Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(p adic groups). Showing records 1 – 26 of 26 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Columbia University

1. Gulotta, Daniel Robert. Equidimensional adic eigenvarieties for groups with discrete series.

Degree: 2018, Columbia University

 We extend Urban's construction of eigenvarieties for reductive groups G such that G(R) has discrete series to include characteristic p points at the boundary of… (more)

Subjects/Keywords: Mathematics; Series; p-adic groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gulotta, D. R. (2018). Equidimensional adic eigenvarieties for groups with discrete series. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8RN4QW8

Chicago Manual of Style (16th Edition):

Gulotta, Daniel Robert. “Equidimensional adic eigenvarieties for groups with discrete series.” 2018. Doctoral Dissertation, Columbia University. Accessed January 18, 2021. https://doi.org/10.7916/D8RN4QW8.

MLA Handbook (7th Edition):

Gulotta, Daniel Robert. “Equidimensional adic eigenvarieties for groups with discrete series.” 2018. Web. 18 Jan 2021.

Vancouver:

Gulotta DR. Equidimensional adic eigenvarieties for groups with discrete series. [Internet] [Doctoral dissertation]. Columbia University; 2018. [cited 2021 Jan 18]. Available from: https://doi.org/10.7916/D8RN4QW8.

Council of Science Editors:

Gulotta DR. Equidimensional adic eigenvarieties for groups with discrete series. [Doctoral Dissertation]. Columbia University; 2018. Available from: https://doi.org/10.7916/D8RN4QW8


University of Oklahoma

2. Hall, Catherine Ann. Invariant vectors and level raising operators in representations of the p-adic group GL(3).

Degree: PhD, 2012, University of Oklahoma

In the generic case, the proof uses Whittaker functions, zeta integrals, Hecke operators and Satake parameters. For the non-generic case, it is shown that unramified characters of F play a role and the matrix of each level raising operator is used. Advisors/Committee Members: Schmidt, Ralf (advisor).

Subjects/Keywords: Vector spaces; p-adic groups; p-adic analysis; Lie groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hall, C. A. (2012). Invariant vectors and level raising operators in representations of the p-adic group GL(3). (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/318856

Chicago Manual of Style (16th Edition):

Hall, Catherine Ann. “Invariant vectors and level raising operators in representations of the p-adic group GL(3).” 2012. Doctoral Dissertation, University of Oklahoma. Accessed January 18, 2021. http://hdl.handle.net/11244/318856.

MLA Handbook (7th Edition):

Hall, Catherine Ann. “Invariant vectors and level raising operators in representations of the p-adic group GL(3).” 2012. Web. 18 Jan 2021.

Vancouver:

Hall CA. Invariant vectors and level raising operators in representations of the p-adic group GL(3). [Internet] [Doctoral dissertation]. University of Oklahoma; 2012. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/11244/318856.

Council of Science Editors:

Hall CA. Invariant vectors and level raising operators in representations of the p-adic group GL(3). [Doctoral Dissertation]. University of Oklahoma; 2012. Available from: http://hdl.handle.net/11244/318856


University of Ottawa

3. Bourgeois, Adèle. On the Restriction of Supercuspidal Representations: An In-Depth Exploration of the Data.

Degree: PhD, Sciences / Science, 2020, University of Ottawa

 Let \mathbb{G} be a connected reductive group defined over a p-adic field F which splits over a tamely ramified extension of F, and let G… (more)

Subjects/Keywords: Supercuspidal representation; p-adic groups; Restriction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bourgeois, A. (2020). On the Restriction of Supercuspidal Representations: An In-Depth Exploration of the Data. (Doctoral Dissertation). University of Ottawa. Retrieved from http://dx.doi.org/10.20381/ruor-25127

Chicago Manual of Style (16th Edition):

Bourgeois, Adèle. “On the Restriction of Supercuspidal Representations: An In-Depth Exploration of the Data.” 2020. Doctoral Dissertation, University of Ottawa. Accessed January 18, 2021. http://dx.doi.org/10.20381/ruor-25127.

MLA Handbook (7th Edition):

Bourgeois, Adèle. “On the Restriction of Supercuspidal Representations: An In-Depth Exploration of the Data.” 2020. Web. 18 Jan 2021.

Vancouver:

Bourgeois A. On the Restriction of Supercuspidal Representations: An In-Depth Exploration of the Data. [Internet] [Doctoral dissertation]. University of Ottawa; 2020. [cited 2021 Jan 18]. Available from: http://dx.doi.org/10.20381/ruor-25127.

Council of Science Editors:

Bourgeois A. On the Restriction of Supercuspidal Representations: An In-Depth Exploration of the Data. [Doctoral Dissertation]. University of Ottawa; 2020. Available from: http://dx.doi.org/10.20381/ruor-25127


University of Oklahoma

4. REPAKA, SUBHA. A REDUCIBILITY PROBLEM FOR EVEN UNITARY GROUPS: THE DEPTH ZERO CASE.

Degree: PhD, 2019, University of Oklahoma

 We study a problem concerning parabolic induction in certain p-adic unitary groups. More precisely, for E/F a quadratic extension of p-adic fields the associated unitary… (more)

Subjects/Keywords: Representation Theory of p-adic Groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

REPAKA, S. (2019). A REDUCIBILITY PROBLEM FOR EVEN UNITARY GROUPS: THE DEPTH ZERO CASE. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/319641

Chicago Manual of Style (16th Edition):

REPAKA, SUBHA. “A REDUCIBILITY PROBLEM FOR EVEN UNITARY GROUPS: THE DEPTH ZERO CASE.” 2019. Doctoral Dissertation, University of Oklahoma. Accessed January 18, 2021. http://hdl.handle.net/11244/319641.

