Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(partly stable region). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Queensland University of Technology

1. Chan, Teck-Wai. Proximity-to-separation based energy function control strategy for power system stability.

Degree: 2003, Queensland University of Technology

The issue of angle instability has been widely discussed in the power engineering literature. Many control techniques have been proposed to provide the complementary synchronizing and damping torques through generators and/or network connected power apparatus such as FACTs, braking resistors and DC links. The synchronizing torque component keeps all generators in synchronism while damping torque reduces oscillations and returns the power system to its pre-fault operating condition. One of the main factors limiting the transfer capacity of the electrical transmission network is the separation of the power system at weak links which can be understood by analogy with a large spring-mass system. However, this weak-links related problem is not dealt with in existing control designs because it is non-trivial during transient period to determine credible weak links in a large power system which may consist of hundreds of strong and weak links. The difficulty of identifying weak links has limited the performance of existing controls when it comes to the synchronization of generators and damping of oscillations. Such circumstances also restrict the operation of power systems close to its transient stability limits. These considerations have led to the primary research question in this thesis, "To what extent can the synchronization of generators and damping of oscillations be maximized to fully extend the transient stability limits of power systems and to improve the transfer capacity of the network?" With the recent advances in power electronics technology, the extension of transfer capacity is becoming more readily achievable. Complementary to the use of power electronics technology to improve transfer capacity, this research develops an improved control strategy by examining the dynamics of the modes of separation associated with the strong and weak links of the reduced transmission network. The theoretical framework of the control strategy is based on Energy Decomposition and Unstable Equilibrium Points. This thesis recognizes that under extreme loadings of the transmission network containing strong and weak links, weak-links are most likely to dictate the transient stability limits of the power system. We conclude that in order to fully extend the transient stability limits of power system while maximizing the value of control resources, it is crucial for the control strategy to aim its control effort at the energy component that is most likely to cause a separation. The improvement in the synchronization amongst generators remains the most important step in the improvement of the transfer capacity of the power system network.

Subjects/Keywords: Lyapunov; power system; stability; switching; energy function-based control; bang-bang control; saturation function; energy in phase portrait; partly stable region; energy weighting; cutset; energy decomposition; cutest energy; proximity-to-critical cutset energy; proximity-to-partly stable region; cutset energy-based control; quantified transient stability limits and transfer capacity.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chan, T. (2003). Proximity-to-separation based energy function control strategy for power system stability. (Thesis). Queensland University of Technology. Retrieved from http://eprints.qut.edu.au/15840/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chan, Teck-Wai. “Proximity-to-separation based energy function control strategy for power system stability.” 2003. Thesis, Queensland University of Technology. Accessed November 29, 2020. http://eprints.qut.edu.au/15840/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chan, Teck-Wai. “Proximity-to-separation based energy function control strategy for power system stability.” 2003. Web. 29 Nov 2020.

Vancouver:

Chan T. Proximity-to-separation based energy function control strategy for power system stability. [Internet] [Thesis]. Queensland University of Technology; 2003. [cited 2020 Nov 29]. Available from: http://eprints.qut.edu.au/15840/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chan T. Proximity-to-separation based energy function control strategy for power system stability. [Thesis]. Queensland University of Technology; 2003. Available from: http://eprints.qut.edu.au/15840/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.