Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(p adic numbers). Showing records 1 – 16 of 16 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Oregon State University

1. Dietel, Brian Christopher. Mahler's order functions and algebraic approximation of p-adic numbers.

Degree: PhD, Mathematics, 2009, Oregon State University

 If P is an integer polynomial denote the degree of P by ∂(P) and let H(P) be the maximum of the absolute value of the… (more)

Subjects/Keywords: algebraic; p-adic numbers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dietel, B. C. (2009). Mahler's order functions and algebraic approximation of p-adic numbers. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/11878

Chicago Manual of Style (16th Edition):

Dietel, Brian Christopher. “Mahler's order functions and algebraic approximation of p-adic numbers.” 2009. Doctoral Dissertation, Oregon State University. Accessed July 17, 2019. http://hdl.handle.net/1957/11878.

MLA Handbook (7th Edition):

Dietel, Brian Christopher. “Mahler's order functions and algebraic approximation of p-adic numbers.” 2009. Web. 17 Jul 2019.

Vancouver:

Dietel BC. Mahler's order functions and algebraic approximation of p-adic numbers. [Internet] [Doctoral dissertation]. Oregon State University; 2009. [cited 2019 Jul 17]. Available from: http://hdl.handle.net/1957/11878.

Council of Science Editors:

Dietel BC. Mahler's order functions and algebraic approximation of p-adic numbers. [Doctoral Dissertation]. Oregon State University; 2009. Available from: http://hdl.handle.net/1957/11878


East Carolina University

2. Teller, Jacek. Newton Polygons on p-adic Number Fields.

Degree: 2012, East Carolina University

 This thesis offers a clear introduction to p-adic number fields and the method of Newton polygons to approximate the size of roots of polynomials in… (more)

Subjects/Keywords: p-adic numbers; Newton diagrams

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Teller, J. (2012). Newton Polygons on p-adic Number Fields. (Masters Thesis). East Carolina University. Retrieved from http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14359

Chicago Manual of Style (16th Edition):

Teller, Jacek. “Newton Polygons on p-adic Number Fields.” 2012. Masters Thesis, East Carolina University. Accessed July 17, 2019. http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14359.

MLA Handbook (7th Edition):

Teller, Jacek. “Newton Polygons on p-adic Number Fields.” 2012. Web. 17 Jul 2019.

Vancouver:

Teller J. Newton Polygons on p-adic Number Fields. [Internet] [Masters thesis]. East Carolina University; 2012. [cited 2019 Jul 17]. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14359.

Council of Science Editors:

Teller J. Newton Polygons on p-adic Number Fields. [Masters Thesis]. East Carolina University; 2012. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=14359


McGill University

3. Simons, Lloyd D. p-adic analysis and p-adic integration.

Degree: MS, Department of Mathematics, 1979, McGill University

Subjects/Keywords: p-adic numbers.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Simons, L. D. (1979). p-adic analysis and p-adic integration. (Masters Thesis). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile52327.pdf

Chicago Manual of Style (16th Edition):

Simons, Lloyd D. “p-adic analysis and p-adic integration.” 1979. Masters Thesis, McGill University. Accessed July 17, 2019. http://digitool.library.mcgill.ca/thesisfile52327.pdf.

MLA Handbook (7th Edition):

Simons, Lloyd D. “p-adic analysis and p-adic integration.” 1979. Web. 17 Jul 2019.

Vancouver:

Simons LD. p-adic analysis and p-adic integration. [Internet] [Masters thesis]. McGill University; 1979. [cited 2019 Jul 17]. Available from: http://digitool.library.mcgill.ca/thesisfile52327.pdf.