MLA Handbook (7th Edition):

REPAKA, SUBHA. “A REDUCIBILITY PROBLEM FOR EVEN UNITARY GROUPS: THE DEPTH ZERO CASE.” 2019. Web. 18 Jan 2021.

Vancouver:

REPAKA S. A REDUCIBILITY PROBLEM FOR EVEN UNITARY GROUPS: THE DEPTH ZERO CASE. [Internet] [Doctoral dissertation]. University of Oklahoma; 2019. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/11244/319641.

Council of Science Editors:

REPAKA S. A REDUCIBILITY PROBLEM FOR EVEN UNITARY GROUPS: THE DEPTH ZERO CASE. [Doctoral Dissertation]. University of Oklahoma; 2019. Available from: http://hdl.handle.net/11244/319641


University of Cambridge

5. Dupré, Nicolas. Rigid Analytic Quantum Groups.

Degree: PhD, 2019, University of Cambridge

 Following constructions in rigid analytic geometry, we introduce a theory of p-adic analytic quantum groups. We first define Fréchet completions \wideparen{Uq(\mathfrak{g})} and \wideparen{𝓞q(G)} of the… (more)

Subjects/Keywords: Quantum groups; D-modules; p-adic representation theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dupré, N. (2019). Rigid Analytic Quantum Groups. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/291025

Chicago Manual of Style (16th Edition):

Dupré, Nicolas. “Rigid Analytic Quantum Groups.” 2019. Doctoral Dissertation, University of Cambridge. Accessed January 18, 2021. https://www.repository.cam.ac.uk/handle/1810/291025.

MLA Handbook (7th Edition):

Dupré, Nicolas. “Rigid Analytic Quantum Groups.” 2019. Web. 18 Jan 2021.

Vancouver:

Dupré N. Rigid Analytic Quantum Groups. [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2021 Jan 18]. Available from: https://www.repository.cam.ac.uk/handle/1810/291025.

Council of Science Editors:

Dupré N. Rigid Analytic Quantum Groups. [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://www.repository.cam.ac.uk/handle/1810/291025


Columbia University

6. Li, Shizhang. On the Picard functor in formal-rigid geometry.

Degree: 2019, Columbia University

 In this thesis, we report three preprints [Li17a] [Li17b] and [HL17] the author wrote (the last one was written jointly with D. Hansen) during his… (more)

Subjects/Keywords: Mathematics; Picard groups; Geometry, Algebraic; Hodge theory; p-adic analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, S. (2019). On the Picard functor in formal-rigid geometry. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/d8-pgy6-6596

Chicago Manual of Style (16th Edition):

Li, Shizhang. “On the Picard functor in formal-rigid geometry.” 2019. Doctoral Dissertation, Columbia University. Accessed January 18, 2021. https://doi.org/10.7916/d8-pgy6-6596.

MLA Handbook (7th Edition):

Li, Shizhang. “On the Picard functor in formal-rigid geometry.” 2019. Web. 18 Jan 2021.

Vancouver:

Li S. On the Picard functor in formal-rigid geometry. [Internet] [Doctoral dissertation]. Columbia University; 2019. [cited 2021 Jan 18]. Available from: https://doi.org/10.7916/d8-pgy6-6596.

Council of Science Editors:

Li S. On the Picard functor in formal-rigid geometry. [Doctoral Dissertation]. Columbia University; 2019. Available from: https://doi.org/10.7916/d8-pgy6-6596

7. Dupré, Nicolas. Rigid analytic quantum groups.

Degree: PhD, 2019, University of Cambridge

 Following constructions in rigid analytic geometry, we introduce a theory of p-adic analytic quantum groups. We first define Fréchet completions \wideparen{Uq(\mathfrak{g})} and \wideparen{𝓞q(G)} of the… (more)

Subjects/Keywords: Quantum groups; D-modules; p-adic representation theory

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dupré, N. (2019). Rigid analytic quantum groups. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.38204 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774668

Chicago Manual of Style (16th Edition):

Dupré, Nicolas. “Rigid analytic quantum groups.” 2019. Doctoral Dissertation, University of Cambridge. Accessed January 18, 2021. https://doi.org/10.17863/CAM.38204 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774668.

MLA Handbook (7th Edition):

Dupré, Nicolas. “Rigid analytic quantum groups.” 2019. Web. 18 Jan 2021.

Vancouver:

Dupré N. Rigid analytic quantum groups. [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2021 Jan 18]. Available from: https://doi.org/10.17863/CAM.38204 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774668.

