Advanced search options
You searched for subject:(quadratic estimates)
.
Showing records 1 – 3 of
3 total matches.
▼ Search Limiters
Australian National University
1. Bandara, Lashi. Geometry and the Kato square root problem .
Degree: 2013, Australian National University
URL: http://hdl.handle.net/1885/10690
Subjects/Keywords: Kato square root problem; quadratic estimates; elliptic operator; Lipschitz estimates; essentially self-adjoint; vector bundle; measure metric space; bounded measurable coefficients; Hodge-Dirac operator
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Bandara, L. (2013). Geometry and the Kato square root problem . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/10690
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Bandara, Lashi. “Geometry and the Kato square root problem .” 2013. Thesis, Australian National University. Accessed January 26, 2021. http://hdl.handle.net/1885/10690.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Bandara, Lashi. “Geometry and the Kato square root problem .” 2013. Web. 26 Jan 2021.
Vancouver:
Bandara L. Geometry and the Kato square root problem . [Internet] [Thesis]. Australian National University; 2013. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/1885/10690.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Bandara L. Geometry and the Kato square root problem . [Thesis]. Australian National University; 2013. Available from: http://hdl.handle.net/1885/10690
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
2. Feneuil, Joseph. Analyse harmonique sur les graphes et les groupes de Lie : fonctionnelles quadratiques, transformées de Riesz et espaces de Besov : Harmonic analysis on graphs and Lie groups : quadratic functionals, Riesz transforms and Besov spaces.
Degree: Docteur es, Mathématiques, 2015, Université Grenoble Alpes (ComUE)
URL: http://www.theses.fr/2015GREAM040
Ce mémoire est consacré à des résultats d'analyse harmonique réelle dans des cadres géométriques discrets (graphes) ou continus (groupes de Lie).Soit Gamma un graphe (ensemble de sommets et d'arêtes) muni d'un laplacien discret Delta=I-P, où P est un opérateur de Markov. Sous des hypothèses géométriques convenables sur Gamma, nous montrons la continuité Lp de fonctionnelles de Littlewood-Paley fractionnaires. Nous introduisons des espaces de Hardy H1 de fonctions et de 1-formes différentielles sur Gamma, dont nous donnons plusieurs caractérisations, en supposant seulement la propriété de doublement pour le volume des boules de Gamma. Nous en déduisons la continuité de la transformée de Riesz sur H1. En supposant de plus des estimations supérieures ponctuelles (gaussiennes ou sous-gaussiennes) sur les itérées du noyau de l'opérateur P, nous obtenons aussi la continuité de la transformée de Riesz sur Lp pour 1<p<2.Nous considérons également l'espace de Besov B{p,q} alpha(G) sur un groupe de Lie unimodulaire G muni d'un sous-laplacien Delta. En utilisant des estimations du noyau de la chaleur associé à Delta, nous donnons plusieurs caractérisations des espaces de Besov, et montrons une propriété d'algèbre pour B{p,q} alpha(G) cap L nfty(G), pour alpha>0, 1leq p leq+infty et 1leq qleq +infty. Les résultats sont valables en croissance polynomiale ou exponentielle du volume des boules.
This thesis is devoted to results in real harmonic analysis in discrete (graphs) or continuous (Lie groups) geometric contexts.Let Gamma be a graph (a set of vertices and edges) equipped with a discrete laplacian Delta=I-P, where P is a Markov operator.Under suitable geometric assumptions on Gamma, we show the Lp boundedness of fractional Littlewood-Paley functionals. We introduce H1 Hardy spaces of functions and of 1-differential forms on Gamma, giving several characterizations of these spaces, only assuming the doubling property for the volumes of balls in Gamma. As a consequence, we derive the H1 boundedness of the Riesz transform. Assuming furthermore pointwise upper bounds for the kernel (Gaussian of subgaussian upper bounds) on the iterates of the kernel of P, we also establish the Lp boundedness of the Riesz transform for 1<p<2.We also consider the Besov space B{p,q} alpha(G) on a unimodular Lie group G equipped with a sublaplacian Delta. Using estimates of the heat kernel associated with Delta, we give several characterizations of Besov spaces, and show an algebra property for B{p,q} alpha(G) cap L infty(G) for alpha>0, 1leq pleq+infty and 1leq qleq +infty.These results hold for polynomial as well as for exponential volume growth of balls.