Council of Science Editors:

Simons LD. p-adic analysis and p-adic integration. [Masters Thesis]. McGill University; 1979. Available from: http://digitool.library.mcgill.ca/thesisfile52327.pdf


University of British Columbia

4. Aubertin, Bruce Lyndon. Algebraic numbers and harmonic analysis in the p-series case .

Degree: 1986, University of British Columbia

 For the case of compact groups G = Π∞ j=l Z(p)j which are direct products of countably many copies of a cyclic group of prime… (more)

Subjects/Keywords: p-adic fields; p-adic numbers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Aubertin, B. L. (1986). Algebraic numbers and harmonic analysis in the p-series case . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/30282

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Aubertin, Bruce Lyndon. “Algebraic numbers and harmonic analysis in the p-series case .” 1986. Thesis, University of British Columbia. Accessed July 17, 2019. http://hdl.handle.net/2429/30282.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Aubertin, Bruce Lyndon. “Algebraic numbers and harmonic analysis in the p-series case .” 1986. Web. 17 Jul 2019.

Vancouver:

Aubertin BL. Algebraic numbers and harmonic analysis in the p-series case . [Internet] [Thesis]. University of British Columbia; 1986. [cited 2019 Jul 17]. Available from: http://hdl.handle.net/2429/30282.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Aubertin BL. Algebraic numbers and harmonic analysis in the p-series case . [Thesis]. University of British Columbia; 1986. Available from: http://hdl.handle.net/2429/30282

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

5. Neira, Ana Raissa Bernardo. Power series in P-adic roots of unity.

Degree: Mathematics, 2002, University of Texas – Austin

 Motivated by [5], we develop an analogy with a similar problem in p-adic power series over a finite field extension of Qp, say K. Concerned… (more)

Subjects/Keywords: Power series; p-adic numbers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Neira, A. R. B. (2002). Power series in P-adic roots of unity. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Neira, Ana Raissa Bernardo. “Power series in P-adic roots of unity.” 2002. Thesis, University of Texas – Austin. Accessed July 17, 2019. http://hdl.handle.net/2152/811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Neira, Ana Raissa Bernardo. “Power series in P-adic roots of unity.” 2002. Web. 17 Jul 2019.

Vancouver:

Neira ARB. Power series in P-adic roots of unity. [Internet] [Thesis]. University of Texas – Austin; 2002. [cited 2019 Jul 17]. Available from: http://hdl.handle.net/2152/811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Neira ARB. Power series in P-adic roots of unity. [Thesis]. University of Texas – Austin; 2002. Available from: http://hdl.handle.net/2152/811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Kentucky

6. Deb, Dibyajyoti. DIAGONAL FORMS AND THE RATIONALITY OF THE POINCARÉ SERIES.

Degree: 2010, University of Kentucky

 The Poincaré series, Py(f) of a polynomial f was first introduced by Borevich and Shafarevich in [BS66], where they conjectured, that the series is always… (more)

Subjects/Keywords: number theory; Poincaré series; diagonal forms; p-adic numbers; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Deb, D. (2010). DIAGONAL FORMS AND THE RATIONALITY OF THE POINCARÉ SERIES. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/gradschool_diss/25

Chicago Manual of Style (16th Edition):

Deb, Dibyajyoti. “DIAGONAL FORMS AND THE RATIONALITY OF THE POINCARÉ SERIES.” 2010. Doctoral Dissertation, University of Kentucky. Accessed July 17, 2019. https://uknowledge.uky.edu/gradschool_diss/25.

MLA Handbook (7th Edition):

Deb, Dibyajyoti. “DIAGONAL FORMS AND THE RATIONALITY OF THE POINCARÉ SERIES.” 2010. Web. 17 Jul 2019.

Vancouver:

Deb D. DIAGONAL FORMS AND THE RATIONALITY OF THE POINCARÉ SERIES. [Internet] [Doctoral dissertation]. University of Kentucky; 2010. [cited 2019 Jul 17]. Available from: https://uknowledge.uky.edu/gradschool_diss/25.

