) the mAbs and b) the RTKIs, which act at different domains of the receptors.…
(more)

Subjects/Keywords: Anti-EGFR anti-oligomer; oligomerization region; human cancer; Schrodinger Software

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Marting, Z. L. (2015). Targeting the ‘Oligomerization Region’ of the Epidermal Growth Factor Receptor using Small Molecule Inhibitors as Novel Anticancer Agents . (Thesis). University of Sydney. Retrieved from http://hdl.handle.net/2123/14162

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Marting, Zechariah Lanka. “Targeting the ‘Oligomerization Region’ of the Epidermal Growth Factor Receptor using Small Molecule Inhibitors as Novel Anticancer Agents .” 2015. Thesis, University of Sydney. Accessed January 26, 2021. http://hdl.handle.net/2123/14162.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Marting, Zechariah Lanka. “Targeting the ‘Oligomerization Region’ of the Epidermal Growth Factor Receptor using Small Molecule Inhibitors as Novel Anticancer Agents .” 2015. Web. 26 Jan 2021.

Vancouver:

Marting ZL. Targeting the ‘Oligomerization Region’ of the Epidermal Growth Factor Receptor using Small Molecule Inhibitors as Novel Anticancer Agents . [Internet] [Thesis]. University of Sydney; 2015. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/2123/14162.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Marting ZL. Targeting the ‘Oligomerization Region’ of the Epidermal Growth Factor Receptor using Small Molecule Inhibitors as Novel Anticancer Agents . [Thesis]. University of Sydney; 2015. Available from: http://hdl.handle.net/2123/14162

Not specified: Masters Thesis or Doctoral Dissertation

University of New South Wales

25. Sun, Yang. Soliton dynamics in frequency-modulated lattices.

Degree: Physical, Environmental & Mathematical Sciences, 2014, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true

► Currently, experimental and theoretical studies of solitons have been conducted in the context of several areas of science, from applied mathematics and physics to chemistry…
(more)

Subjects/Keywords: nonlinear Schrodinger equation; soliton; periodic potential; parametric resonance

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sun, Y. (2014). Soliton dynamics in frequency-modulated lattices. (Masters Thesis). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true

Chicago Manual of Style (16^{th} Edition):

Sun, Yang. “Soliton dynamics in frequency-modulated lattices.” 2014. Masters Thesis, University of New South Wales. Accessed January 26, 2021. http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true.

MLA Handbook (7^{th} Edition):

Sun, Yang. “Soliton dynamics in frequency-modulated lattices.” 2014. Web. 26 Jan 2021.

Vancouver:

Sun Y. Soliton dynamics in frequency-modulated lattices. [Internet] [Masters thesis]. University of New South Wales; 2014. [cited 2021 Jan 26]. Available from: http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true.

Council of Science Editors:

Sun Y. Soliton dynamics in frequency-modulated lattices. [Masters Thesis]. University of New South Wales; 2014. Available from: http://handle.unsw.edu.au/1959.4/53902 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:12612/SOURCE02?view=true

The Ohio State University

26.
Lee, Jong-eao John.
The inverse spectral solution, modulation theory and
linearized stability analysis of N-phase, quasi-periodic solutions
of the nonlinear *Schrodinger* equation.

Degree: PhD, Graduate School, 1986, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

Subjects/Keywords: Mathematics; Schrodinger equation; Wave mechanics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, J. J. (1986). The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

Chicago Manual of Style (16^{th} Edition):

Lee, Jong-eao John. “The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.” 1986. Doctoral Dissertation, The Ohio State University. Accessed January 26, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429.

MLA Handbook (7^{th} Edition):

Lee, Jong-eao John. “The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation.” 1986. Web. 26 Jan 2021.

Vancouver:

Lee JJ. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. [Internet] [Doctoral dissertation]. The Ohio State University; 1986. [cited 2021 Jan 26]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429.