Advisors/Committee Members: Russ, Emmanuel (thesis director).Subjects/Keywords: Graphes; Groupes de lie; Fonctionnelles quadratiques; Transformée de Riesz; Espaces de Besov; Espaces de Hardy; Estimations de Gaffney; Noyau de la chaleur; Estimations sous-gaussiennes; Estimations gaussiennes; Paraproduits; Graphs; Lie groups; Quadratic functionals; Riesz transforms; Besov spaces; Hardy spaces; Heat kernel; Gaffney estimates; Gaussian estimates; Sub-Gaussian estimates; Paraproducts; 510
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Feneuil, J. (2015). Analyse harmonique sur les graphes et les groupes de Lie : fonctionnelles quadratiques, transformées de Riesz et espaces de Besov : Harmonic analysis on graphs and Lie groups : quadratic functionals, Riesz transforms and Besov spaces. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2015GREAM040
Chicago Manual of Style (16th Edition):
Feneuil, Joseph. “Analyse harmonique sur les graphes et les groupes de Lie : fonctionnelles quadratiques, transformées de Riesz et espaces de Besov : Harmonic analysis on graphs and Lie groups : quadratic functionals, Riesz transforms and Besov spaces.” 2015. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed January 26, 2021. http://www.theses.fr/2015GREAM040.
MLA Handbook (7th Edition):
Feneuil, Joseph. “Analyse harmonique sur les graphes et les groupes de Lie : fonctionnelles quadratiques, transformées de Riesz et espaces de Besov : Harmonic analysis on graphs and Lie groups : quadratic functionals, Riesz transforms and Besov spaces.” 2015. Web. 26 Jan 2021.
Vancouver:
Feneuil J. Analyse harmonique sur les graphes et les groupes de Lie : fonctionnelles quadratiques, transformées de Riesz et espaces de Besov : Harmonic analysis on graphs and Lie groups : quadratic functionals, Riesz transforms and Besov spaces. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2015. [cited 2021 Jan 26]. Available from: http://www.theses.fr/2015GREAM040.
Council of Science Editors:
Feneuil J. Analyse harmonique sur les graphes et les groupes de Lie : fonctionnelles quadratiques, transformées de Riesz et espaces de Besov : Harmonic analysis on graphs and Lie groups : quadratic functionals, Riesz transforms and Besov spaces. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2015. Available from: http://www.theses.fr/2015GREAM040
Australian National University
3. Morris, Andrew Jordan. Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds .
Degree: 2010, Australian National University
URL: http://hdl.handle.net/1885/8864
Subjects/Keywords: holomorphic functional calculi; quadratic estimates; sectorial operators; local Hardy spaces; Riemannian manifolds; differential forms; Hodge – Dirac operators; local Riesz transforms; off-diagonal estimates; Davies – Gaffney estimates; Kato square-root problems; submanifolds; divergence form operators; first-order differential operators
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Morris, A. J. (2010). Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/8864
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Morris, Andrew Jordan. “Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds .” 2010. Thesis, Australian National University. Accessed January 26, 2021. http://hdl.handle.net/1885/8864.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Morris, Andrew Jordan. “Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds .” 2010. Web. 26 Jan 2021.
Vancouver:
Morris AJ. Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds . [Internet] [Thesis]. Australian National University; 2010. [cited 2021 Jan 26]. Available from: http://hdl.handle.net/1885/8864.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Morris AJ. Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds . [Thesis]. Australian National University; 2010. Available from: http://hdl.handle.net/1885/8864
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation