Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(off diagonal estimates). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Australian National University

1. Amenta, Alex. Extensions of the theory of tent spaces and applications to boundary value problems .

Degree: 2016, Australian National University

 We extend the theory of tent spaces from Euclidean spaces to various types of metric measure spaces. For doubling spaces we show that the usual… (more)

Subjects/Keywords: tent spaces; metric measure spaces; interpolation; hardy-sobolev spaces; besov spaces; elliptic boundary value problems; functional calculus; off-diagonal estimates; cauchy-riemann systems; semigroups of operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Amenta, A. (2016). Extensions of the theory of tent spaces and applications to boundary value problems . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/102564

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Amenta, Alex. “Extensions of the theory of tent spaces and applications to boundary value problems .” 2016. Thesis, Australian National University. Accessed January 19, 2021. http://hdl.handle.net/1885/102564.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Amenta, Alex. “Extensions of the theory of tent spaces and applications to boundary value problems .” 2016. Web. 19 Jan 2021.

Vancouver:

Amenta A. Extensions of the theory of tent spaces and applications to boundary value problems . [Internet] [Thesis]. Australian National University; 2016. [cited 2021 Jan 19]. Available from: http://hdl.handle.net/1885/102564.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Amenta A. Extensions of the theory of tent spaces and applications to boundary value problems . [Thesis]. Australian National University; 2016. Available from: http://hdl.handle.net/1885/102564

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Magniez, Jocelyn. Etude de la bornitude des transformées de Riesz sur Lp via le Laplacien de Hodge-de Rham : Boundedness of the Riesz transforms on Lp via the Hodge-de Rham Laplacian.

Degree: Docteur es, Mathematiques pures, 2015, Bordeaux

Cette thèse comporte deux sujets d’étude mêlés. Le premier concerne l’étude de la bornitude sur Lp de la transformée de Riesz d∆-½ , où ∆… (more)

Subjects/Keywords: Variété riemanienne,; Opérateurs de Schrödinger,; Laplacien de Hodge-de Rham; Transformées de Riesz; Régularité de Sobolev; Noyaux de la chaleur; Estimées hors-diagonales.; Riemannian manifolds; Schrödinger operators; Hodge-de Rham Laplacian; Riesz transforms; Sobolev regularity; Heat kernels; Off-diagonal estimates

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Magniez, J. (2015). Etude de la bornitude des transformées de Riesz sur Lp via le Laplacien de Hodge-de Rham : Boundedness of the Riesz transforms on Lp via the Hodge-de Rham Laplacian. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2015BORD0161

Chicago Manual of Style (16th Edition):

Magniez, Jocelyn. “Etude de la bornitude des transformées de Riesz sur Lp via le Laplacien de Hodge-de Rham : Boundedness of the Riesz transforms on Lp via the Hodge-de Rham Laplacian.” 2015. Doctoral Dissertation, Bordeaux. Accessed January 19, 2021. http://www.theses.fr/2015BORD0161.

MLA Handbook (7th Edition):

Magniez, Jocelyn. “Etude de la bornitude des transformées de Riesz sur Lp via le Laplacien de Hodge-de Rham : Boundedness of the Riesz transforms on Lp via the Hodge-de Rham Laplacian.” 2015. Web. 19 Jan 2021.

Vancouver:

Magniez J. Etude de la bornitude des transformées de Riesz sur Lp via le Laplacien de Hodge-de Rham : Boundedness of the Riesz transforms on Lp via the Hodge-de Rham Laplacian. [Internet] [Doctoral dissertation]. Bordeaux; 2015. [cited 2021 Jan 19]. Available from: http://www.theses.fr/2015BORD0161.

Council of Science Editors:

Magniez J. Etude de la bornitude des transformées de Riesz sur Lp via le Laplacien de Hodge-de Rham : Boundedness of the Riesz transforms on Lp via the Hodge-de Rham Laplacian. [Doctoral Dissertation]. Bordeaux; 2015. Available from: http://www.theses.fr/2015BORD0161


Delft University of Technology

3. Teuwen, J.J.B. Shedding new light on Gaussian harmonic analysis.

Degree: 2016, Delft University of Technology

 This dissertation consists out of two rather disjoint parts. One part concerns some results on Gaussian harmonic analysis and the other on an optimization problem… (more)

Subjects/Keywords: Ornstein-Uhlenbeck semigroup; Mehler kernel; Gaussian maximal function; admissible cones; Mehler kernel bounds; off-diagonal estimates; infinite-dimensional optimization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Teuwen, J. J. B. (2016). Shedding new light on Gaussian harmonic analysis. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; urn:NBN:nl:ui:24-uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; 10.4233/uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; urn:NBN:nl:ui:24-uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; http://resolver.tudelft.nl/uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f

Chicago Manual of Style (16th Edition):

Teuwen, J J B. “Shedding new light on Gaussian harmonic analysis.” 2016. Doctoral Dissertation, Delft University of Technology. Accessed January 19, 2021. http://resolver.tudelft.nl/uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; urn:NBN:nl:ui:24-uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; 10.4233/uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; urn:NBN:nl:ui:24-uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; http://resolver.tudelft.nl/uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f.

MLA Handbook (7th Edition):

Teuwen, J J B. “Shedding new light on Gaussian harmonic analysis.” 2016. Web. 19 Jan 2021.

Vancouver:

Teuwen JJB. Shedding new light on Gaussian harmonic analysis. [Internet] [Doctoral dissertation]. Delft University of Technology; 2016. [cited 2021 Jan 19]. Available from: http://resolver.tudelft.nl/uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; urn:NBN:nl:ui:24-uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; 10.4233/uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; urn:NBN:nl:ui:24-uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; http://resolver.tudelft.nl/uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f.

Council of Science Editors:

Teuwen JJB. Shedding new light on Gaussian harmonic analysis. [Doctoral Dissertation]. Delft University of Technology; 2016. Available from: http://resolver.tudelft.nl/uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; urn:NBN:nl:ui:24-uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; 10.4233/uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; urn:NBN:nl:ui:24-uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f ; http://resolver.tudelft.nl/uuid:bcfb2d09-5828-4ad8-bfe6-e6cfe3b83c3f


Australian National University

4. Morris, Andrew Jordan. Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds .

Degree: 2010, Australian National University

 The connection between quadratic estimates and the existence of a bounded holomorphic functional calculus of an operator provides a framework for applying harmonic analysis to… (more)

Subjects/Keywords: holomorphic functional calculi; quadratic estimates; sectorial operators; local Hardy spaces; Riemannian manifolds; differential forms; Hodge – Dirac operators; local Riesz transforms; off-diagonal estimates; Davies – Gaffney estimates; Kato square-root problems; submanifolds; divergence form operators; first-order differential operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Morris, A. J. (2010). Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/8864

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Morris, Andrew Jordan. “Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds .” 2010. Thesis, Australian National University. Accessed January 19, 2021. http://hdl.handle.net/1885/8864.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Morris, Andrew Jordan. “Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds .” 2010. Web. 19 Jan 2021.

Vancouver:

Morris AJ. Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds . [Internet] [Thesis]. Australian National University; 2010. [cited 2021 Jan 19]. Available from: http://hdl.handle.net/1885/8864.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Morris AJ. Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds . [Thesis]. Australian National University; 2010. Available from: http://hdl.handle.net/1885/8864

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.