Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(monoids). Showing records 1 – 30 of 31 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

Country

▼ Search Limiters


Rutgers University

1. Flores, Jaret, 1985-. Homological algebra for commutative monoids.

Degree: PhD, Mathematics, 2015, Rutgers University

We first study commutative, pointed monoids providing basic definitions and results in a manner similar commutative ring theory. Included are results on chain conditions, primary… (more)

Subjects/Keywords: Algebra, Homological; Monoids

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Flores, Jaret, 1. (2015). Homological algebra for commutative monoids. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/46336/

Chicago Manual of Style (16th Edition):

Flores, Jaret, 1985-. “Homological algebra for commutative monoids.” 2015. Doctoral Dissertation, Rutgers University. Accessed October 26, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/46336/.

MLA Handbook (7th Edition):

Flores, Jaret, 1985-. “Homological algebra for commutative monoids.” 2015. Web. 26 Oct 2020.

Vancouver:

Flores, Jaret 1. Homological algebra for commutative monoids. [Internet] [Doctoral dissertation]. Rutgers University; 2015. [cited 2020 Oct 26]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/46336/.

Council of Science Editors:

Flores, Jaret 1. Homological algebra for commutative monoids. [Doctoral Dissertation]. Rutgers University; 2015. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/46336/


University of New Mexico

2. Price, Laurie. Closure operations on the submonoids of the natural numbers.

Degree: Mathematics & Statistics, 2012, University of New Mexico

 We examine the algebraic structure of closure, semiprime and prime operations on submonoids of natural numbers. We find that the closure operations under composition do… (more)

Subjects/Keywords: Numbers; Natural; Closure operators; Monoids.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Price, L. (2012). Closure operations on the submonoids of the natural numbers. (Masters Thesis). University of New Mexico. Retrieved from http://hdl.handle.net/1928/17447

Chicago Manual of Style (16th Edition):

Price, Laurie. “Closure operations on the submonoids of the natural numbers.” 2012. Masters Thesis, University of New Mexico. Accessed October 26, 2020. http://hdl.handle.net/1928/17447.

MLA Handbook (7th Edition):

Price, Laurie. “Closure operations on the submonoids of the natural numbers.” 2012. Web. 26 Oct 2020.

Vancouver:

Price L. Closure operations on the submonoids of the natural numbers. [Internet] [Masters thesis]. University of New Mexico; 2012. [cited 2020 Oct 26]. Available from: http://hdl.handle.net/1928/17447.

Council of Science Editors:

Price L. Closure operations on the submonoids of the natural numbers. [Masters Thesis]. University of New Mexico; 2012. Available from: http://hdl.handle.net/1928/17447


University of Colorado

3. Willis, John Martin. Topological Foundations of Tropical Geometry.

Degree: PhD, 2019, University of Colorado

  We construct two subcanonical Grothendieck Topologies on the category of commutative, integral monoids and show that the moduli space of tropical curves is a… (more)

Subjects/Keywords: algebraic geometry; monoids; topology; tropical geometry; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Willis, J. M. (2019). Topological Foundations of Tropical Geometry. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/70

Chicago Manual of Style (16th Edition):

Willis, John Martin. “Topological Foundations of Tropical Geometry.” 2019. Doctoral Dissertation, University of Colorado. Accessed October 26, 2020. https://scholar.colorado.edu/math_gradetds/70.

MLA Handbook (7th Edition):

Willis, John Martin. “Topological Foundations of Tropical Geometry.” 2019. Web. 26 Oct 2020.

Vancouver:

Willis JM. Topological Foundations of Tropical Geometry. [Internet] [Doctoral dissertation]. University of Colorado; 2019. [cited 2020 Oct 26]. Available from: https://scholar.colorado.edu/math_gradetds/70.