Council of Science Editors:

Dupré N. Rigid analytic quantum groups. [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://doi.org/10.17863/CAM.38204 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774668


Université Montpellier II

8. Schoemann, Claudia. Représentations unitaires de U(5) p-adique : Unitary representations of p-adic U(5).

Degree: Docteur es, Mathématiques et modélisation, 2014, Université Montpellier II

 <p>Nous étudions les représentations complexes, induites par l'induction parabolique, du groupe U(5), défini sur un corps local non-archimedean de caractéristique 0. C'est Qp ou une… (more)

Subjects/Keywords: Représentations; Groupe unitaire; Unitaire; Groupes p-Adiques; Representations; Unitary group; Unitary; P-Adic groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schoemann, C. (2014). Représentations unitaires de U(5) p-adique : Unitary representations of p-adic U(5). (Doctoral Dissertation). Université Montpellier II. Retrieved from http://www.theses.fr/2014MON20101

Chicago Manual of Style (16th Edition):

Schoemann, Claudia. “Représentations unitaires de U(5) p-adique : Unitary representations of p-adic U(5).” 2014. Doctoral Dissertation, Université Montpellier II. Accessed January 18, 2021. http://www.theses.fr/2014MON20101.

MLA Handbook (7th Edition):

Schoemann, Claudia. “Représentations unitaires de U(5) p-adique : Unitary representations of p-adic U(5).” 2014. Web. 18 Jan 2021.

Vancouver:

Schoemann C. Représentations unitaires de U(5) p-adique : Unitary representations of p-adic U(5). [Internet] [Doctoral dissertation]. Université Montpellier II; 2014. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2014MON20101.

Council of Science Editors:

Schoemann C. Représentations unitaires de U(5) p-adique : Unitary representations of p-adic U(5). [Doctoral Dissertation]. Université Montpellier II; 2014. Available from: http://www.theses.fr/2014MON20101


Universidade de Brasília

9. Anderson Luiz Pedrosa Porto. Extensões cíclicas de grupos pro-p livres e representações inteiras p-ádicas.

Degree: 2009, Universidade de Brasília

 <p>Seja F um grupo pro-p livre de posto finito e considere Cpn o grupo cíclico de ordem pn. Nessa tese nós exibimos os ZpCpn- reticulados… (more)

Subjects/Keywords: grupos pro-p virtualmente livres e representações inteiras p-ádicas; MATEMATICA; virtually free pro-p groups, integral p-adic representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Porto, A. L. P. (2009). Extensões cíclicas de grupos pro-p livres e representações inteiras p-ádicas. (Thesis). Universidade de Brasília. Retrieved from http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=5994

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Porto, Anderson Luiz Pedrosa. “Extensões cíclicas de grupos pro-p livres e representações inteiras p-ádicas.” 2009. Thesis, Universidade de Brasília. Accessed January 18, 2021. http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=5994.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Porto, Anderson Luiz Pedrosa. “Extensões cíclicas de grupos pro-p livres e representações inteiras p-ádicas.” 2009. Web. 18 Jan 2021.

Vancouver:

Porto ALP. Extensões cíclicas de grupos pro-p livres e representações inteiras p-ádicas. [Internet] [Thesis]. Universidade de Brasília; 2009. [cited 2021 Jan 18]. Available from: http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=5994.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Porto ALP. Extensões cíclicas de grupos pro-p livres e representações inteiras p-ádicas. [Thesis]. Universidade de Brasília; 2009. Available from: http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=5994

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

10. Ray, Jishnu. Iwasawa algebras for p-adic Lie groups and Galois groups : Algèbres d’Iwasawa pour les groupes de Lie p-adiques et les groupes de Galois.

Degree: Docteur es, Mathématiques fondamentales, 2018, Université Paris-Saclay (ComUE)

 <p>Un outil clé dans la théorie des représentations p-adiques est l'algèbre d'Iwasawa, construit par Iwasawa pour étudier les nombres de classes d'une tour de corps… (more)

Subjects/Keywords: Algèbres d’Iwasawa; Groupes de Lie p-Adiques; Groupes de Galois; Iwasawa algebras; P-Adic Lie groups; Galois groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ray, J. (2018). Iwasawa algebras for p-adic Lie groups and Galois groups : Algèbres d’Iwasawa pour les groupes de Lie p-adiques et les groupes de Galois. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2018SACLS189

Chicago Manual of Style (16th Edition):

Ray, Jishnu. “Iwasawa algebras for p-adic Lie groups and Galois groups : Algèbres d’Iwasawa pour les groupes de Lie p-adiques et les groupes de Galois.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed January 18, 2021. http://www.theses.fr/2018SACLS189.

MLA Handbook (7th Edition):

Ray, Jishnu. “Iwasawa algebras for p-adic Lie groups and Galois groups : Algèbres d’Iwasawa pour les groupes de Lie p-adiques et les groupes de Galois.” 2018. Web. 18 Jan 2021.

Vancouver:

Ray J. Iwasawa algebras for p-adic Lie groups and Galois groups : Algèbres d’Iwasawa pour les groupes de Lie p-adiques et les groupes de Galois. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2018. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2018SACLS189.