Council of Science Editors:

Deb D. DIAGONAL FORMS AND THE RATIONALITY OF THE POINCARÉ SERIES. [Doctoral Dissertation]. University of Kentucky; 2010. Available from: https://uknowledge.uky.edu/gradschool_diss/25


University of Iowa

7. Wassink, Luke Samuel. Split covers for certain representations of classical groups.

Degree: PhD, Mathematics, 2015, University of Iowa

  Let R(G) denote the category of smooth representations of a p-adic group. Bernstein has constructed an indexing set B(G) such that R(G) decomposes into… (more)

Subjects/Keywords: publicabstract; Langlands Program; Math; p-adic numbers; Representation Theory; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wassink, L. S. (2015). Split covers for certain representations of classical groups. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/1929

Chicago Manual of Style (16th Edition):

Wassink, Luke Samuel. “Split covers for certain representations of classical groups.” 2015. Doctoral Dissertation, University of Iowa. Accessed July 17, 2019. https://ir.uiowa.edu/etd/1929.

MLA Handbook (7th Edition):

Wassink, Luke Samuel. “Split covers for certain representations of classical groups.” 2015. Web. 17 Jul 2019.

Vancouver:

Wassink LS. Split covers for certain representations of classical groups. [Internet] [Doctoral dissertation]. University of Iowa; 2015. [cited 2019 Jul 17]. Available from: https://ir.uiowa.edu/etd/1929.

Council of Science Editors:

Wassink LS. Split covers for certain representations of classical groups. [Doctoral Dissertation]. University of Iowa; 2015. Available from: https://ir.uiowa.edu/etd/1929


The Ohio State University

8. Han, Sang-Geun. Two applications of p-adic L-functions.

Degree: PhD, Graduate School, 1987, The Ohio State University

Subjects/Keywords: Mathematics; p-adic numbers; L-fuctions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Han, S. (1987). Two applications of p-adic L-functions. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu148733154171079

Chicago Manual of Style (16th Edition):

Han, Sang-Geun. “Two applications of p-adic L-functions.” 1987. Doctoral Dissertation, The Ohio State University. Accessed July 17, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu148733154171079.

MLA Handbook (7th Edition):

Han, Sang-Geun. “Two applications of p-adic L-functions.” 1987. Web. 17 Jul 2019.

Vancouver:

Han S. Two applications of p-adic L-functions. [Internet] [Doctoral dissertation]. The Ohio State University; 1987. [cited 2019 Jul 17]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148733154171079.

Council of Science Editors:

Han S. Two applications of p-adic L-functions. [Doctoral Dissertation]. The Ohio State University; 1987. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu148733154171079


Georgia State University

9. Baig, Muslim. Primary Decomposition and Secondary Representation of Modules over a Commutative Ring.

Degree: MS, Mathematics and Statistics, 2009, Georgia State University

 This paper presents the theory of Secondary Representation of modules over a commutative ring and their Attached Primes; introduced in 1973 by I. MacDonald as… (more)

Subjects/Keywords: p-adic numbers; Inverse limit; Primary decomposition; Associated primes; Attached primes; Secondary representation; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baig, M. (2009). Primary Decomposition and Secondary Representation of Modules over a Commutative Ring. (Thesis). Georgia State University. Retrieved from https://scholarworks.gsu.edu/math_theses/69

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Baig, Muslim. “Primary Decomposition and Secondary Representation of Modules over a Commutative Ring.” 2009. Thesis, Georgia State University. Accessed July 17, 2019. https://scholarworks.gsu.edu/math_theses/69.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Baig, Muslim. “Primary Decomposition and Secondary Representation of Modules over a Commutative Ring.” 2009. Web. 17 Jul 2019.

Vancouver:

Baig M. Primary Decomposition and Secondary Representation of Modules over a Commutative Ring. [Internet] [Thesis]. Georgia State University; 2009. [cited 2019 Jul 17]. Available from: https://scholarworks.gsu.edu/math_theses/69.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Baig M. Primary Decomposition and Secondary Representation of Modules over a Commutative Ring. [Thesis]. Georgia State University; 2009. Available from: https://scholarworks.gsu.edu/math_theses/69

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

10. Pejkovic, Tomislav. Polynomial root separation and applications : Séparation des racines des polynômes et applications.

