Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(quiver varieties). Showing records 1 – 7 of 7 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Bath

1. Tapia Amador, Jesus. Combinatorial Reid's recipe for consistent dimer models.

Degree: PhD, 2015, University of Bath

 The aim of this thesis is to generalise Reid's recipe as first defined by Reid for G-\Hilb(ℂ3) (G a finite abelian subgroup of \SL(3, ℂ))… (more)

Subjects/Keywords: 511; dimer models; Reid's recipe; toric varieties; quiver representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tapia Amador, J. (2015). Combinatorial Reid's recipe for consistent dimer models. (Doctoral Dissertation). University of Bath. Retrieved from https://researchportal.bath.ac.uk/en/studentthesis/combinatorial-reids-recipe-for-consistent-dimer-models(b1d1ec42-6b1e-4245-9891-22e749a9349e).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669022

Chicago Manual of Style (16th Edition):

Tapia Amador, Jesus. “Combinatorial Reid's recipe for consistent dimer models.” 2015. Doctoral Dissertation, University of Bath. Accessed September 29, 2020. https://researchportal.bath.ac.uk/en/studentthesis/combinatorial-reids-recipe-for-consistent-dimer-models(b1d1ec42-6b1e-4245-9891-22e749a9349e).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669022.

MLA Handbook (7th Edition):

Tapia Amador, Jesus. “Combinatorial Reid's recipe for consistent dimer models.” 2015. Web. 29 Sep 2020.

Vancouver:

Tapia Amador J. Combinatorial Reid's recipe for consistent dimer models. [Internet] [Doctoral dissertation]. University of Bath; 2015. [cited 2020 Sep 29]. Available from: https://researchportal.bath.ac.uk/en/studentthesis/combinatorial-reids-recipe-for-consistent-dimer-models(b1d1ec42-6b1e-4245-9891-22e749a9349e).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669022.

Council of Science Editors:

Tapia Amador J. Combinatorial Reid's recipe for consistent dimer models. [Doctoral Dissertation]. University of Bath; 2015. Available from: https://researchportal.bath.ac.uk/en/studentthesis/combinatorial-reids-recipe-for-consistent-dimer-models(b1d1ec42-6b1e-4245-9891-22e749a9349e).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669022


University of Bath

2. Prabhu-Naik, Nathan. Tilting bundles and toric Fano varieties.

Degree: PhD, 2015, University of Bath

 This thesis constructs tilting bundles obtained from full strong exceptional collections of line bundles on all smooth toric Fano fourfolds. The tilting bundles lead to… (more)

Subjects/Keywords: 516.3; algebraic geometry; derived categories; Calabi-Yau algebras; toric varieties; quiver representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prabhu-Naik, N. (2015). Tilting bundles and toric Fano varieties. (Doctoral Dissertation). University of Bath. Retrieved from https://researchportal.bath.ac.uk/en/studentthesis/tilting-bundles-and-toric-fano-varieties(4952e5e4-a02f-4b28-b49a-5e8b8cf3767c).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690721

Chicago Manual of Style (16th Edition):

Prabhu-Naik, Nathan. “Tilting bundles and toric Fano varieties.” 2015. Doctoral Dissertation, University of Bath. Accessed September 29, 2020. https://researchportal.bath.ac.uk/en/studentthesis/tilting-bundles-and-toric-fano-varieties(4952e5e4-a02f-4b28-b49a-5e8b8cf3767c).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690721.

MLA Handbook (7th Edition):

Prabhu-Naik, Nathan. “Tilting bundles and toric Fano varieties.” 2015. Web. 29 Sep 2020.

Vancouver:

Prabhu-Naik N. Tilting bundles and toric Fano varieties. [Internet] [Doctoral dissertation]. University of Bath; 2015. [cited 2020 Sep 29]. Available from: https://researchportal.bath.ac.uk/en/studentthesis/tilting-bundles-and-toric-fano-varieties(4952e5e4-a02f-4b28-b49a-5e8b8cf3767c).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690721.

Council of Science Editors:

Prabhu-Naik N. Tilting bundles and toric Fano varieties. [Doctoral Dissertation]. University of Bath; 2015. Available from: https://researchportal.bath.ac.uk/en/studentthesis/tilting-bundles-and-toric-fano-varieties(4952e5e4-a02f-4b28-b49a-5e8b8cf3767c).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690721

3. Simental Rodriguez, Jose. On Harish-Chandra bimodules for rational Cherednik algebras.

Degree: PhD, Department of Mathematics, 2017, Northeastern University

 We study Harish-Chandra bimodules for rational Cherednik algebras Hc(W) associated to a complex reflection group W and parameter c. Our results allow to partially reduce… (more)

Subjects/Keywords: category O; Harish-Chandra bimodule; Namikawa-Weyl group; quantized quiver varieties; rational Cherednik algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Simental Rodriguez, J. (2017). On Harish-Chandra bimodules for rational Cherednik algebras. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20251054

Chicago Manual of Style (16th Edition):

Simental Rodriguez, Jose. “On Harish-Chandra bimodules for rational Cherednik algebras.” 2017. Doctoral Dissertation, Northeastern University. Accessed September 29, 2020. http://hdl.handle.net/2047/D20251054.