Council of Science Editors:

Ray J. Iwasawa algebras for p-adic Lie groups and Galois groups : Algèbres d’Iwasawa pour les groupes de Lie p-adiques et les groupes de Galois. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2018. Available from: http://www.theses.fr/2018SACLS189


Penn State University

11. Crisp, Tyrone. Equivariant Homology and Representation Theory of p-adic Groups.

Degree: 2012, Penn State University

 The two standard procedures for constructing representations of a reductive p-adic group G are: parabolic induction from a Levi subgroup; and compact induction from a… (more)

Subjects/Keywords: Equivariant homology; representation theory of reductive p-adic groups; the Baum-Connes conjecture

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Crisp, T. (2012). Equivariant Homology and Representation Theory of p-adic Groups. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/15221

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Crisp, Tyrone. “Equivariant Homology and Representation Theory of p-adic Groups.” 2012. Thesis, Penn State University. Accessed January 18, 2021. https://submit-etda.libraries.psu.edu/catalog/15221.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Crisp, Tyrone. “Equivariant Homology and Representation Theory of p-adic Groups.” 2012. Web. 18 Jan 2021.

Vancouver:

Crisp T. Equivariant Homology and Representation Theory of p-adic Groups. [Internet] [Thesis]. Penn State University; 2012. [cited 2021 Jan 18]. Available from: https://submit-etda.libraries.psu.edu/catalog/15221.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Crisp T. Equivariant Homology and Representation Theory of p-adic Groups. [Thesis]. Penn State University; 2012. Available from: https://submit-etda.libraries.psu.edu/catalog/15221

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

12. Druart, Benjamin. Groupes linéaires définissables dans les corps p-adiques : Linear groups definable in p-adic fields.

Degree: Docteur es, Mathématiques, 2015, Université Grenoble Alpes (ComUE)

 <p>Cette thèse est consacrée à l’étude des groupes linéaires définissables dans les corpsp-adiques. Les tores anisotropes jouent un rôle central tout au long de ce… (more)

Subjects/Keywords: Théorie des modèles; Groupes définissables; P-adique; P-minimalité; P-connexité; Model theory; Definable groups; P-adic; P-minimality; P-connectedness; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Druart, B. (2015). Groupes linéaires définissables dans les corps p-adiques : Linear groups definable in p-adic fields. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2015GREAM042

Chicago Manual of Style (16th Edition):

Druart, Benjamin. “Groupes linéaires définissables dans les corps p-adiques : Linear groups definable in p-adic fields.” 2015. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed January 18, 2021. http://www.theses.fr/2015GREAM042.

MLA Handbook (7th Edition):

Druart, Benjamin. “Groupes linéaires définissables dans les corps p-adiques : Linear groups definable in p-adic fields.” 2015. Web. 18 Jan 2021.

Vancouver:

Druart B. Groupes linéaires définissables dans les corps p-adiques : Linear groups definable in p-adic fields. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2015. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2015GREAM042.

Council of Science Editors:

Druart B. Groupes linéaires définissables dans les corps p-adiques : Linear groups definable in p-adic fields. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2015. Available from: http://www.theses.fr/2015GREAM042

13. TANG U-LIANG. The plancherel Formula of L^2(N_0 GIpsi) where G is a p-adic group.

Degree: 2011, National University of Singapore

Subjects/Keywords: Plancherel formula; p-adic reductive groups; Whittaker models

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

U-LIANG, T. (2011). The plancherel Formula of L^2(N_0 GIpsi) where G is a p-adic group. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/27937

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

U-LIANG, TANG. “The plancherel Formula of L^2(N_0 GIpsi) where G is a p-adic group.” 2011. Thesis, National University of Singapore. Accessed January 18, 2021. http://scholarbank.nus.edu.sg/handle/10635/27937.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

U-LIANG, TANG. “The plancherel Formula of L^2(N_0 GIpsi) where G is a p-adic group.” 2011. Web. 18 Jan 2021.

Vancouver:

U-LIANG T. The plancherel Formula of L^2(N_0 GIpsi) where G is a p-adic group. [Internet] [Thesis]. National University of Singapore; 2011. [cited 2021 Jan 18]. Available from: http://scholarbank.nus.edu.sg/handle/10635/27937.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

U-LIANG T. The plancherel Formula of L^2(N_0 GIpsi) where G is a p-adic group. [Thesis]. National University of Singapore; 2011. Available from: http://scholarbank.nus.edu.sg/handle/10635/27937

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

14. Rajhi, Anis. Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N) : Cohomology of fiber spaces over the affine building of GL(N).

Degree: Docteur es, Mathématiques et leurs interactions, 2014, Poitiers

 <p>Cette thèse se compose de deux parties : dans la première on donne une généralisation d'espaces fibrés construit au-dessus de l'arbre de Bruhat-Tits du groupe… (more)

Subjects/Keywords: Représentations des groupes p-Adiques; Représentations des groupes réductifs finis; Immeuble de Bruhat-Tits; Cohomologie à support compact; Types de Bushnell et Kutzko d'un groupe réductif p-Adique; Representations of p-Adic groups; Representations of finite reductive groups; Bruhat-Tits buildings; Cohomology with compact support; Bushnell and Kutzko's types of reductive p-Adic groups; 512.74

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rajhi, A. (2014). Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N) : Cohomology of fiber spaces over the affine building of GL(N). (Doctoral Dissertation). Poitiers. Retrieved from http://www.theses.fr/2014POIT2266

Chicago Manual of Style (16th Edition):

Rajhi, Anis. “Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N) : Cohomology of fiber spaces over the affine building of GL(N).” 2014. Doctoral Dissertation, Poitiers. Accessed January 18, 2021. http://www.theses.fr/2014POIT2266.