Council of Science Editors:

Lee JJ. The inverse spectral solution, modulation theory and linearized stability analysis of N-phase, quasi-periodic solutions of the nonlinear Schrodinger equation. [Doctoral Dissertation]. The Ohio State University; 1986. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148726601122429

University of Cincinnati

27.
Hill, Thomas.
Dispersive Estimates of *Schrodinger* and *Schrodinger*-Like
Equations in One Dimension.

Degree: PhD, Arts and Sciences: Mathematical Sciences, 2020, University of Cincinnati

URL: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442

► This dissertation will discuss one-dimensional dispersive estimates of the *Schrodinger* equation and a fourth-order *Schrodinger*-like equation.We prove dispersive estimates for the *Schrodinger* equation with Hamiltonians…
(more)

Subjects/Keywords: Mathematics; Schrodinger equation; dispersive estimates; fourth-order; Wiener algebra; one-dimensional

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hill, T. (2020). Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442

Chicago Manual of Style (16^{th} Edition):

Hill, Thomas. “Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension.” 2020. Doctoral Dissertation, University of Cincinnati. Accessed January 26, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442.

MLA Handbook (7^{th} Edition):

Hill, Thomas. “Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension.” 2020. Web. 26 Jan 2021.

Vancouver:

Hill T. Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension. [Internet] [Doctoral dissertation]. University of Cincinnati; 2020. [cited 2021 Jan 26]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442.

Council of Science Editors:

Hill T. Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension. [Doctoral Dissertation]. University of Cincinnati; 2020. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595850253465442

University of South Carolina

28. DeCosta, Richard Henry. Methods for Cancellation of Apparent Cerenkov Radiation Arising From SME Models and Separability of Schrödinger’s Equation Using Exotic Potentials in Parabolic Coordinates.

Degree: PhD, Physics, 2020, University of South Carolina

URL: https://scholarcommons.sc.edu/etd/6003

► In an attempt to merge the two prominent areas of physics: The Standard Model and General Relativity, there have been many theories for the…
(more)

Subjects/Keywords: Physics; Cerenkov; Chern-Simons; CPT; Lorentz; Parabolic; Schrodinger

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

DeCosta, R. H. (2020). Methods for Cancellation of Apparent Cerenkov Radiation Arising From SME Models and Separability of Schrödinger’s Equation Using Exotic Potentials in Parabolic Coordinates. (Doctoral Dissertation). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/6003

Chicago Manual of Style (16^{th} Edition):

DeCosta, Richard Henry. “Methods for Cancellation of Apparent Cerenkov Radiation Arising From SME Models and Separability of Schrödinger’s Equation Using Exotic Potentials in Parabolic Coordinates.” 2020. Doctoral Dissertation, University of South Carolina. Accessed January 26, 2021. https://scholarcommons.sc.edu/etd/6003.

MLA Handbook (7^{th} Edition):

DeCosta, Richard Henry. “Methods for Cancellation of Apparent Cerenkov Radiation Arising From SME Models and Separability of Schrödinger’s Equation Using Exotic Potentials in Parabolic Coordinates.” 2020. Web. 26 Jan 2021.

Vancouver:

DeCosta RH. Methods for Cancellation of Apparent Cerenkov Radiation Arising From SME Models and Separability of Schrödinger’s Equation Using Exotic Potentials in Parabolic Coordinates. [Internet] [Doctoral dissertation]. University of South Carolina; 2020. [cited 2021 Jan 26]. Available from: https://scholarcommons.sc.edu/etd/6003.

Council of Science Editors:

DeCosta RH. Methods for Cancellation of Apparent Cerenkov Radiation Arising From SME Models and Separability of Schrödinger’s Equation Using Exotic Potentials in Parabolic Coordinates. [Doctoral Dissertation]. University of South Carolina; 2020. Available from: https://scholarcommons.sc.edu/etd/6003

Universidade do Estado do Rio de Janeiro

29. Bruno Fernando Inchausp Teixeira. Dualidade na teoria de Landau-Ginzburg da supercondutividade.

Degree: Master, 2010, Universidade do Estado do Rio de Janeiro

URL: http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=2828 ;