MLA Handbook (7th Edition):

Simental Rodriguez, Jose. “On Harish-Chandra bimodules for rational Cherednik algebras.” 2017. Web. 29 Sep 2020.

Vancouver:

Simental Rodriguez J. On Harish-Chandra bimodules for rational Cherednik algebras. [Internet] [Doctoral dissertation]. Northeastern University; 2017. [cited 2020 Sep 29]. Available from: http://hdl.handle.net/2047/D20251054.

Council of Science Editors:

Simental Rodriguez J. On Harish-Chandra bimodules for rational Cherednik algebras. [Doctoral Dissertation]. Northeastern University; 2017. Available from: http://hdl.handle.net/2047/D20251054

4. Benedetti, Vladimiro. Sous-variétés spéciales des espaces homogènes : Special subvarieties of homogeneous spaces.

Degree: Docteur es, Mathématiques. Géométrie algébrique complexe, 2018, Aix Marseille Université

Le but de cette thèse est de construire de nouvelles variétés algébriques complexes de Fano et à canonique triviale dans les espaces homogènes et d'analyser… (more)

Subjects/Keywords: Géométrie algébrique complexe; Espaces homogènes; Actions de groupes algébriques; Fibrés vectoriels; Variétés de Fano; Variétés de Calabi-Yau; Variétés hyper-Kahlériennes; Représentations de carquois; Complex algebraic geometry; Homogeneous spaces; Algebraic group actions; Vector bundles; Fano varieties; Calabi-Yau varieties; Hyper-Kahler varieties; Quiver representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Benedetti, V. (2018). Sous-variétés spéciales des espaces homogènes : Special subvarieties of homogeneous spaces. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2018AIXM0224

Chicago Manual of Style (16th Edition):

Benedetti, Vladimiro. “Sous-variétés spéciales des espaces homogènes : Special subvarieties of homogeneous spaces.” 2018. Doctoral Dissertation, Aix Marseille Université. Accessed September 29, 2020. http://www.theses.fr/2018AIXM0224.

MLA Handbook (7th Edition):

Benedetti, Vladimiro. “Sous-variétés spéciales des espaces homogènes : Special subvarieties of homogeneous spaces.” 2018. Web. 29 Sep 2020.

Vancouver:

Benedetti V. Sous-variétés spéciales des espaces homogènes : Special subvarieties of homogeneous spaces. [Internet] [Doctoral dissertation]. Aix Marseille Université 2018. [cited 2020 Sep 29]. Available from: http://www.theses.fr/2018AIXM0224.

Council of Science Editors:

Benedetti V. Sous-variétés spéciales des espaces homogènes : Special subvarieties of homogeneous spaces. [Doctoral Dissertation]. Aix Marseille Université 2018. Available from: http://www.theses.fr/2018AIXM0224


Université Paris-Sud – Paris XI

5. Bozec, Tristan. Variétés de représentations de carquois à boucles : Varieties of representations of quivers with loops.

Degree: Docteur es, Mathématiques, 2014, Université Paris-Sud – Paris XI

Cette thèse s’articule autour des espaces de modules de représentations de carquois arbitraires, c’est-à-dire possédant d’éventuelles boucles. Nous obtenons trois types de résultats. Le premier… (more)

Subjects/Keywords: Carquois à boucles; Base canonique; Base semi-canonique; Variétés carquois de Nakajima; Quivers with loops; Canonical basis; Semicanonical basis; Nakajima quiver varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bozec, T. (2014). Variétés de représentations de carquois à boucles : Varieties of representations of quivers with loops. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2014PA112096

Chicago Manual of Style (16th Edition):

Bozec, Tristan. “Variétés de représentations de carquois à boucles : Varieties of representations of quivers with loops.” 2014. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed September 29, 2020. http://www.theses.fr/2014PA112096.

MLA Handbook (7th Edition):

Bozec, Tristan. “Variétés de représentations de carquois à boucles : Varieties of representations of quivers with loops.” 2014. Web. 29 Sep 2020.

Vancouver:

Bozec T. Variétés de représentations de carquois à boucles : Varieties of representations of quivers with loops. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2014. [cited 2020 Sep 29]. Available from: http://www.theses.fr/2014PA112096.