MLA Handbook (7th Edition):

Rajhi, Anis. “Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N) : Cohomology of fiber spaces over the affine building of GL(N).” 2014. Web. 18 Jan 2021.

Vancouver:

Rajhi A. Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N) : Cohomology of fiber spaces over the affine building of GL(N). [Internet] [Doctoral dissertation]. Poitiers; 2014. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2014POIT2266.

Council of Science Editors:

Rajhi A. Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N) : Cohomology of fiber spaces over the affine building of GL(N). [Doctoral Dissertation]. Poitiers; 2014. Available from: http://www.theses.fr/2014POIT2266

15. Cohen, Joël. Deux résultats d'analyse harmonique sur un groupe P-adique tordu : Two results of Harmonic Anlysis on a twisted p-adic group.

Degree: Docteur es, Mathématiques, 2013, Aix Marseille Université

 <p>Dans cette thèse, nous montrons deux résultats d'analyse harmonique sur un groupe réductif p-adique tordu.Le premier résultat est un analogue non connexe au théorème matriciel… (more)

Subjects/Keywords: Mathématiques; Analyse Harmonique p-adique; Théorie des Représentations; Groupes tordus; Programme de Langlands; Endoscopie; Mathematics; P-adic Harmonic analysis; Representation Theory; Twisted groups; Langlands program; Endoscopy; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cohen, J. (2013). Deux résultats d'analyse harmonique sur un groupe P-adique tordu : Two results of Harmonic Anlysis on a twisted p-adic group. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2013AIXM4088

Chicago Manual of Style (16th Edition):

Cohen, Joël. “Deux résultats d'analyse harmonique sur un groupe P-adique tordu : Two results of Harmonic Anlysis on a twisted p-adic group.” 2013. Doctoral Dissertation, Aix Marseille Université. Accessed January 18, 2021. http://www.theses.fr/2013AIXM4088.

MLA Handbook (7th Edition):

Cohen, Joël. “Deux résultats d'analyse harmonique sur un groupe P-adique tordu : Two results of Harmonic Anlysis on a twisted p-adic group.” 2013. Web. 18 Jan 2021.

Vancouver:

Cohen J. Deux résultats d'analyse harmonique sur un groupe P-adique tordu : Two results of Harmonic Anlysis on a twisted p-adic group. [Internet] [Doctoral dissertation]. Aix Marseille Université 2013. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2013AIXM4088.

Council of Science Editors:

Cohen J. Deux résultats d'analyse harmonique sur un groupe P-adique tordu : Two results of Harmonic Anlysis on a twisted p-adic group. [Doctoral Dissertation]. Aix Marseille Université 2013. Available from: http://www.theses.fr/2013AIXM4088

16. Cui, Peiyi. Modulo l-representations of p-adic groups SL_n(F) : Représentations modulo l des groupes p-adiques SL_n(F).

Degree: Docteur es, Mathématiques et leurs interactions, 2019, Rennes 1

 <p>Fixons un nombre premier p. Soit k un corps algébriquement clos de caractéristique l différent que p. Nous construisons les k-types maximaux simples cuspidaux des… (more)

Subjects/Keywords: Représentations modulo l; Groupes spéciaux linéaires p-Adiques; Support supercuspidal; Types de Bushnell-Kutzko; Modular l representations; P-Adic special linear groups; Supercuspidal support; Bushnell-Kutzko types

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cui, P. (2019). Modulo l-representations of p-adic groups SL_n(F) : Représentations modulo l des groupes p-adiques SL_n(F). (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2019REN1S050

Chicago Manual of Style (16th Edition):

Cui, Peiyi. “Modulo l-representations of p-adic groups SL_n(F) : Représentations modulo l des groupes p-adiques SL_n(F).” 2019. Doctoral Dissertation, Rennes 1. Accessed January 18, 2021. http://www.theses.fr/2019REN1S050.

MLA Handbook (7th Edition):

Cui, Peiyi. “Modulo l-representations of p-adic groups SL_n(F) : Représentations modulo l des groupes p-adiques SL_n(F).” 2019. Web. 18 Jan 2021.

Vancouver:

Cui P. Modulo l-representations of p-adic groups SL_n(F) : Représentations modulo l des groupes p-adiques SL_n(F). [Internet] [Doctoral dissertation]. Rennes 1; 2019. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2019REN1S050.

Council of Science Editors:

Cui P. Modulo l-representations of p-adic groups SL_n(F) : Représentations modulo l des groupes p-adiques SL_n(F). [Doctoral Dissertation]. Rennes 1; 2019. Available from: http://www.theses.fr/2019REN1S050


University of Michigan

17. Gordon, Julia. Some applications of motivic integration to the representation theory of p -adic groups.

Degree: PhD, Pure Sciences, 2003, University of Michigan

 Let X be a variety over a field k. Motivic integration, introduced by M. Kontsevich in 1995, is a formal procedure that associates virtual Chow… (more)

Subjects/Keywords: Applications; Chow Motives; Frobenius Action; Motivic Integration; P-adic Groups; Representation Theory; Some

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gordon, J. (2003). Some applications of motivic integration to the representation theory of p -adic groups. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/123392

Chicago Manual of Style (16th Edition):

Gordon, Julia. “Some applications of motivic integration to the representation theory of p -adic groups.” 2003. Doctoral Dissertation, University of Michigan. Accessed January 18, 2021. http://hdl.handle.net/2027.42/123392.

