Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(moyal)`

.
Showing records 1 – 7 of
7 total matches.

▼ Search Limiters

1. Adrian, Frank Alan. Exact ensemble dynamics for spike-timing-dependent plasticity.

Degree: MS, 2008, Oregon Health Sciences University

URL: doi:10.6083/M4SQ8XCB ; http://digitalcommons.ohsu.edu/etd/342

Subjects/Keywords: Synapses; Fokker-Planck equation; Hebbian plasticity; synaptic weights; stochastic approaches; Kramers-Moyal expansion

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Adrian, F. A. (2008). Exact ensemble dynamics for spike-timing-dependent plasticity. (Thesis). Oregon Health Sciences University. Retrieved from doi:10.6083/M4SQ8XCB ; http://digitalcommons.ohsu.edu/etd/342

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Adrian, Frank Alan. “Exact ensemble dynamics for spike-timing-dependent plasticity.” 2008. Thesis, Oregon Health Sciences University. Accessed March 07, 2021. doi:10.6083/M4SQ8XCB ; http://digitalcommons.ohsu.edu/etd/342.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Adrian, Frank Alan. “Exact ensemble dynamics for spike-timing-dependent plasticity.” 2008. Web. 07 Mar 2021.

Vancouver:

Adrian FA. Exact ensemble dynamics for spike-timing-dependent plasticity. [Internet] [Thesis]. Oregon Health Sciences University; 2008. [cited 2021 Mar 07]. Available from: doi:10.6083/M4SQ8XCB ; http://digitalcommons.ohsu.edu/etd/342.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Adrian FA. Exact ensemble dynamics for spike-timing-dependent plasticity. [Thesis]. Oregon Health Sciences University; 2008. Available from: doi:10.6083/M4SQ8XCB ; http://digitalcommons.ohsu.edu/etd/342

Not specified: Masters Thesis or Doctoral Dissertation

Universidade de Brasília

2.
Marcio Tavares de Castro.
Equações de difusão associadas a séries temporais estocásticas : Kramers-*Moyal* versus Fokker-Planck.

Degree: 2009, Universidade de Brasília

URL: http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=4853

► Equac~oes de difus~ao s~ao largamente utilizadas na obtenc~ao de propriedades de series temporais estocasticas. O objetivo principal deste trabalho e determinar os processos pelos quais…
(more)

Subjects/Keywords: processos estocásticos; equação de difusão; Kramers-Moyal; Fokker-Planck; FISICA

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Castro, M. T. d. (2009). Equações de difusão associadas a séries temporais estocásticas : Kramers-Moyal versus Fokker-Planck. (Thesis). Universidade de Brasília. Retrieved from http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=4853

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Castro, Marcio Tavares de. “Equações de difusão associadas a séries temporais estocásticas : Kramers-Moyal versus Fokker-Planck.” 2009. Thesis, Universidade de Brasília. Accessed March 07, 2021. http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=4853.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Castro, Marcio Tavares de. “Equações de difusão associadas a séries temporais estocásticas : Kramers-Moyal versus Fokker-Planck.” 2009. Web. 07 Mar 2021.

Vancouver:

Castro MTd. Equações de difusão associadas a séries temporais estocásticas : Kramers-Moyal versus Fokker-Planck. [Internet] [Thesis]. Universidade de Brasília; 2009. [cited 2021 Mar 07]. Available from: http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=4853.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Castro MTd. Equações de difusão associadas a séries temporais estocásticas : Kramers-Moyal versus Fokker-Planck. [Thesis]. Universidade de Brasília; 2009. Available from: http://bdtd.bce.unb.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=4853

Not specified: Masters Thesis or Doctoral Dissertation

Université Paris-Sud – Paris XI

3. Cagnache, Eric. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.

Degree: Docteur es, Physique mathématique, 2012, Université Paris-Sud – Paris XI

URL: http://www.theses.fr/2012PA112115

►

La géométrie non commutative, du fait qu'elle permet de généraliser des objets géométriques sous forme algébrique, offre des perspectives intéressantes pour réunir la théorie quantique… (more)

Subjects/Keywords: Géométrie non commutative; Triplets spectraux; Espace de Moyal; Tore non commutatif; Distance; Noncommutative geometry; Spectral triples; Moyal space; Noncommutative torus; Distance

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cagnache, E. (2012). Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112115

Chicago Manual of Style (16^{th} Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed March 07, 2021. http://www.theses.fr/2012PA112115.