Council of Science Editors:

Bozec T. Variétés de représentations de carquois à boucles : Varieties of representations of quivers with loops. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2014. Available from: http://www.theses.fr/2014PA112096

6. Liboz, Emilie. Algèbres de Cherednik et ordres sur les blocs de Calogero-Moser des groupes imprimitifs : Cherednik algebras and orders on the Calogero-Moser partition of imprimitive groups.

Degree: Docteur es, Mathématiques et applications, 2012, Besançon

Cette thèse présente quelques résultats de la théorie des représentations des algèbres de Cherednikrationnelles en t=0 et traite en particulier des différents ordres construits sur… (more)

Subjects/Keywords: Algèbres de Hecke; Variétés de carquois; Représentations des groupes deRéflexions complexes; Algèbres de Cherednik; Combinatoire algébrique.; Hecke algebras; Quiver varieties; Complex reflection groups; Cherednik algebras; Algebraic combinatorics; 512; 516; 16S38; 16S99; 20C08; 16G20; 05E10

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liboz, E. (2012). Algèbres de Cherednik et ordres sur les blocs de Calogero-Moser des groupes imprimitifs : Cherednik algebras and orders on the Calogero-Moser partition of imprimitive groups. (Doctoral Dissertation). Besançon. Retrieved from http://www.theses.fr/2012BESA2010

Chicago Manual of Style (16th Edition):

Liboz, Emilie. “Algèbres de Cherednik et ordres sur les blocs de Calogero-Moser des groupes imprimitifs : Cherednik algebras and orders on the Calogero-Moser partition of imprimitive groups.” 2012. Doctoral Dissertation, Besançon. Accessed September 29, 2020. http://www.theses.fr/2012BESA2010.

MLA Handbook (7th Edition):

Liboz, Emilie. “Algèbres de Cherednik et ordres sur les blocs de Calogero-Moser des groupes imprimitifs : Cherednik algebras and orders on the Calogero-Moser partition of imprimitive groups.” 2012. Web. 29 Sep 2020.

Vancouver:

Liboz E. Algèbres de Cherednik et ordres sur les blocs de Calogero-Moser des groupes imprimitifs : Cherednik algebras and orders on the Calogero-Moser partition of imprimitive groups. [Internet] [Doctoral dissertation]. Besançon; 2012. [cited 2020 Sep 29]. Available from: http://www.theses.fr/2012BESA2010.

Council of Science Editors:

Liboz E. Algèbres de Cherednik et ordres sur les blocs de Calogero-Moser des groupes imprimitifs : Cherednik algebras and orders on the Calogero-Moser partition of imprimitive groups. [Doctoral Dissertation]. Besançon; 2012. Available from: http://www.theses.fr/2012BESA2010

7. Im, Mee Seong. On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution.

Degree: PhD, 0439, 2014, University of Illinois – Urbana-Champaign

 We introduce the notion of filtered representations of quivers, which is related to usual quiver representations, but is a systematic generalization of conjugacy classes of… (more)

Subjects/Keywords: Algebraic geometry; representation theory; quiver varieties; filtered quiver variety; quiver flag variety; semi-invariant polynomials; invariant subring; Derksen-Weyman; Domokos-Zubkov; Schofield-van den Bergh; ADE-Dynkin quivers; affine Dynkin quivers; quivers with at most two pathways between any two vertices; filtration of vector spaces; classical invariant theory; the Hamiltonian reduction of the cotangent bundle of the enhanced Grothendieck-Springer resolution; almost-commuting varieties; affine quotient

…Schur algebras as a quotient of a convolution algebra in the study of quiver varieties via a… …to the results in this thesis. In Chapter 3, we relate filtered quiver varieties to quiver… …Grassmannians and quiver flag varieties through objects called universal quiver Grassmannian (cf… …explain Wolf’s construction of reflection functors for quiver flag varieties ([Wol09… …for various families of filtered quiver varieties. In Chapter 6, we study the Hamiltonian… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Im, M. S. (2014). On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/49392

Chicago Manual of Style (16th Edition):

Im, Mee Seong. “On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution.” 2014. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed September 29, 2020. http://hdl.handle.net/2142/49392.

MLA Handbook (7th Edition):

Im, Mee Seong. “On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution.” 2014. Web. 29 Sep 2020.

Vancouver:

Im MS. On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2014. [cited 2020 Sep 29]. Available from: http://hdl.handle.net/2142/49392.

Council of Science Editors:

Im MS. On semi-invariants of filtered representations of quivers and the cotangent bundle of the enhanced Grothendieck-Springer resolution. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2014. Available from: http://hdl.handle.net/2142/49392

.