MLA Handbook (7th Edition):

Gordon, Julia. “Some applications of motivic integration to the representation theory of p -adic groups.” 2003. Web. 18 Jan 2021.

Vancouver:

Gordon J. Some applications of motivic integration to the representation theory of p -adic groups. [Internet] [Doctoral dissertation]. University of Michigan; 2003. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2027.42/123392.

Council of Science Editors:

Gordon J. Some applications of motivic integration to the representation theory of p -adic groups. [Doctoral Dissertation]. University of Michigan; 2003. Available from: http://hdl.handle.net/2027.42/123392


University of Michigan

18. Korman, Jonathan David. A character formula for compact elements using the building.

Degree: PhD, Pure Sciences, 2002, University of Michigan

 In a 1997 paper, Schneider and Stuhler gave a formula relating the value of an admissible character of a p-adic group at an elliptic element… (more)

Subjects/Keywords: Building; Character; Compact Elements; Formula; Number Theory; P-adic Groups; Representation Theory; Using

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Korman, J. D. (2002). A character formula for compact elements using the building. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/123216

Chicago Manual of Style (16th Edition):

Korman, Jonathan David. “A character formula for compact elements using the building.” 2002. Doctoral Dissertation, University of Michigan. Accessed January 18, 2021. http://hdl.handle.net/2027.42/123216.

MLA Handbook (7th Edition):

Korman, Jonathan David. “A character formula for compact elements using the building.” 2002. Web. 18 Jan 2021.

Vancouver:

Korman JD. A character formula for compact elements using the building. [Internet] [Doctoral dissertation]. University of Michigan; 2002. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2027.42/123216.

Council of Science Editors:

Korman JD. A character formula for compact elements using the building. [Doctoral Dissertation]. University of Michigan; 2002. Available from: http://hdl.handle.net/2027.42/123216

19. Chan, Kei Yuen. Extensions of graded affine hecke algebra modules.

Degree: PhD, Mathematics, 2014, University of Utah

 In this dissertation, we study extensions of graded ane Hecke algebra modules. In particular, based on an explicit projective resolution on graded ane Hecke algebra… (more)

Subjects/Keywords: Extension of modules; Hecke algebras; Homological algebra; p-adic groups

…the ´ etale cohomology of p-adic domains, Orlik [Or] also computed the Ext-groups… …conjecture. 2 While our work is motivated from some results in the setting of p-adic groups and… …to discrete series of p-adic groups when the parameter function is positive and equal… …extensions of smooth representations of p-adic groups and extensions of graded affine Hecke algebra… …modules. However, to translate the results to the level of p-adic groups, one may have to go… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chan, K. Y. (2014). Extensions of graded affine hecke algebra modules. (Doctoral Dissertation). University of Utah. Retrieved from http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/3318/rec/997

Chicago Manual of Style (16th Edition):

Chan, Kei Yuen. “Extensions of graded affine hecke algebra modules.” 2014. Doctoral Dissertation, University of Utah. Accessed January 18, 2021. http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/3318/rec/997.

MLA Handbook (7th Edition):

Chan, Kei Yuen. “Extensions of graded affine hecke algebra modules.” 2014. Web. 18 Jan 2021.

Vancouver:

Chan KY. Extensions of graded affine hecke algebra modules. [Internet] [Doctoral dissertation]. University of Utah; 2014. [cited 2021 Jan 18]. Available from: http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/3318/rec/997.

Council of Science Editors:

Chan KY. Extensions of graded affine hecke algebra modules. [Doctoral Dissertation]. University of Utah; 2014. Available from: http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/3318/rec/997

20. Wesolek, Phillip R. The Global Structure of Totally Disconnected Locally Compact Polish Groups.

Degree: 2014, University of Illinois – Chicago

 This thesis studies the global structure of totally disconnected locally compact Polish groups. We first identify a fundamental class of totally disconnected locally compact Polish… (more)

Subjects/Keywords: Descriptive Set Theory; Polish groups; totally disconnected locally compact groups; p-adic Lie groups; Elementary groups

…that l.c.s.c. p-adic Lie groups meet the hypotheses of the previous theorem. The next thread… …n. Theorem 0.15. Let P be the class of all l.c.s.c. p-adic Lie groups for all p. If G is… …groups. Indeed, [18] shows the kernel of the adjoint representation of a p-adic Lie… …Lie groups over the field of p-adics are essential tools. In geometric group theory, the… …Lie groups over the p-adics, and Neretin’s group of spheromorphisms. Worse still, techniques… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wesolek, P. R. (2014). The Global Structure of Totally Disconnected Locally Compact Polish Groups. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/18994

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wesolek, Phillip R. “The Global Structure of Totally Disconnected Locally Compact Polish Groups.” 2014. Thesis, University of Illinois – Chicago. Accessed January 18, 2021. http://hdl.handle.net/10027/18994.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wesolek, Phillip R. “The Global Structure of Totally Disconnected Locally Compact Polish Groups.” 2014. Web. 18 Jan 2021.