Degree: Docteur es, Mathématiques, 2012, Strasbourg; Université de Zagreb, Croatie

 <p>Nous étudions les bornes sur les distances des racines des polynômes entiers et les applications de ces résultats. La séparation des racines complexes pour les… (more)

Subjects/Keywords: Polynômes entiers; Séparation des racines; Nombres p-adiques; Nombres transcendants; Classification Maher; Classification de Koksma; Integer polunomials; Root separation; P-adic numbers; Transcendental numbers; Mahler's classification; Koksma's classification; 512.5

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pejkovic, T. (2012). Polynomial root separation and applications : Séparation des racines des polynômes et applications. (Doctoral Dissertation). Strasbourg; Université de Zagreb, Croatie. Retrieved from http://www.theses.fr/2012STRAD003

Chicago Manual of Style (16th Edition):

Pejkovic, Tomislav. “Polynomial root separation and applications : Séparation des racines des polynômes et applications.” 2012. Doctoral Dissertation, Strasbourg; Université de Zagreb, Croatie. Accessed July 17, 2019. http://www.theses.fr/2012STRAD003.

MLA Handbook (7th Edition):

Pejkovic, Tomislav. “Polynomial root separation and applications : Séparation des racines des polynômes et applications.” 2012. Web. 17 Jul 2019.

Vancouver:

Pejkovic T. Polynomial root separation and applications : Séparation des racines des polynômes et applications. [Internet] [Doctoral dissertation]. Strasbourg; Université de Zagreb, Croatie; 2012. [cited 2019 Jul 17]. Available from: http://www.theses.fr/2012STRAD003.

Council of Science Editors:

Pejkovic T. Polynomial root separation and applications : Séparation des racines des polynômes et applications. [Doctoral Dissertation]. Strasbourg; Université de Zagreb, Croatie; 2012. Available from: http://www.theses.fr/2012STRAD003


East Carolina University

11. Teller, Jacek. Newton Polygons on p-adic Number Fields.

Degree: 2012, East Carolina University

 This thesis offers a clear introduction to p-adic number fields, and the method of Newton polygons to approximate the size of roots of polynomials in… (more)

Subjects/Keywords: Mathematics; Computer science; Physics; Fields; Hensel's lemma; Newton polygons; Ostrowski's theorem; Roots; P-adic numbers; Newton diagrams

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Teller, J. (2012). Newton Polygons on p-adic Number Fields. (Thesis). East Carolina University. Retrieved from http://hdl.handle.net/10342/3848

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Teller, Jacek. “Newton Polygons on p-adic Number Fields.” 2012. Thesis, East Carolina University. Accessed July 17, 2019. http://hdl.handle.net/10342/3848.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Teller, Jacek. “Newton Polygons on p-adic Number Fields.” 2012. Web. 17 Jul 2019.

Vancouver:

Teller J. Newton Polygons on p-adic Number Fields. [Internet] [Thesis]. East Carolina University; 2012. [cited 2019 Jul 17]. Available from: http://hdl.handle.net/10342/3848.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Teller J. Newton Polygons on p-adic Number Fields. [Thesis]. East Carolina University; 2012. Available from: http://hdl.handle.net/10342/3848

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

12. Lechner, Antonia. Extensions of Presburger arithmetic and model checking one-counter automata.

Degree: PhD, 2016, University of Oxford

 This thesis concerns decision procedures for fragments of linear arithmetic and their application to model-checking one-counter automata. The first part of this thesis covers the… (more)

Subjects/Keywords: Automata Theory; Linear Arithmetic; Computational Complexity Theory; reachability problems; Presburger arithmetic; p-adic numbers; one-counter automata

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lechner, A. (2016). Extensions of Presburger arithmetic and model checking one-counter automata. (Doctoral Dissertation). University of Oxford. Retrieved from https://ora.ox.ac.uk/objects/uuid:687bd910-392a-4db0-9fc6-eb10efb8235b ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.735876

Chicago Manual of Style (16th Edition):

Lechner, Antonia. “Extensions of Presburger arithmetic and model checking one-counter automata.” 2016. Doctoral Dissertation, University of Oxford. Accessed July 17, 2019. https://ora.ox.ac.uk/objects/uuid:687bd910-392a-4db0-9fc6-eb10efb8235b ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.735876.