Council of Science Editors:

Willis JM. Topological Foundations of Tropical Geometry. [Doctoral Dissertation]. University of Colorado; 2019. Available from: https://scholar.colorado.edu/math_gradetds/70


The Ohio State University

4. Antoniou, Austin A. On Product and Sum Decompositions of Sets: The Factorization Theory of Power Monoids.

Degree: PhD, Mathematics, 2020, The Ohio State University

 Let (H,·) be a monoid.The <i>power monoid</i> of H, first studied in full generality by Y. Fan and S. Tringali, is the collection Pfin(H) of… (more)

Subjects/Keywords: Mathematics; algebra; monoids; factorization theory; non-unique factorization; setwise sum; subset arithmetic; minkowski sum; numerical semigroups; power monoids

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Antoniou, A. A. (2020). On Product and Sum Decompositions of Sets: The Factorization Theory of Power Monoids. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1586355818066608

Chicago Manual of Style (16th Edition):

Antoniou, Austin A. “On Product and Sum Decompositions of Sets: The Factorization Theory of Power Monoids.” 2020. Doctoral Dissertation, The Ohio State University. Accessed October 26, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586355818066608.

MLA Handbook (7th Edition):

Antoniou, Austin A. “On Product and Sum Decompositions of Sets: The Factorization Theory of Power Monoids.” 2020. Web. 26 Oct 2020.

Vancouver:

Antoniou AA. On Product and Sum Decompositions of Sets: The Factorization Theory of Power Monoids. [Internet] [Doctoral dissertation]. The Ohio State University; 2020. [cited 2020 Oct 26]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1586355818066608.

Council of Science Editors:

Antoniou AA. On Product and Sum Decompositions of Sets: The Factorization Theory of Power Monoids. [Doctoral Dissertation]. The Ohio State University; 2020. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1586355818066608


McMaster University

5. Cooper, Dale Stephen. Abelian Monoids.

Degree: MSc, 1970, McMaster University

This thesis makes a small study of various kinds of submonoids of abelian monoids, of the lattice of submonoids of an abelian monoid, and… (more)

Subjects/Keywords: submonoids; abelian; monoids; factorization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cooper, D. S. (1970). Abelian Monoids. (Masters Thesis). McMaster University. Retrieved from http://hdl.handle.net/11375/17550

Chicago Manual of Style (16th Edition):

Cooper, Dale Stephen. “Abelian Monoids.” 1970. Masters Thesis, McMaster University. Accessed October 26, 2020. http://hdl.handle.net/11375/17550.

MLA Handbook (7th Edition):

Cooper, Dale Stephen. “Abelian Monoids.” 1970. Web. 26 Oct 2020.

Vancouver:

Cooper DS. Abelian Monoids. [Internet] [Masters thesis]. McMaster University; 1970. [cited 2020 Oct 26]. Available from: http://hdl.handle.net/11375/17550.

Council of Science Editors:

Cooper DS. Abelian Monoids. [Masters Thesis]. McMaster University; 1970. Available from: http://hdl.handle.net/11375/17550

6. Keyman, Fatma Ebru. Singular braids and links.

Degree: PhD, 1997, University of Sussex

Subjects/Keywords: 510; Markov's Theorem; Embedding monoids

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Keyman, F. E. (1997). Singular braids and links. (Doctoral Dissertation). University of Sussex. Retrieved from https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363368

Chicago Manual of Style (16th Edition):

Keyman, Fatma Ebru. “Singular braids and links.” 1997. Doctoral Dissertation, University of Sussex. Accessed October 26, 2020. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363368.

MLA Handbook (7th Edition):

Keyman, Fatma Ebru. “Singular braids and links.” 1997. Web. 26 Oct 2020.

Vancouver:

Keyman FE. Singular braids and links. [Internet] [Doctoral dissertation]. University of Sussex; 1997. [cited 2020 Oct 26]. Available from: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363368.

Council of Science Editors:

Keyman FE. Singular braids and links. [Doctoral Dissertation]. University of Sussex; 1997. Available from: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363368


Montana Tech

7. Al-Kadhi, Mohammed A. VALUATION THEORY OF COMMUTATIVE MONOIDS.

Degree: PhD, 1987, Montana Tech

Subjects/Keywords: Monoids.; Commutative rings.; Valuation theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Al-Kadhi, M. A. (1987). VALUATION THEORY OF COMMUTATIVE MONOIDS. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/10253

Chicago Manual of Style (16th Edition):

Al-Kadhi, Mohammed A. “VALUATION THEORY OF COMMUTATIVE MONOIDS.” 1987. Doctoral Dissertation, Montana Tech. Accessed October 26, 2020. https://scholarworks.umt.edu/etd/10253.