Vancouver:

Wesolek PR. The Global Structure of Totally Disconnected Locally Compact Polish Groups. [Internet] [Thesis]. University of Illinois – Chicago; 2014. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/10027/18994.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wesolek PR. The Global Structure of Totally Disconnected Locally Compact Polish Groups. [Thesis]. University of Illinois – Chicago; 2014. Available from: http://hdl.handle.net/10027/18994

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université Paris-Sud – Paris XI

21. Abdellatif, Ramla. Autour des représentations modulo p des groupes réductifs p-adiques de rang 1 : Mod p representations of p-adic reductive groups of rank 1.

Degree: Docteur es, Mathématiques, 2011, Université Paris-Sud – Paris XI

 <p>Soit p un nombre premier. Cette thèse est une contribution à la théorie des représentations modulo p des groupes réductifs p-adiques, jusque là essentiellement centrée… (more)

Subjects/Keywords: Groupes réductifs p-adiques de rang 1; Correspondance de Langlands modulo p; Arbres de Bruhat-Tits; Algèbres de Hecke-Iwahori; P-adic reductive groups of rank 1; Mod p Langlands correspondence; Bruhat-Tits trees; Hecke-Iwahori algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Abdellatif, R. (2011). Autour des représentations modulo p des groupes réductifs p-adiques de rang 1 : Mod p representations of p-adic reductive groups of rank 1. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2011PA112276

Chicago Manual of Style (16th Edition):

Abdellatif, Ramla. “Autour des représentations modulo p des groupes réductifs p-adiques de rang 1 : Mod p representations of p-adic reductive groups of rank 1.” 2011. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed January 18, 2021. http://www.theses.fr/2011PA112276.

MLA Handbook (7th Edition):

Abdellatif, Ramla. “Autour des représentations modulo p des groupes réductifs p-adiques de rang 1 : Mod p representations of p-adic reductive groups of rank 1.” 2011. Web. 18 Jan 2021.

Vancouver:

Abdellatif R. Autour des représentations modulo p des groupes réductifs p-adiques de rang 1 : Mod p representations of p-adic reductive groups of rank 1. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2011. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2011PA112276.

Council of Science Editors:

Abdellatif R. Autour des représentations modulo p des groupes réductifs p-adiques de rang 1 : Mod p representations of p-adic reductive groups of rank 1. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2011. Available from: http://www.theses.fr/2011PA112276

22. Lanard, Thomas. Sur les l-blocs de niveau zéro des groupes p-adiques : On the depth zero l-blocks of p-adic groups.

Degree: Docteur es, Mathématiques, 2019, Sorbonne université

 <p>Soit G un groupe p-adique se déployant sur une extension non-ramifiée. Nous décomposons Rep0 Λ(G), la catégorie abélienne des représentations lisses de G de niveau… (more)

Subjects/Keywords: Représentations; Correspondance de Langlands locale; Groupes p-Adiques; L-Blocs; Immeuble de Bruhat-Tits; Deligne-Lusztig; Representations; Local Langlands correspondence; P-adic groups; I-blocks; Bruhat-Tits building; Deligne-Lusztig; 512.55

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lanard, T. (2019). Sur les l-blocs de niveau zéro des groupes p-adiques : On the depth zero l-blocks of p-adic groups. (Doctoral Dissertation). Sorbonne université. Retrieved from http://www.theses.fr/2019SORUS084

Chicago Manual of Style (16th Edition):

Lanard, Thomas. “Sur les l-blocs de niveau zéro des groupes p-adiques : On the depth zero l-blocks of p-adic groups.” 2019. Doctoral Dissertation, Sorbonne université. Accessed January 18, 2021. http://www.theses.fr/2019SORUS084.

MLA Handbook (7th Edition):

Lanard, Thomas. “Sur les l-blocs de niveau zéro des groupes p-adiques : On the depth zero l-blocks of p-adic groups.” 2019. Web. 18 Jan 2021.

Vancouver:

Lanard T. Sur les l-blocs de niveau zéro des groupes p-adiques : On the depth zero l-blocks of p-adic groups. [Internet] [Doctoral dissertation]. Sorbonne université; 2019. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2019SORUS084.

Council of Science Editors:

Lanard T. Sur les l-blocs de niveau zéro des groupes p-adiques : On the depth zero l-blocks of p-adic groups. [Doctoral Dissertation]. Sorbonne université; 2019. Available from: http://www.theses.fr/2019SORUS084

23. Trias, Justin. Correspondance thêta locale ℓ-modulaire : ℓ-modular local theta correspondence.

Degree: Docteur es, Mathématiques, 2019, Sorbonne université

 <p>Soit F un corps local non archimédien de caractéristique différente de 2 et de caractéristique résiduelle p. La correspondance thêta locale sur F établit une… (more)

Subjects/Keywords: Représentations; Correspondance thêta; Correspondance de Langlands locale; Groupes p-Adiques; Théorie des représentations modulaires; Paires duales; Representations; Theta correspondence; Local Langlands correspondence; P-adic groups; Modular representation theory; Dual pairs; 512.55

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Trias, J. (2019). Correspondance thêta locale ℓ-modulaire : ℓ-modular local theta correspondence. (Doctoral Dissertation). Sorbonne université. Retrieved from http://www.theses.fr/2019SORUS380

Chicago Manual of Style (16th Edition):

Trias, Justin. “Correspondance thêta locale ℓ-modulaire : ℓ-modular local theta correspondence.” 2019. Doctoral Dissertation, Sorbonne université. Accessed January 18, 2021. http://www.theses.fr/2019SORUS380.