MLA Handbook (7th Edition):

Lechner, Antonia. “Extensions of Presburger arithmetic and model checking one-counter automata.” 2016. Web. 17 Jul 2019.

Vancouver:

Lechner A. Extensions of Presburger arithmetic and model checking one-counter automata. [Internet] [Doctoral dissertation]. University of Oxford; 2016. [cited 2019 Jul 17]. Available from: https://ora.ox.ac.uk/objects/uuid:687bd910-392a-4db0-9fc6-eb10efb8235b ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.735876.

Council of Science Editors:

Lechner A. Extensions of Presburger arithmetic and model checking one-counter automata. [Doctoral Dissertation]. University of Oxford; 2016. Available from: https://ora.ox.ac.uk/objects/uuid:687bd910-392a-4db0-9fc6-eb10efb8235b ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.735876


North Carolina State University

13. Beun, Stacy L. On the classification of orbits of minimal parabolic k-subgroups acting on symmetric k-varieties of SL(n,k).

Degree: PhD, Mathematics, 2008, North Carolina State University

Subjects/Keywords: symmetric space; p-adic numbers; symmetric k-varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Beun, S. L. (2008). On the classification of orbits of minimal parabolic k-subgroups acting on symmetric k-varieties of SL(n,k). (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/3227

Chicago Manual of Style (16th Edition):

Beun, Stacy L. “On the classification of orbits of minimal parabolic k-subgroups acting on symmetric k-varieties of SL(n,k).” 2008. Doctoral Dissertation, North Carolina State University. Accessed July 17, 2019. http://www.lib.ncsu.edu/resolver/1840.16/3227.

MLA Handbook (7th Edition):

Beun, Stacy L. “On the classification of orbits of minimal parabolic k-subgroups acting on symmetric k-varieties of SL(n,k).” 2008. Web. 17 Jul 2019.

Vancouver:

Beun SL. On the classification of orbits of minimal parabolic k-subgroups acting on symmetric k-varieties of SL(n,k). [Internet] [Doctoral dissertation]. North Carolina State University; 2008. [cited 2019 Jul 17]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/3227.

Council of Science Editors:

Beun SL. On the classification of orbits of minimal parabolic k-subgroups acting on symmetric k-varieties of SL(n,k). [Doctoral Dissertation]. North Carolina State University; 2008. Available from: http://www.lib.ncsu.edu/resolver/1840.16/3227

14. Νυδριώτου, Μαριγούλα. Πραγματικά σώματα. P - αδικοί αριθμοί. Διατιμήσεις.

Degree: 2006, University of Patras

Subjects/Keywords: p-αδικοί αριθμοί; Θεωρία αποτίμησης; 515.78; p – adic Numbers; Valuation theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Νυδριώτου, . (2006). Πραγματικά σώματα. P - αδικοί αριθμοί. Διατιμήσεις. (Masters Thesis). University of Patras. Retrieved from http://nemertes.lis.upatras.gr/jspui/handle/10889/927

Chicago Manual of Style (16th Edition):

Νυδριώτου, Μαριγούλα. “Πραγματικά σώματα. P - αδικοί αριθμοί. Διατιμήσεις.” 2006. Masters Thesis, University of Patras. Accessed July 17, 2019. http://nemertes.lis.upatras.gr/jspui/handle/10889/927.

MLA Handbook (7th Edition):

Νυδριώτου, Μαριγούλα. “Πραγματικά σώματα. P - αδικοί αριθμοί. Διατιμήσεις.” 2006. Web. 17 Jul 2019.

Vancouver:

Νυδριώτου . Πραγματικά σώματα. P - αδικοί αριθμοί. Διατιμήσεις. [Internet] [Masters thesis]. University of Patras; 2006. [cited 2019 Jul 17]. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/927.

