Advanced search options

Sorted by: relevance · author · university · date | New search

Language: English ^{❌}

You searched for `subject:(p adic numbers)`

.
Showing records 1 – 7 of
7 total matches.

▼ Search Limiters

Oregon State University

1.
Dietel, Brian Christopher.
Mahler's order functions and algebraic approximation of *p*-*adic* * numbers*.

Degree: PhD, Mathematics, 2009, Oregon State University

URL: http://hdl.handle.net/1957/11878

► If *P* is an integer polynomial denote the degree of *P* by ∂(*P*) and let H(*P*) be the maximum of the absolute value of the…
(more)

Subjects/Keywords: algebraic; p-adic numbers

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dietel, B. C. (2009). Mahler's order functions and algebraic approximation of p-adic numbers. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/11878

Chicago Manual of Style (16^{th} Edition):

Dietel, Brian Christopher. “Mahler's order functions and algebraic approximation of p-adic numbers.” 2009. Doctoral Dissertation, Oregon State University. Accessed August 17, 2019. http://hdl.handle.net/1957/11878.

MLA Handbook (7^{th} Edition):

Dietel, Brian Christopher. “Mahler's order functions and algebraic approximation of p-adic numbers.” 2009. Web. 17 Aug 2019.

Vancouver:

Dietel BC. Mahler's order functions and algebraic approximation of p-adic numbers. [Internet] [Doctoral dissertation]. Oregon State University; 2009. [cited 2019 Aug 17]. Available from: http://hdl.handle.net/1957/11878.

Council of Science Editors:

Dietel BC. Mahler's order functions and algebraic approximation of p-adic numbers. [Doctoral Dissertation]. Oregon State University; 2009. Available from: http://hdl.handle.net/1957/11878

McGill University

2.
Simons, Lloyd D.
* p*-

Degree: MS, Department of Mathematics, 1979, McGill University

URL: http://digitool.library.mcgill.ca/thesisfile52327.pdf

Subjects/Keywords: p-adic numbers.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Simons, L. D. (1979). p-adic analysis and p-adic integration. (Masters Thesis). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile52327.pdf

Chicago Manual of Style (16^{th} Edition):

Simons, Lloyd D. “p-adic analysis and p-adic integration.” 1979. Masters Thesis, McGill University. Accessed August 17, 2019. http://digitool.library.mcgill.ca/thesisfile52327.pdf.

MLA Handbook (7^{th} Edition):

Simons, Lloyd D. “p-adic analysis and p-adic integration.” 1979. Web. 17 Aug 2019.

Vancouver:

Simons LD. p-adic analysis and p-adic integration. [Internet] [Masters thesis]. McGill University; 1979. [cited 2019 Aug 17]. Available from: http://digitool.library.mcgill.ca/thesisfile52327.pdf.

Council of Science Editors:

Simons LD. p-adic analysis and p-adic integration. [Masters Thesis]. McGill University; 1979. Available from: http://digitool.library.mcgill.ca/thesisfile52327.pdf

University of British Columbia

3.
Aubertin, Bruce Lyndon.
Algebraic *numbers* and harmonic analysis in the *p*-series case
.

Degree: 1986, University of British Columbia

URL: http://hdl.handle.net/2429/30282

► For the case of compact groups G = Π∞ j=l Z(*p*)j which are direct products of countably many copies of a cyclic group of prime…
(more)

Subjects/Keywords: p-adic fields; p-adic numbers

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Aubertin, B. L. (1986). Algebraic numbers and harmonic analysis in the p-series case . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/30282

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Aubertin, Bruce Lyndon. “Algebraic numbers and harmonic analysis in the p-series case .” 1986. Thesis, University of British Columbia. Accessed August 17, 2019. http://hdl.handle.net/2429/30282.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Aubertin, Bruce Lyndon. “Algebraic numbers and harmonic analysis in the p-series case .” 1986. Web. 17 Aug 2019.

Vancouver:

Aubertin BL. Algebraic numbers and harmonic analysis in the p-series case . [Internet] [Thesis]. University of British Columbia; 1986. [cited 2019 Aug 17]. Available from: http://hdl.handle.net/2429/30282.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Aubertin BL. Algebraic numbers and harmonic analysis in the p-series case . [Thesis]. University of British Columbia; 1986. Available from: http://hdl.handle.net/2429/30282

Not specified: Masters Thesis or Doctoral Dissertation

University of Texas – Austin

4.
Neira, Ana Raissa Bernardo.
Power series in *P*-*adic* roots of unity.

Degree: Mathematics, 2002, University of Texas – Austin

URL: http://hdl.handle.net/2152/811

► Motivated by [5], we develop an analogy with a similar problem in *p*-*adic* power series over a finite field extension of Qp, say K. Concerned…
(more)

Subjects/Keywords: Power series; p-adic numbers

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Neira, A. R. B. (2002). Power series in P-adic roots of unity. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/811

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Neira, Ana Raissa Bernardo. “Power series in P-adic roots of unity.” 2002. Thesis, University of Texas – Austin. Accessed August 17, 2019. http://hdl.handle.net/2152/811.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Neira, Ana Raissa Bernardo. “Power series in P-adic roots of unity.” 2002. Web. 17 Aug 2019.