MLA Handbook (7th Edition):

Trias, Justin. “Correspondance thêta locale ℓ-modulaire : ℓ-modular local theta correspondence.” 2019. Web. 18 Jan 2021.

Vancouver:

Trias J. Correspondance thêta locale ℓ-modulaire : ℓ-modular local theta correspondence. [Internet] [Doctoral dissertation]. Sorbonne université; 2019. [cited 2021 Jan 18]. Available from: http://www.theses.fr/2019SORUS380.

Council of Science Editors:

Trias J. Correspondance thêta locale ℓ-modulaire : ℓ-modular local theta correspondence. [Doctoral Dissertation]. Sorbonne université; 2019. Available from: http://www.theses.fr/2019SORUS380


University of Michigan

24. Choi, Seung-Il. Degenerate principal series for exceptional p -adic groups.

Degree: PhD, Pure Sciences, 2002, University of Michigan

 This is a report on normalized inductions from characters of maximal parabolic subgroups of exceptional p-adic groups. Matrix realization can be used to get the… (more)

Subjects/Keywords: Degenerate Principal Series; Exceptional; Hecke Algebra Isomorphisms; Jacquet Module; P-adic Groups; Parabolic Induction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Choi, S. (2002). Degenerate principal series for exceptional p -adic groups. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/131599

Chicago Manual of Style (16th Edition):

Choi, Seung-Il. “Degenerate principal series for exceptional p -adic groups.” 2002. Doctoral Dissertation, University of Michigan. Accessed January 18, 2021. http://hdl.handle.net/2027.42/131599.

MLA Handbook (7th Edition):

Choi, Seung-Il. “Degenerate principal series for exceptional p -adic groups.” 2002. Web. 18 Jan 2021.

Vancouver:

Choi S. Degenerate principal series for exceptional p -adic groups. [Internet] [Doctoral dissertation]. University of Michigan; 2002. [cited 2021 Jan 18]. Available from: http://hdl.handle.net/2027.42/131599.

Council of Science Editors:

Choi S. Degenerate principal series for exceptional p -adic groups. [Doctoral Dissertation]. University of Michigan; 2002. Available from: http://hdl.handle.net/2027.42/131599

25. WAN, XIN. the Iwasawa Theory for Unitary groups .

Degree: PhD, 2012, Princeton University

 In this thesis we generalize earlier work of Skinner and Urban to construct (p-adic families of) nearly ordinary Klingen Eisensten series for the unitary groups(more)

Subjects/Keywords: Bloch-Kato conjectures; Eisenstein series; Iwasawa theory; p-adic L-functions; Selmer groups

…for their Selmer groups. In chapter 7 we recall some results about p-adic automorphic forms… …groups Self,K,χ , XΣ f,K,χ . (see chapter 6 for ˜Σ details). Also the p-adic L… …87 7.2 Igusa Tower and p-adic Automorphic Forms… …94 8.1.3 p-adic Picture… …96 8.2.3 p-adic Sections… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

WAN, X. (2012). the Iwasawa Theory for Unitary groups . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01c534fn974

Chicago Manual of Style (16th Edition):

WAN, XIN. “the Iwasawa Theory for Unitary groups .” 2012. Doctoral Dissertation, Princeton University. Accessed January 18, 2021. http://arks.princeton.edu/ark:/88435/dsp01c534fn974.

MLA Handbook (7th Edition):

WAN, XIN. “the Iwasawa Theory for Unitary groups .” 2012. Web. 18 Jan 2021.

Vancouver:

WAN X. the Iwasawa Theory for Unitary groups . [Internet] [Doctoral dissertation]. Princeton University; 2012. [cited 2021 Jan 18]. Available from: http://arks.princeton.edu/ark:/88435/dsp01c534fn974.

Council of Science Editors:

WAN X. the Iwasawa Theory for Unitary groups . [Doctoral Dissertation]. Princeton University; 2012. Available from: http://arks.princeton.edu/ark:/88435/dsp01c534fn974


The Ohio State University

26. Chan, Ping Shun. Invariant representations of GSp(2).

Degree: PhD, Mathematics, 2005, The Ohio State University

 Let F be a number field or a p-adic field. We introduce in Chapter 2 of this work two reductive rank one F-groups, H1, H2,… (more)

Subjects/Keywords: Mathematics; Automorphic representations; Langlands Functoriality; Lifting; Harmonic analysis on p-adic groups; Symplectic group of similitudes; GSp(2); { m GSp}(2); GSp(4); { m GSp}(4)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chan, P. S. (2005). Invariant representations of GSp(2). (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381

Chicago Manual of Style (16th Edition):

Chan, Ping Shun. “Invariant representations of GSp(2).” 2005. Doctoral Dissertation, The Ohio State University. Accessed January 18, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381.

MLA Handbook (7th Edition):

Chan, Ping Shun. “Invariant representations of GSp(2).” 2005. Web. 18 Jan 2021.

Vancouver:

Chan PS. Invariant representations of GSp(2). [Internet] [Doctoral dissertation]. The Ohio State University; 2005. [cited 2021 Jan 18]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381.

Council of Science Editors:

Chan PS. Invariant representations of GSp(2). [Doctoral Dissertation]. The Ohio State University; 2005. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1132765381

.