Council of Science Editors:

Νυδριώτου . Πραγματικά σώματα. P - αδικοί αριθμοί. Διατιμήσεις. [Masters Thesis]. University of Patras; 2006. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/927


Université de Bordeaux I

15. Laurent, Arthur. Autour des nombres de Tamagawa : On Tamagawa Numbers.

Degree: Docteur es, Mathématiques pures, 2013, Université de Bordeaux I

 <p>Les nombres de Tamagawa des courbes elliptiques apparaissent dans la formulation de la conjecture de Birch et Swinnerton-Dyer comme certains facteurs locaux. Bloch et Kato… (more)

Subjects/Keywords: Théorie de hodge p-adique; Exponentielle de Bloch et Kato; Nombres de Tamagawa; Théorie des (Phi, Gamma)-modules; Modules de Wach; P-adic Hodge theory; Bloch and Kato's exponential map; Tamagawa numbers; (Phi, Gamma)-modules theory; Wach modules

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Laurent, A. (2013). Autour des nombres de Tamagawa : On Tamagawa Numbers. (Doctoral Dissertation). Université de Bordeaux I. Retrieved from http://www.theses.fr/2013BOR14809

Chicago Manual of Style (16th Edition):

Laurent, Arthur. “Autour des nombres de Tamagawa : On Tamagawa Numbers.” 2013. Doctoral Dissertation, Université de Bordeaux I. Accessed July 17, 2019. http://www.theses.fr/2013BOR14809.

MLA Handbook (7th Edition):

Laurent, Arthur. “Autour des nombres de Tamagawa : On Tamagawa Numbers.” 2013. Web. 17 Jul 2019.

Vancouver:

Laurent A. Autour des nombres de Tamagawa : On Tamagawa Numbers. [Internet] [Doctoral dissertation]. Université de Bordeaux I; 2013. [cited 2019 Jul 17]. Available from: http://www.theses.fr/2013BOR14809.

Council of Science Editors:

Laurent A. Autour des nombres de Tamagawa : On Tamagawa Numbers. [Doctoral Dissertation]. Université de Bordeaux I; 2013. Available from: http://www.theses.fr/2013BOR14809


University of Vienna

16. Castellano, Giancarlo. The Hasse-Minkowski theorem for global fields.

Degree: 2017, University of Vienna

 <p>Das Hauptziel der vorliegenden Arbeit ist es, den Beweis des Satzes von Hasse-Minkowski zu präsentieren: Dabei handelt es sich um ein berühmtes Resultat aus der… (more)

Subjects/Keywords: 31.14 Zahlentheorie; 31.24 Körper, Polynome; 31.23 Ideale, Ringe, Moduln, Algebren; Hasse-MinkowskiTheorie / globale Körper; Hasse-Minkowski Theorem / quadratic forms over global fields / quadratic forms over algebraic number fields / quadratic forms / global fields / algebraic number fields / local-global principle / number theory / Hilbert symbol / Hasse symbol / invariants / invariants of quadratic spaces / algebraic number theory / valuation theory / local fields / non-archimedean / p-adic numbers / quadratic forms over local fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Castellano, G. (2017). The Hasse-Minkowski theorem for global fields. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/47316/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Castellano, Giancarlo. “The Hasse-Minkowski theorem for global fields.” 2017. Thesis, University of Vienna. Accessed July 17, 2019. http://othes.univie.ac.at/47316/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Castellano, Giancarlo. “The Hasse-Minkowski theorem for global fields.” 2017. Web. 17 Jul 2019.

Vancouver:

Castellano G. The Hasse-Minkowski theorem for global fields. [Internet] [Thesis]. University of Vienna; 2017. [cited 2019 Jul 17]. Available from: http://othes.univie.ac.at/47316/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Castellano G. The Hasse-Minkowski theorem for global fields. [Thesis]. University of Vienna; 2017. Available from: http://othes.univie.ac.at/47316/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.