Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(quotient singularities). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Freie Universität Berlin

1. Kastner, Lars. Ext auf affinen torischen Varietäten.

Degree: 2016, Freie Universität Berlin

 Diese Arbeit beschäftigt sich mit Ext-Moduln Torus-invarianter Weil-Divisoren auf normalen affinen torischen Varietäten. Solche Weil-Divisoren lassen sich durch Polyeder beschreiben, die dieselben Facetten-Vektoren haben, durch… (more)

Subjects/Keywords: algebraic geometry; toric geometry; cyclic quotient singularities; Ext; Tor; 500 Naturwissenschaften und Mathematik::510 Mathematik

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kastner, L. (2016). Ext auf affinen torischen Varietäten. (Thesis). Freie Universität Berlin. Retrieved from http://dx.doi.org/10.17169/refubium-5247

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kastner, Lars. “Ext auf affinen torischen Varietäten.” 2016. Thesis, Freie Universität Berlin. Accessed September 29, 2020. http://dx.doi.org/10.17169/refubium-5247.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kastner, Lars. “Ext auf affinen torischen Varietäten.” 2016. Web. 29 Sep 2020.

Vancouver:

Kastner L. Ext auf affinen torischen Varietäten. [Internet] [Thesis]. Freie Universität Berlin; 2016. [cited 2020 Sep 29]. Available from: http://dx.doi.org/10.17169/refubium-5247.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kastner L. Ext auf affinen torischen Varietäten. [Thesis]. Freie Universität Berlin; 2016. Available from: http://dx.doi.org/10.17169/refubium-5247

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. WANG FEI. Normal Projective Surfaces and Dynamics of Automorphism Groups of Projective Varieties.

Degree: 2010, National University of Singapore

Subjects/Keywords: Quotient singularities; del Pezzo surfaces; K3 surfaces; automorphism groups; topological entropy; Kaehler manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

FEI, W. (2010). Normal Projective Surfaces and Dynamics of Automorphism Groups of Projective Varieties. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/21001

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

FEI, WANG. “Normal Projective Surfaces and Dynamics of Automorphism Groups of Projective Varieties.” 2010. Thesis, National University of Singapore. Accessed September 29, 2020. http://scholarbank.nus.edu.sg/handle/10635/21001.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

FEI, WANG. “Normal Projective Surfaces and Dynamics of Automorphism Groups of Projective Varieties.” 2010. Web. 29 Sep 2020.

Vancouver:

FEI W. Normal Projective Surfaces and Dynamics of Automorphism Groups of Projective Varieties. [Internet] [Thesis]. National University of Singapore; 2010. [cited 2020 Sep 29]. Available from: http://scholarbank.nus.edu.sg/handle/10635/21001.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

FEI W. Normal Projective Surfaces and Dynamics of Automorphism Groups of Projective Varieties. [Thesis]. National University of Singapore; 2010. Available from: http://scholarbank.nus.edu.sg/handle/10635/21001

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Yamagishi, Ryo. On smoothness of minimal models of quotient singularities by finite subgroups of SLn(C) .

Degree: 2018, Kyoto University

Subjects/Keywords: quotient singularities; crepant resolutions; minimal models; Cox rings; symplectic reolutions

Page 1 Page 2 Page 3

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yamagishi, R. (2018). On smoothness of minimal models of quotient singularities by finite subgroups of SLn(C) . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/232219

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yamagishi, Ryo. “On smoothness of minimal models of quotient singularities by finite subgroups of SLn(C) .” 2018. Thesis, Kyoto University. Accessed September 29, 2020. http://hdl.handle.net/2433/232219.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yamagishi, Ryo. “On smoothness of minimal models of quotient singularities by finite subgroups of SLn(C) .” 2018. Web. 29 Sep 2020.

Vancouver:

Yamagishi R. On smoothness of minimal models of quotient singularities by finite subgroups of SLn(C) . [Internet] [Thesis]. Kyoto University; 2018. [cited 2020 Sep 29]. Available from: http://hdl.handle.net/2433/232219.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yamagishi R. On smoothness of minimal models of quotient singularities by finite subgroups of SLn(C) . [Thesis]. Kyoto University; 2018. Available from: http://hdl.handle.net/2433/232219

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Michigan

4. Bober, Jonathan William. Integer Ratios of Factorials, Hypergeometric Functions, and Related Step Functions.

Degree: PhD, Mathematics, 2009, University of Michigan

 In this thesis we study the question of certain sequences of ratios products of factorials are always integers. Equivalently, this is a study of when… (more)

Subjects/Keywords: Number Theory; Beurling Nyman Criterion; Factorials; Riemann Hypothesis; Hypergeometric Functions; Quotient Singularities; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bober, J. W. (2009). Integer Ratios of Factorials, Hypergeometric Functions, and Related Step Functions. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/63856

Chicago Manual of Style (16th Edition):

Bober, Jonathan William. “Integer Ratios of Factorials, Hypergeometric Functions, and Related Step Functions.” 2009. Doctoral Dissertation, University of Michigan. Accessed September 29, 2020. http://hdl.handle.net/2027.42/63856.

MLA Handbook (7th Edition):

Bober, Jonathan William. “Integer Ratios of Factorials, Hypergeometric Functions, and Related Step Functions.” 2009. Web. 29 Sep 2020.

Vancouver:

Bober JW. Integer Ratios of Factorials, Hypergeometric Functions, and Related Step Functions. [Internet] [Doctoral dissertation]. University of Michigan; 2009. [cited 2020 Sep 29]. Available from: http://hdl.handle.net/2027.42/63856.

Council of Science Editors:

Bober JW. Integer Ratios of Factorials, Hypergeometric Functions, and Related Step Functions. [Doctoral Dissertation]. University of Michigan; 2009. Available from: http://hdl.handle.net/2027.42/63856


University of Western Ontario

5. Zhang, Yiming. Computation Sequences for Series and Polynomials.

Degree: 2013, University of Western Ontario

 Approximation to the solutions of non-linear differential systems is very useful when the exact solutions are unattainable. Perturbation expansion replaces the system with a sequences… (more)

Subjects/Keywords: perturbation theory; large expression management; computation sequences; heat transfer; free convection; concentric cylinders; singularities; Quotient-Difference method; Hilbert’s 16th problem; limit cycles; focus values; regular chains; modular algorithm; Dynamic Systems; Non-linear Dynamics; Numerical Analysis and Computation; Partial Differential Equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, Y. (2013). Computation Sequences for Series and Polynomials. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/1683

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhang, Yiming. “Computation Sequences for Series and Polynomials.” 2013. Thesis, University of Western Ontario. Accessed September 29, 2020. https://ir.lib.uwo.ca/etd/1683.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhang, Yiming. “Computation Sequences for Series and Polynomials.” 2013. Web. 29 Sep 2020.

Vancouver:

Zhang Y. Computation Sequences for Series and Polynomials. [Internet] [Thesis]. University of Western Ontario; 2013. [cited 2020 Sep 29]. Available from: https://ir.lib.uwo.ca/etd/1683.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhang Y. Computation Sequences for Series and Polynomials. [Thesis]. University of Western Ontario; 2013. Available from: https://ir.lib.uwo.ca/etd/1683

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.