Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(polyhedral graph)`

.
Showing records 1 – 6 of
6 total matches.

▼ Search Limiters

University of Victoria

1.
Oldridge, Paul Richard.
Characterizing the *polyhedral* graphs with positive combinatorial curvature.

Degree: Department of Computer Science, 2017, University of Victoria

URL: http://hdl.handle.net/1828/8030

► A *polyhedral* *graph* G is called PCC if every vertex of G has strictly positive combinatorial curvature and the *graph* is not a prism or…
(more)

Subjects/Keywords: combinatorial curvature; positive combinatorial curvature; PCC; polyhedral graph; polyhedron

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Oldridge, P. R. (2017). Characterizing the polyhedral graphs with positive combinatorial curvature. (Masters Thesis). University of Victoria. Retrieved from http://hdl.handle.net/1828/8030

Chicago Manual of Style (16^{th} Edition):

Oldridge, Paul Richard. “Characterizing the polyhedral graphs with positive combinatorial curvature.” 2017. Masters Thesis, University of Victoria. Accessed December 15, 2019. http://hdl.handle.net/1828/8030.

MLA Handbook (7^{th} Edition):

Oldridge, Paul Richard. “Characterizing the polyhedral graphs with positive combinatorial curvature.” 2017. Web. 15 Dec 2019.

Vancouver:

Oldridge PR. Characterizing the polyhedral graphs with positive combinatorial curvature. [Internet] [Masters thesis]. University of Victoria; 2017. [cited 2019 Dec 15]. Available from: http://hdl.handle.net/1828/8030.

Council of Science Editors:

Oldridge PR. Characterizing the polyhedral graphs with positive combinatorial curvature. [Masters Thesis]. University of Victoria; 2017. Available from: http://hdl.handle.net/1828/8030

2. Irvine, Chelsea Nicole. Suns: a new class of facet defining structures for the node packing polyhedron.

Degree: MS, Department of Industrial and Manufacturing Systems Engineering, 2012, Kansas State University

URL: http://hdl.handle.net/2097/13729

► *Graph* theory is a widely researched topic. A *graph* contains a set of nodes and a set of edges. The nodes often represent resources such…
(more)

Subjects/Keywords: Sun; Suns; Node packing; Graph theory; Polyhedral theory; Facet defining; Industrial Engineering (0546); Theoretical Mathematics (0642)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Irvine, C. N. (2012). Suns: a new class of facet defining structures for the node packing polyhedron. (Masters Thesis). Kansas State University. Retrieved from http://hdl.handle.net/2097/13729

Chicago Manual of Style (16^{th} Edition):

Irvine, Chelsea Nicole. “Suns: a new class of facet defining structures for the node packing polyhedron.” 2012. Masters Thesis, Kansas State University. Accessed December 15, 2019. http://hdl.handle.net/2097/13729.

MLA Handbook (7^{th} Edition):

Irvine, Chelsea Nicole. “Suns: a new class of facet defining structures for the node packing polyhedron.” 2012. Web. 15 Dec 2019.

Vancouver:

Irvine CN. Suns: a new class of facet defining structures for the node packing polyhedron. [Internet] [Masters thesis]. Kansas State University; 2012. [cited 2019 Dec 15]. Available from: http://hdl.handle.net/2097/13729.

Council of Science Editors:

Irvine CN. Suns: a new class of facet defining structures for the node packing polyhedron. [Masters Thesis]. Kansas State University; 2012. Available from: http://hdl.handle.net/2097/13729

Georgia Tech

3. Shokrieh, Farbod. Divisors on graphs, binomial and monomial ideals, and cellular resolutions.

Degree: PhD, Mathematics, 2013, Georgia Tech

URL: http://hdl.handle.net/1853/52176

► We study various binomial and monomial ideals arising in the theory of divisors, orientations, and matroids on graphs. We use ideas from potential theory on…
(more)

Subjects/Keywords: Graph; Divisors; Chip-firing; Potential theory; Green's function; Grobner theory; Hyperplane arrangement; Lattice; Delaunay decomposition; Totally unimodular; Polyhedral cellular minimal free resolution

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shokrieh, F. (2013). Divisors on graphs, binomial and monomial ideals, and cellular resolutions. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/52176

Chicago Manual of Style (16^{th} Edition):

Shokrieh, Farbod. “Divisors on graphs, binomial and monomial ideals, and cellular resolutions.” 2013. Doctoral Dissertation, Georgia Tech. Accessed December 15, 2019. http://hdl.handle.net/1853/52176.

MLA Handbook (7^{th} Edition):

Shokrieh, Farbod. “Divisors on graphs, binomial and monomial ideals, and cellular resolutions.” 2013. Web. 15 Dec 2019.

Vancouver:

Shokrieh F. Divisors on graphs, binomial and monomial ideals, and cellular resolutions. [Internet] [Doctoral dissertation]. Georgia Tech; 2013. [cited 2019 Dec 15]. Available from: http://hdl.handle.net/1853/52176.