MLA Handbook (7^{th} Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Web. 07 Mar 2021.

Vancouver:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2012PA112115.

Council of Science Editors:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112115

University of Bradford

4. Agyo, Sanfo David. Bi-fractional transforms in phase space.

Degree: PhD, 2016, University of Bradford

URL: http://hdl.handle.net/10454/14522

► The displacement operator is related to the displaced parity operator through a two dimensional Fourier transform. Both operators are important operators in phase space and…
(more)

Subjects/Keywords: 515; Phase space methods; Coherent states; Bi-fractional coherent states; Bi-fractional Wigner function; Bi-fractional P-function; Bi-fractional Q-function; Bi-fractional Moyal star product; Bi-fractional Berezin formalism

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Agyo, S. D. (2016). Bi-fractional transforms in phase space. (Doctoral Dissertation). University of Bradford. Retrieved from http://hdl.handle.net/10454/14522

Chicago Manual of Style (16^{th} Edition):

Agyo, Sanfo David. “Bi-fractional transforms in phase space.” 2016. Doctoral Dissertation, University of Bradford. Accessed March 07, 2021. http://hdl.handle.net/10454/14522.

MLA Handbook (7^{th} Edition):

Agyo, Sanfo David. “Bi-fractional transforms in phase space.” 2016. Web. 07 Mar 2021.

Vancouver:

Agyo SD. Bi-fractional transforms in phase space. [Internet] [Doctoral dissertation]. University of Bradford; 2016. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10454/14522.

Council of Science Editors:

Agyo SD. Bi-fractional transforms in phase space. [Doctoral Dissertation]. University of Bradford; 2016. Available from: http://hdl.handle.net/10454/14522

5. Oliva, Maxime. The quantum Wigner current : a geometric approach to quantum dynamics in phase space.

Degree: PhD, 2019, University of Hertfordshire

URL: http://hdl.handle.net/2299/22363

► Phase space is the unity of position and momentum configuration space. It allows for an effective description of dynamical systems and is particularly useful when…
(more)

Subjects/Keywords: Quantum; phase; space; theory; theoretical; physics; superoscillations; schrodinger; wigner; function; distribution; negative; probability; viscosity; fluid; mechanics; stagnation; topology; integral; moyal; groenewold; oliva; steuernagel; kakofengitis; feynman; Zurek; Planck; Structures; Scale; trajectory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Oliva, M. (2019). The quantum Wigner current : a geometric approach to quantum dynamics in phase space. (Doctoral Dissertation). University of Hertfordshire. Retrieved from http://hdl.handle.net/2299/22363

Chicago Manual of Style (16^{th} Edition):

Oliva, Maxime. “The quantum Wigner current : a geometric approach to quantum dynamics in phase space.” 2019. Doctoral Dissertation, University of Hertfordshire. Accessed March 07, 2021. http://hdl.handle.net/2299/22363.

MLA Handbook (7^{th} Edition):

Oliva, Maxime. “The quantum Wigner current : a geometric approach to quantum dynamics in phase space.” 2019. Web. 07 Mar 2021.

Vancouver:

Oliva M. The quantum Wigner current : a geometric approach to quantum dynamics in phase space. [Internet] [Doctoral dissertation]. University of Hertfordshire; 2019. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2299/22363.

