Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(optimal cotrol). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Kansas

1. Wang, Peixin. Application of stochastic differential equations to option pricing.

Degree: MA, Mathematics, 2016, University of Kansas

The financial world is a world of random things and unpredictable events. Along with the innovative development of diversity and complexity in modern financial market, there are more and more financial derivative emerged in the financial industry in order to gain higher yields as well as hedge the risk . As a result, to price the derivative , indeed the future uncertainty, become an interesting topic in the field of mathematical finance and financial quantitative analysis. In this thesis, I mainly focus on the application of stochastic differential equations to option pricing. Based on the arbitrage-free and risk-neutral assumption, I used the stochastic differential equations theory to solve the pricing problem for the European option of which underlying assets can be described by a geometric Brownian motion. The thesis explores the Black-Scholes model and forms an optimal control problem for the volatility that is an essential parameter in the Black-Scholes formula. Furthermore, the application of backward stochastic differential equations (BSDEs) has been discussed. I figured that BSDEs can model the pricing problem in a more clarifying and logical way. Also, based on the model discussed in the thesis, I provided a case study on pricing a Chinese option-like deposit product by using Mathematica, that shows the feasibility and applicability for the option pricing method based on stochastic differential equations. Advisors/Committee Members: Pasik-Duncan, Bozenna (advisor), Hu, Yaozhong (cmtemember), Talata, Zsolt (cmtemember).

Subjects/Keywords: Mathematics; Applied mathematics; Black-Scholes model; BSDE; Mathematica; optimal cotrol; option pricing; stochastic differential equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, P. (2016). Application of stochastic differential equations to option pricing. (Masters Thesis). University of Kansas. Retrieved from http://hdl.handle.net/1808/21914

Chicago Manual of Style (16th Edition):

Wang, Peixin. “Application of stochastic differential equations to option pricing.” 2016. Masters Thesis, University of Kansas. Accessed December 18, 2017. http://hdl.handle.net/1808/21914.

MLA Handbook (7th Edition):

Wang, Peixin. “Application of stochastic differential equations to option pricing.” 2016. Web. 18 Dec 2017.

Vancouver:

Wang P. Application of stochastic differential equations to option pricing. [Internet] [Masters thesis]. University of Kansas; 2016. [cited 2017 Dec 18]. Available from: http://hdl.handle.net/1808/21914.

Council of Science Editors:

Wang P. Application of stochastic differential equations to option pricing. [Masters Thesis]. University of Kansas; 2016. Available from: http://hdl.handle.net/1808/21914

.