Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(pore pressure transients). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Anochikwa, Collins Ifeanyichukwu. A coupled stress-flow numerical modelling methodology for identifying pore-pressure changes due to total soil moisture loading.

Degree: 2010, University of Saskatchewan

This thesis describes a numerical modelling methodology to interpret dynamic fluctuations in pore-pressures to isolate the effects of loading associated with changes in total soil moisture (site water balance) alone. The methodology is required to enhance the data-interpretation and performance-assessment for potential applications of a novel piezometer-based, large-scale, geological weighing lysimeter. This interpretative methodology is based on a method of superimposing computer-based numerical analyses of independent causes of pore-pressure transients to separate the different pore-pressure responses. Finite element coupled load-deformation and seepage numerical models were used to simulate field-observed piezometric responses to water table fluctuations and loading induced by surface water balance (using meteorological data). Transient pore-pressures in a deep clay-till-aquitard arising from variations in the water table within a surface-aquifer were modelled and removed from the measured pore-pressure record (corrected for earth tide and barometric effects) to isolate and identify pore-pressure fluctuations arising from loading associated with site water balance. These estimates were compared to simulated pore-pressure responses to an independently measured water balance using meteorological instrumentation. The simulations and observations of the pore-pressure responses to surface water balance were in good agreement over the “dry” years of a 9-year period. Some periods of significant differences did occur during “wet” years in which runoff, which is not accounted for in the current analyses, may have occurred. The identification of pore-pressure response to total soil moisture loading using the developed numerical modelling methodology enhances the potential for the deployment of the piezometer-based geological weighing lysimeter for different applications which include real-time monitoring of site water balance and hydrological events such as precipitation and flooding. Interestingly, the disparity occurring during the “wet” years even suggests the potential to adapt the method to monitor runoff (net lateral flow). The methodology also demonstrated the capability to accurately estimate in situ elastic and hydraulic parameters. Calibration of the model yielded “equivalent” properties of the aquitard (hydraulic conductivity, Kv, of 2.1E-5 m/day and specific storage, Ss, of 1.36E-5 /m) for a Skempton’s B-bar coefficient of 0.91 for an assumed porosity of 0.26. Sensitivity tests also provided insight into the consolidation and pressure propagation (swelling) behaviour of the aquitard under parametric variations. The parameters obtained are consistent with range of values reported for glacial clay till soil. Therefore, this work also provides a unique case history of a method for determining, large scale, in situ material properties for geo-engineers and scientists to explore by simply using piezometric and meteorological data. Advisors/Committee Members: Barbour, S. Lee, van der Kamp, Garth, Samarasekera, Lal, Haug, Moir, Bashir, Rashid, Reeves, Malcom.

Subjects/Keywords: hydraulic conductivity; consolidation; elastic modulus; water balance; barometric correction of pore-pressure; pore-pressure transients

…geological weighing lysimeter when there are additional pore-pressure transients caused by… …6 2.2 Instantaneous Pore-pressure Response to Surface Mechanical Load… …7 2.2.1 Mechanism and Observation of Instantaneous Pore-pressure Response ............ 8… …2.2.2 Quantification of the Instantaneous Excess Pore-pressure… …8 2.3 Weighing Lysimeter-Interpretations of Pore-pressure Changes… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Anochikwa, C. I. (2010). A coupled stress-flow numerical modelling methodology for identifying pore-pressure changes due to total soil moisture loading. (Thesis). University of Saskatchewan. Retrieved from http://hdl.handle.net/10388/etd-04122010-220038

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Anochikwa, Collins Ifeanyichukwu. “A coupled stress-flow numerical modelling methodology for identifying pore-pressure changes due to total soil moisture loading.” 2010. Thesis, University of Saskatchewan. Accessed January 24, 2020. http://hdl.handle.net/10388/etd-04122010-220038.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Anochikwa, Collins Ifeanyichukwu. “A coupled stress-flow numerical modelling methodology for identifying pore-pressure changes due to total soil moisture loading.” 2010. Web. 24 Jan 2020.

Vancouver:

Anochikwa CI. A coupled stress-flow numerical modelling methodology for identifying pore-pressure changes due to total soil moisture loading. [Internet] [Thesis]. University of Saskatchewan; 2010. [cited 2020 Jan 24]. Available from: http://hdl.handle.net/10388/etd-04122010-220038.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Anochikwa CI. A coupled stress-flow numerical modelling methodology for identifying pore-pressure changes due to total soil moisture loading. [Thesis]. University of Saskatchewan; 2010. Available from: http://hdl.handle.net/10388/etd-04122010-220038

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.