Council of Science Editors:

Oliva M. The quantum Wigner current : a geometric approach to quantum dynamics in phase space. [Doctoral Dissertation]. University of Hertfordshire; 2019. Available from: http://hdl.handle.net/2299/22363

6. Oliva, Maxime. The quantum Wigner current : a geometric approach to quantum dynamics in phase space.

Degree: PhD, 2019, University of Hertfordshire

URL: https://doi.org/10.18745/th.22363 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.802947

► Phase space is the unity of position and momentum configuration space. It allows for an effective description of dynamical systems and is particularly useful when…
(more)

Subjects/Keywords: Quantum; phase; space; theory; theoretical; physics; superoscillations; schrodinger; wigner; function; distribution; negative; probability; viscosity; fluid; mechanics; stagnation; topology; integral; moyal; groenewold; oliva; steuernagel; kakofengitis; feynman; Zurek; Planck; Structures; Scale; trajectory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Oliva, M. (2019). The quantum Wigner current : a geometric approach to quantum dynamics in phase space. (Doctoral Dissertation). University of Hertfordshire. Retrieved from https://doi.org/10.18745/th.22363 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.802947

Chicago Manual of Style (16^{th} Edition):

Oliva, Maxime. “The quantum Wigner current : a geometric approach to quantum dynamics in phase space.” 2019. Doctoral Dissertation, University of Hertfordshire. Accessed March 07, 2021. https://doi.org/10.18745/th.22363 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.802947.

MLA Handbook (7^{th} Edition):

Oliva, Maxime. “The quantum Wigner current : a geometric approach to quantum dynamics in phase space.” 2019. Web. 07 Mar 2021.

Vancouver:

Oliva M. The quantum Wigner current : a geometric approach to quantum dynamics in phase space. [Internet] [Doctoral dissertation]. University of Hertfordshire; 2019. [cited 2021 Mar 07]. Available from: https://doi.org/10.18745/th.22363 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.802947.

Council of Science Editors:

Oliva M. The quantum Wigner current : a geometric approach to quantum dynamics in phase space. [Doctoral Dissertation]. University of Hertfordshire; 2019. Available from: https://doi.org/10.18745/th.22363 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.802947

7. Gao, Li. On quantum Euclidean spaces: Continuous deformation and pseudo-differential operators.

Degree: PhD, Mathematics, 2018, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/101546

► Quantum Euclidean spaces are noncommutative deformations of Euclidean spaces. They are prototypes of locally compact noncommutative manifolds in Noncommutative Geometry. In this thesis, we study…
(more)

Subjects/Keywords: Noncommutative Euclidean spaces; Moyal Deformation; Pseudo-differential operators

…the parameter
h,
h
being a deformation parameter. The *Moyal* product, depending
gives a… …x5D;.
In the rst part of this thesis, we study the continuity of *Moyal* deformation, or more… …space, which are
called *Moyal* planes as in [15]. Because of its motivation from… …equivalent to the *Moyal*
θ,
−d
Z
Z
λθ (f )λθ (g) = λθ (f ?θ g)… …x29; Rd Rd
7
The *Moyal* product is bilinear, associative and reversed under complex…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gao, L. (2018). On quantum Euclidean spaces: Continuous deformation and pseudo-differential operators. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/101546

Chicago Manual of Style (16^{th} Edition):

Gao, Li. “On quantum Euclidean spaces: Continuous deformation and pseudo-differential operators.” 2018. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed March 07, 2021. http://hdl.handle.net/2142/101546.

MLA Handbook (7^{th} Edition):

Gao, Li. “On quantum Euclidean spaces: Continuous deformation and pseudo-differential operators.” 2018. Web. 07 Mar 2021.

Vancouver:

Gao L. On quantum Euclidean spaces: Continuous deformation and pseudo-differential operators. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2018. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2142/101546.

Council of Science Editors:

Gao L. On quantum Euclidean spaces: Continuous deformation and pseudo-differential operators. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2018. Available from: http://hdl.handle.net/2142/101546