Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(motivic homotopy theory). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Southern California

1. Ericksen, Adam. The geometry of motivic spheres.

Degree: PhD, Mathematics, 2013, University of Southern California

 We study a class of smooth algebraic varieties which are, in the sense of Morel and Voevodsky's A¹-homotopy theory, homotopy equivalent to spheres. These varieties… (more)

Subjects/Keywords: motivic sphere; cancellation; ; -homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ericksen, A. (2013). The geometry of motivic spheres. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/292749/rec/6754

Chicago Manual of Style (16th Edition):

Ericksen, Adam. “The geometry of motivic spheres.” 2013. Doctoral Dissertation, University of Southern California. Accessed July 10, 2020. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/292749/rec/6754.

MLA Handbook (7th Edition):

Ericksen, Adam. “The geometry of motivic spheres.” 2013. Web. 10 Jul 2020.

Vancouver:

Ericksen A. The geometry of motivic spheres. [Internet] [Doctoral dissertation]. University of Southern California; 2013. [cited 2020 Jul 10]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/292749/rec/6754.

Council of Science Editors:

Ericksen A. The geometry of motivic spheres. [Doctoral Dissertation]. University of Southern California; 2013. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll3/id/292749/rec/6754


University of California – Berkeley

2. Mazel-Gee, Aaron. Goerss – Hopkins obstruction theory via model ∞-categories.

Degree: Mathematics, 2016, University of California – Berkeley

 We develop a theory of model ∞-categories  – that is, of model structures on ∞-categories  – which provides a robust theory of resolutions entirely native… (more)

Subjects/Keywords: Mathematics; algebraic topology; ∞-categories; homotopy theory; model categories; motivic homotopy theory; obstruction theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mazel-Gee, A. (2016). Goerss – Hopkins obstruction theory via model ∞-categories. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/5dj9b74w

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mazel-Gee, Aaron. “Goerss – Hopkins obstruction theory via model ∞-categories.” 2016. Thesis, University of California – Berkeley. Accessed July 10, 2020. http://www.escholarship.org/uc/item/5dj9b74w.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mazel-Gee, Aaron. “Goerss – Hopkins obstruction theory via model ∞-categories.” 2016. Web. 10 Jul 2020.

Vancouver:

Mazel-Gee A. Goerss – Hopkins obstruction theory via model ∞-categories. [Internet] [Thesis]. University of California – Berkeley; 2016. [cited 2020 Jul 10]. Available from: http://www.escholarship.org/uc/item/5dj9b74w.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mazel-Gee A. Goerss – Hopkins obstruction theory via model ∞-categories. [Thesis]. University of California – Berkeley; 2016. Available from: http://www.escholarship.org/uc/item/5dj9b74w

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Michigan

3. Ormsby, Kyle M. Computations in Stable Motivic Homotopy Theory.

Degree: PhD, Mathematics, 2010, University of Michigan

 This thesis is concerned with the application of certain computational methods from stable algebraic topology in motivic homotopy theory over p-adic fields. My main tools… (more)

Subjects/Keywords: Motivic Homotopy; Stable Homotopy; Adams-Novikov Spectral Sequence; Algebraic K-theory; Algebraic Cobordism; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ormsby, K. M. (2010). Computations in Stable Motivic Homotopy Theory. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/77824

Chicago Manual of Style (16th Edition):

Ormsby, Kyle M. “Computations in Stable Motivic Homotopy Theory.” 2010. Doctoral Dissertation, University of Michigan. Accessed July 10, 2020. http://hdl.handle.net/2027.42/77824.

MLA Handbook (7th Edition):

Ormsby, Kyle M. “Computations in Stable Motivic Homotopy Theory.” 2010. Web. 10 Jul 2020.

Vancouver:

Ormsby KM. Computations in Stable Motivic Homotopy Theory. [Internet] [Doctoral dissertation]. University of Michigan; 2010. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2027.42/77824.

Council of Science Editors:

Ormsby KM. Computations in Stable Motivic Homotopy Theory. [Doctoral Dissertation]. University of Michigan; 2010. Available from: http://hdl.handle.net/2027.42/77824

4. Ellis Jr, Dondi. Motivic Analogues of MO and MSO.

Degree: PhD, Mathematics, 2017, University of Michigan

 This thesis makes progress in computing the coefficients of Algebraic Hermitian Cobordism (MGLR), a motivic Z/2-equivariant spectrum constructed by P. Hu, I. Kriz, and K.… (more)

Subjects/Keywords: Motivic homotopy theory; G-equivariant homotopy theory; Stable homotopy theory; Cobordism theories; homotopy type; Mathematics; Science

…C2 -equivariant homotopy theory, I give a computation of the motivic C2 -equivariant… …theory Informally, Motivic homotopy theory is an answer to the question “How does one do… …over k is too small to do motivic homotopy theory. To fix this, we enlarge to the category… …respectively. 1.2 G-equivariant motivic homotopy theory Following [HKO11], let (Sm… …equivariant motivic homotopy theory we have four motivic circles. We have the two nonequivariant… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ellis Jr, D. (2017). Motivic Analogues of MO and MSO. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/137115

Chicago Manual of Style (16th Edition):

Ellis Jr, Dondi. “Motivic Analogues of MO and MSO.” 2017. Doctoral Dissertation, University of Michigan. Accessed July 10, 2020. http://hdl.handle.net/2027.42/137115.