Vancouver:

Neira ARB. Power series in P-adic roots of unity. [Internet] [Thesis]. University of Texas – Austin; 2002. [cited 2019 Aug 17]. Available from: http://hdl.handle.net/2152/811.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Neira ARB. Power series in P-adic roots of unity. [Thesis]. University of Texas – Austin; 2002. Available from: http://hdl.handle.net/2152/811

Not specified: Masters Thesis or Doctoral Dissertation

University of Iowa

5. Wassink, Luke Samuel. Split covers for certain representations of classical groups.

Degree: PhD, Mathematics, 2015, University of Iowa

URL: https://ir.uiowa.edu/etd/1929

► Let R(G) denote the category of smooth representations of a *p*-*adic* group. Bernstein has constructed an indexing set B(G) such that R(G) decomposes into…
(more)

Subjects/Keywords: publicabstract; Langlands Program; Math; p-adic numbers; Representation Theory; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wassink, L. S. (2015). Split covers for certain representations of classical groups. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/1929

Chicago Manual of Style (16^{th} Edition):

Wassink, Luke Samuel. “Split covers for certain representations of classical groups.” 2015. Doctoral Dissertation, University of Iowa. Accessed August 17, 2019. https://ir.uiowa.edu/etd/1929.

MLA Handbook (7^{th} Edition):

Wassink, Luke Samuel. “Split covers for certain representations of classical groups.” 2015. Web. 17 Aug 2019.

Vancouver:

Wassink LS. Split covers for certain representations of classical groups. [Internet] [Doctoral dissertation]. University of Iowa; 2015. [cited 2019 Aug 17]. Available from: https://ir.uiowa.edu/etd/1929.

Council of Science Editors:

Wassink LS. Split covers for certain representations of classical groups. [Doctoral Dissertation]. University of Iowa; 2015. Available from: https://ir.uiowa.edu/etd/1929

The Ohio State University

6.
Han, Sang-Geun.
Two applications of *p*-*adic* L-functions.

Degree: PhD, Graduate School, 1987, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu148733154171079

Subjects/Keywords: Mathematics; p-adic numbers; L-fuctions

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Han, S. (1987). Two applications of p-adic L-functions. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu148733154171079

Chicago Manual of Style (16^{th} Edition):

Han, Sang-Geun. “Two applications of p-adic L-functions.” 1987. Doctoral Dissertation, The Ohio State University. Accessed August 17, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu148733154171079.

MLA Handbook (7^{th} Edition):

Han, Sang-Geun. “Two applications of p-adic L-functions.” 1987. Web. 17 Aug 2019.

Vancouver:

Han S. Two applications of p-adic L-functions. [Internet] [Doctoral dissertation]. The Ohio State University; 1987. [cited 2019 Aug 17]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148733154171079.

Council of Science Editors:

Han S. Two applications of p-adic L-functions. [Doctoral Dissertation]. The Ohio State University; 1987. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148733154171079

7. Pejkovic, Tomislav. Polynomial root separation and applications : Séparation des racines des polynômes et applications.

Degree: Docteur es, Mathématiques, 2012, Strasbourg; Université de Zagreb, Croatie

URL: http://www.theses.fr/2012STRAD003

► <*p*>Nous étudions les bornes sur les distances des racines des polynômes entiers et les applications de ces résultats. La séparation des racines complexes pour les…
(more)

Subjects/Keywords: Polynômes entiers; Séparation des racines; Nombres p-adiques; Nombres transcendants; Classification Maher; Classification de Koksma; Integer polunomials; Root separation; P-adic numbers; Transcendental numbers; Mahler's classification; Koksma's classification; 512.5

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pejkovic, T. (2012). Polynomial root separation and applications : Séparation des racines des polynômes et applications. (Doctoral Dissertation). Strasbourg; Université de Zagreb, Croatie. Retrieved from http://www.theses.fr/2012STRAD003

Chicago Manual of Style (16^{th} Edition):

Pejkovic, Tomislav. “Polynomial root separation and applications : Séparation des racines des polynômes et applications.” 2012. Doctoral Dissertation, Strasbourg; Université de Zagreb, Croatie. Accessed August 17, 2019. http://www.theses.fr/2012STRAD003.

MLA Handbook (7^{th} Edition):

Pejkovic, Tomislav. “Polynomial root separation and applications : Séparation des racines des polynômes et applications.” 2012. Web. 17 Aug 2019.

Vancouver:

Pejkovic T. Polynomial root separation and applications : Séparation des racines des polynômes et applications. [Internet] [Doctoral dissertation]. Strasbourg; Université de Zagreb, Croatie; 2012. [cited 2019 Aug 17]. Available from: http://www.theses.fr/2012STRAD003.

Council of Science Editors:

Pejkovic T. Polynomial root separation and applications : Séparation des racines des polynômes et applications. [Doctoral Dissertation]. Strasbourg; Université de Zagreb, Croatie; 2012. Available from: http://www.theses.fr/2012STRAD003