►

Neste trabalho abordamos a teoria de Ginzburg-Landau da supercondutividade (teoria GL). Apresentamos suas origens, características e resultados mais importantes. A idéia fundamental desta teoria e… (more)

Subjects/Keywords: FISICA DA MATERIA CONDENSADA; Teoria GL; Transições de fase; Dinâmica de vórtices; Dualidade; Modelo de Schrodinger-Ginzburg-Landau; GL theory; Phase Transitions; Vortex Dynamics; Duality; Schrodinger-Ginzburg-Landau Model

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Teixeira, B. F. I. (2010). Dualidade na teoria de Landau-Ginzburg da supercondutividade. (Masters Thesis). Universidade do Estado do Rio de Janeiro. Retrieved from http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=2828 ;

Chicago Manual of Style (16^{th} Edition):

Teixeira, Bruno Fernando Inchausp. “Dualidade na teoria de Landau-Ginzburg da supercondutividade.” 2010. Masters Thesis, Universidade do Estado do Rio de Janeiro. Accessed January 26, 2021. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=2828 ;.

MLA Handbook (7^{th} Edition):

Teixeira, Bruno Fernando Inchausp. “Dualidade na teoria de Landau-Ginzburg da supercondutividade.” 2010. Web. 26 Jan 2021.

Vancouver:

Teixeira BFI. Dualidade na teoria de Landau-Ginzburg da supercondutividade. [Internet] [Masters thesis]. Universidade do Estado do Rio de Janeiro; 2010. [cited 2021 Jan 26]. Available from: http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=2828 ;.

Council of Science Editors:

Teixeira BFI. Dualidade na teoria de Landau-Ginzburg da supercondutividade. [Masters Thesis]. Universidade do Estado do Rio de Janeiro; 2010. Available from: http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=2828 ;

Texas A&M University

30.
Weyand, Tracy Kathleen.
Zeros of Eigenfunctions of the *Schrodinger* Operator on Graphs and Their Relation to the Spectrum of the Magnetic *Schrodinger* Operator.

Degree: PhD, Mathematics, 2014, Texas A&M University

URL: http://hdl.handle.net/1969.1/153392

► In this dissertation, we analyze characteristics of eigenfunctions of the Schrödinger operator on graphs. In particular, we are interested in the zeros of the eigenfunctions…
(more)

Subjects/Keywords: Quantum graphs; Schrodinger operator on graphs; nodal count; zeros of eigenfunctions; magnetic Schrodinger operator; magnetic-nodal connection; dispersion relation; spectral band edges; infinite periodic graphs; Wronskian on graphs

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Weyand, T. K. (2014). Zeros of Eigenfunctions of the Schrodinger Operator on Graphs and Their Relation to the Spectrum of the Magnetic Schrodinger Operator. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/153392

Chicago Manual of Style (16^{th} Edition):

Weyand, Tracy Kathleen. “Zeros of Eigenfunctions of the Schrodinger Operator on Graphs and Their Relation to the Spectrum of the Magnetic Schrodinger Operator.” 2014. Doctoral Dissertation, Texas A&M University. Accessed January 26, 2021. http://hdl.handle.net/1969.1/153392.

MLA Handbook (7^{th} Edition):

Weyand, Tracy Kathleen. “Zeros of Eigenfunctions of the Schrodinger Operator on Graphs and Their Relation to the Spectrum of the Magnetic Schrodinger Operator.” 2014. Web. 26 Jan 2021.

Vancouver:

Weyand TK. Zeros of Eigenfunctions of the Schrodinger Operator on Graphs and Their Relation to the Spectrum of the Magnetic Schrodinger Operator. [Internet] [Doctoral dissertation]. Texas A&M University; 2014. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/1969.1/153392.

Council of Science Editors:

Weyand TK. Zeros of Eigenfunctions of the Schrodinger Operator on Graphs and Their Relation to the Spectrum of the Magnetic Schrodinger Operator. [Doctoral Dissertation]. Texas A&M University; 2014. Available from: http://hdl.handle.net/1969.1/153392