MLA Handbook (7th Edition):

Ellis Jr, Dondi. “Motivic Analogues of MO and MSO.” 2017. Web. 10 Jul 2020.

Vancouver:

Ellis Jr D. Motivic Analogues of MO and MSO. [Internet] [Doctoral dissertation]. University of Michigan; 2017. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2027.42/137115.

Council of Science Editors:

Ellis Jr D. Motivic Analogues of MO and MSO. [Doctoral Dissertation]. University of Michigan; 2017. Available from: http://hdl.handle.net/2027.42/137115


Northeastern University

5. Pelaez, Pablo. Multiplicative properties of the slice filtration.

Degree: PhD, Department of Mathematics, 2008, Northeastern University

 We show that the slice filtration introduced by Voevodsky is compatible in a suitable sense with the symmetric monoidal structure in the category of motivic(more)

Subjects/Keywords: Slice filtration; Motives; Motivic Atiyah-Hirzebruch Spectral Sequence; Motives (Mathematics); Homotopy theory; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pelaez, P. (2008). Multiplicative properties of the slice filtration. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/d1001617x

Chicago Manual of Style (16th Edition):

Pelaez, Pablo. “Multiplicative properties of the slice filtration.” 2008. Doctoral Dissertation, Northeastern University. Accessed July 10, 2020. http://hdl.handle.net/2047/d1001617x.

MLA Handbook (7th Edition):

Pelaez, Pablo. “Multiplicative properties of the slice filtration.” 2008. Web. 10 Jul 2020.

Vancouver:

Pelaez P. Multiplicative properties of the slice filtration. [Internet] [Doctoral dissertation]. Northeastern University; 2008. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2047/d1001617x.

Council of Science Editors:

Pelaez P. Multiplicative properties of the slice filtration. [Doctoral Dissertation]. Northeastern University; 2008. Available from: http://hdl.handle.net/2047/d1001617x

6. Jin, Fangzhou. Quelques aspects sur l'homologie de Borel-Moore dans le cadre de l'homotopie motivique : poids et G-théorie de Quillen : On some aspects of Borel-Moore homology in motivic homotopy : weight and Quillen’s G-theory.

Degree: Docteur es, Mathématiques, 2016, Lyon

Le thème de cette thèse est les différents aspects de la théorie de Borel-Moore dans le monde motivique. Classiquement, sur le corps des nombres complexes,… (more)

Subjects/Keywords: Homologie de Borel-Moore; Motifs mixtes; Motifs de Chow; Théorie de l’homotopie motivique; K-théorie de Quillen et K’-théorie; Morphisme de Gysin raffiné; Structure de poids; Formalisme des six foncteurs; Borel-Moore homology; Mixeds motives; Chow motives; Motivic homotopy theory; Quillen's K-Theory and K'Theory; Refined Gysin morphism; Weight structure; Six funtors formalism

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jin, F. (2016). Quelques aspects sur l'homologie de Borel-Moore dans le cadre de l'homotopie motivique : poids et G-théorie de Quillen : On some aspects of Borel-Moore homology in motivic homotopy : weight and Quillen’s G-theory. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2016LYSEN051

Chicago Manual of Style (16th Edition):

Jin, Fangzhou. “Quelques aspects sur l'homologie de Borel-Moore dans le cadre de l'homotopie motivique : poids et G-théorie de Quillen : On some aspects of Borel-Moore homology in motivic homotopy : weight and Quillen’s G-theory.” 2016. Doctoral Dissertation, Lyon. Accessed July 10, 2020. http://www.theses.fr/2016LYSEN051.

MLA Handbook (7th Edition):

Jin, Fangzhou. “Quelques aspects sur l'homologie de Borel-Moore dans le cadre de l'homotopie motivique : poids et G-théorie de Quillen : On some aspects of Borel-Moore homology in motivic homotopy : weight and Quillen’s G-theory.” 2016. Web. 10 Jul 2020.

Vancouver:

Jin F. Quelques aspects sur l'homologie de Borel-Moore dans le cadre de l'homotopie motivique : poids et G-théorie de Quillen : On some aspects of Borel-Moore homology in motivic homotopy : weight and Quillen’s G-theory. [Internet] [Doctoral dissertation]. Lyon; 2016. [cited 2020 Jul 10]. Available from: http://www.theses.fr/2016LYSEN051.

Council of Science Editors:

Jin F. Quelques aspects sur l'homologie de Borel-Moore dans le cadre de l'homotopie motivique : poids et G-théorie de Quillen : On some aspects of Borel-Moore homology in motivic homotopy : weight and Quillen’s G-theory. [Doctoral Dissertation]. Lyon; 2016. Available from: http://www.theses.fr/2016LYSEN051

.