Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(plasma anode interaction). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Mississippi State University

1. Gharghabi, Pedram. Experimental and numerical studies of lightning strike induced damage to carbon fiber epoxy composites.

Degree: PhD, Electrical and Computer Engineering, 2018, Mississippi State University

The objective of this study is to investigate the interaction between a lightning strike and carbon/fiber composites. The first approach is to characterize the damage development in a composite structure subjected to simulated lightning strikes. Several existing studies have acknowledged that the lightning induced damaged can be categorized into two separate domains of damage; a primary domain of damage that occurs at the attachment point, and a secondary domain of damage that is typically formed around the attachment point. Quantitative studies of the causes of the primary damage domain are not satisfactory for explaining the secondary damage domain and thus, these two domains are produced by presumably different mechanisms. There have been many reports and studies focused on the inspection of the primary damaged area. However, the secondary domain of damage has not yet been fully explained and understood. An experimental setup was configured with a recommissioned lightning current simulator to generate artificial lightning strikes consistent with the existing standard for lightning protection testing used in the aerospace industry. Carbon/epoxy composite laminates in various layups and Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panels were subjected to high impulse currents of different magnitudes. The lightning induced damage to the protected and non-protected composite laminates and PRSEUS panels were evaluated, and the influence of different variables such as current magnitude, strike location, and laminate layup were studied. An interesting observation was the secondary damage area that expanded laterally beyond the intense damage area. The structure of a composite panel is such that it forces the current to flow along the carbon fibers directions, as opposed to metals where the relatively isotropic conductivity of the metal allows current to distribute radially. It is argued in this work that the secondary domain of damage may be related to the anisotropic electrical conductivity property of the composite panels. A comprehensive theory based on multidimensional electromagnetic field simulation was proposed to reveal the root cause mechanisms of the unique patterns of secondary damage in the carbon composite structural materials tested with simulated lightning current impulses. Advisors/Committee Members: Joni Kluss (chair), Michael Mazzola (committee member), Thomas Lacy (committee member), Patrick Donohoe (committee member).

Subjects/Keywords: arc simulation; electric arc; lightning effect; plasma-anode interaction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gharghabi, P. (2018). Experimental and numerical studies of lightning strike induced damage to carbon fiber epoxy composites. (Doctoral Dissertation). Mississippi State University. Retrieved from http://sun.library.msstate.edu/ETD-db/theses/available/etd-09052018-095331/ ;

Chicago Manual of Style (16th Edition):

Gharghabi, Pedram. “Experimental and numerical studies of lightning strike induced damage to carbon fiber epoxy composites.” 2018. Doctoral Dissertation, Mississippi State University. Accessed November 12, 2019. http://sun.library.msstate.edu/ETD-db/theses/available/etd-09052018-095331/ ;.

MLA Handbook (7th Edition):

Gharghabi, Pedram. “Experimental and numerical studies of lightning strike induced damage to carbon fiber epoxy composites.” 2018. Web. 12 Nov 2019.

Vancouver:

Gharghabi P. Experimental and numerical studies of lightning strike induced damage to carbon fiber epoxy composites. [Internet] [Doctoral dissertation]. Mississippi State University; 2018. [cited 2019 Nov 12]. Available from: http://sun.library.msstate.edu/ETD-db/theses/available/etd-09052018-095331/ ;.

Council of Science Editors:

Gharghabi P. Experimental and numerical studies of lightning strike induced damage to carbon fiber epoxy composites. [Doctoral Dissertation]. Mississippi State University; 2018. Available from: http://sun.library.msstate.edu/ETD-db/theses/available/etd-09052018-095331/ ;

.