Council of Science Editors:

Shokrieh F. Divisors on graphs, binomial and monomial ideals, and cellular resolutions. [Doctoral Dissertation]. Georgia Tech; 2013. Available from: http://hdl.handle.net/1853/52176

University of Waterloo

4. Pulleyblank, William R. FACES OF MATCHING POLYHEDRA.

Degree: 2016, University of Waterloo

URL: http://hdl.handle.net/10012/10971

► Let G = (V, E, ~) be a finite loopless *graph*, let b=(bi:ieV) be a vector of positive integers. A feasible matching is a vector…
(more)

Subjects/Keywords: set theory; graph theory; polyhedral theory; first facet characterization; second facet characterization; vertices of polyhedra; Blossom algorithm; alternating forests; Hungarian forests; Post-Optimality algorithm

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pulleyblank, W. R. (2016). FACES OF MATCHING POLYHEDRA. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/10971

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pulleyblank, William R. “FACES OF MATCHING POLYHEDRA.” 2016. Thesis, University of Waterloo. Accessed December 15, 2019. http://hdl.handle.net/10012/10971.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pulleyblank, William R. “FACES OF MATCHING POLYHEDRA.” 2016. Web. 15 Dec 2019.

Vancouver:

Pulleyblank WR. FACES OF MATCHING POLYHEDRA. [Internet] [Thesis]. University of Waterloo; 2016. [cited 2019 Dec 15]. Available from: http://hdl.handle.net/10012/10971.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pulleyblank WR. FACES OF MATCHING POLYHEDRA. [Thesis]. University of Waterloo; 2016. Available from: http://hdl.handle.net/10012/10971

Not specified: Masters Thesis or Doctoral Dissertation

5. Mohamed Sidi, Mohamed Ahmed. K-Separator problem : Problème de k-Séparateur.

Degree: Docteur es, Informatique, 2014, Evry, Institut national des télécommunications

URL: http://www.theses.fr/2014TELE0032

►

Considérons un graphe G = (V,E,w) non orienté dont les sommets sont pondérés et un entier k. Le problème à étudier consiste à la construction… (more)

Subjects/Keywords: Couverture par des sommets; Méthode de coupe; Problème de séparateur; Approches polyèdrales; Algorithmes d’approximation; Graph partitioning; Complexity theory; Optimization; Approximation algorithms; Vertex separators; Polyhedral approach; Polynomial-time algorithms; Integer programming

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mohamed Sidi, M. A. (2014). K-Separator problem : Problème de k-Séparateur. (Doctoral Dissertation). Evry, Institut national des télécommunications. Retrieved from http://www.theses.fr/2014TELE0032

Chicago Manual of Style (16^{th} Edition):

Mohamed Sidi, Mohamed Ahmed. “K-Separator problem : Problème de k-Séparateur.” 2014. Doctoral Dissertation, Evry, Institut national des télécommunications. Accessed December 15, 2019. http://www.theses.fr/2014TELE0032.

MLA Handbook (7^{th} Edition):

Mohamed Sidi, Mohamed Ahmed. “K-Separator problem : Problème de k-Séparateur.” 2014. Web. 15 Dec 2019.

Vancouver:

Mohamed Sidi MA. K-Separator problem : Problème de k-Séparateur. [Internet] [Doctoral dissertation]. Evry, Institut national des télécommunications; 2014. [cited 2019 Dec 15]. Available from: http://www.theses.fr/2014TELE0032.

Council of Science Editors:

Mohamed Sidi MA. K-Separator problem : Problème de k-Séparateur. [Doctoral Dissertation]. Evry, Institut national des télécommunications; 2014. Available from: http://www.theses.fr/2014TELE0032

ETH Zürich

6. Gaillard, Arlette D. Perfectness notions related to polarity.

Degree: 1991, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/140279

Subjects/Keywords: POLYEDRISCHE KOMBINATORIK (OPERATIONS RESEARCH); PERFEKTE GRAPHEN (GRAPHENTHEORIE); POLYHEDRAL COMBINATORICS (OPERATIONS RESEARCH); PERFECT GRAPHS (GRAPH THEORY)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gaillard, A. D. (1991). Perfectness notions related to polarity. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/140279

Chicago Manual of Style (16^{th} Edition):

Gaillard, Arlette D. “Perfectness notions related to polarity.” 1991. Doctoral Dissertation, ETH Zürich. Accessed December 15, 2019. http://hdl.handle.net/20.500.11850/140279.

MLA Handbook (7^{th} Edition):

Gaillard, Arlette D. “Perfectness notions related to polarity.” 1991. Web. 15 Dec 2019.

Vancouver:

Gaillard AD. Perfectness notions related to polarity. [Internet] [Doctoral dissertation]. ETH Zürich; 1991. [cited 2019 Dec 15]. Available from: http://hdl.handle.net/20.500.11850/140279.

Council of Science Editors:

Gaillard AD. Perfectness notions related to polarity. [Doctoral Dissertation]. ETH Zürich; 1991. Available from: http://hdl.handle.net/20.500.11850/140279