MLA Handbook (7th Edition):

Al-Kadhi, Mohammed A. “VALUATION THEORY OF COMMUTATIVE MONOIDS.” 1987. Web. 26 Oct 2020.

Vancouver:

Al-Kadhi MA. VALUATION THEORY OF COMMUTATIVE MONOIDS. [Internet] [Doctoral dissertation]. Montana Tech; 1987. [cited 2020 Oct 26]. Available from: https://scholarworks.umt.edu/etd/10253.

Council of Science Editors:

Al-Kadhi MA. VALUATION THEORY OF COMMUTATIVE MONOIDS. [Doctoral Dissertation]. Montana Tech; 1987. Available from: https://scholarworks.umt.edu/etd/10253


Simon Fraser University

8. Wismath, Shelly Luanne. The lattices of varieties and pseudovarieties of band monoids.

Degree: 1983, Simon Fraser University

Subjects/Keywords: Monoids.; Lattice theory.; Semigroups.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wismath, S. L. (1983). The lattices of varieties and pseudovarieties of band monoids. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/6454

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wismath, Shelly Luanne. “The lattices of varieties and pseudovarieties of band monoids.” 1983. Thesis, Simon Fraser University. Accessed October 26, 2020. http://summit.sfu.ca/item/6454.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wismath, Shelly Luanne. “The lattices of varieties and pseudovarieties of band monoids.” 1983. Web. 26 Oct 2020.

Vancouver:

Wismath SL. The lattices of varieties and pseudovarieties of band monoids. [Internet] [Thesis]. Simon Fraser University; 1983. [cited 2020 Oct 26]. Available from: http://summit.sfu.ca/item/6454.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wismath SL. The lattices of varieties and pseudovarieties of band monoids. [Thesis]. Simon Fraser University; 1983. Available from: http://summit.sfu.ca/item/6454

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

9. Dubourg, Etienne. Contribution à la théorie des langages de tuiles : Contribution to the theory of tile languages.

Degree: Docteur es, Informatique, 2016, Bordeaux

Les tuiles sont des structures finies, linéaires ou arborescentes, possédantune notion de chevauchement. Elles sont utiles en informatique pourreprésenter des objets musicaux, comme étudié par… (more)

Subjects/Keywords: Tuiles; Arbres à deux racines; Langages; Monoïdes inversifs; Prémorphismes; Monoïdes d’Ehresmann; Automates de tuiles; Tiles; Birooted trees; Languages; Inverse monoids; Premorphisms; Ehresmann monoids; Tile automata

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dubourg, E. (2016). Contribution à la théorie des langages de tuiles : Contribution to the theory of tile languages. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2016BORD0090

Chicago Manual of Style (16th Edition):

Dubourg, Etienne. “Contribution à la théorie des langages de tuiles : Contribution to the theory of tile languages.” 2016. Doctoral Dissertation, Bordeaux. Accessed October 26, 2020. http://www.theses.fr/2016BORD0090.

MLA Handbook (7th Edition):

Dubourg, Etienne. “Contribution à la théorie des langages de tuiles : Contribution to the theory of tile languages.” 2016. Web. 26 Oct 2020.

Vancouver:

Dubourg E. Contribution à la théorie des langages de tuiles : Contribution to the theory of tile languages. [Internet] [Doctoral dissertation]. Bordeaux; 2016. [cited 2020 Oct 26]. Available from: http://www.theses.fr/2016BORD0090.

Council of Science Editors:

Dubourg E. Contribution à la théorie des langages de tuiles : Contribution to the theory of tile languages. [Doctoral Dissertation]. Bordeaux; 2016. Available from: http://www.theses.fr/2016BORD0090


University of Western Ontario

10. Gonzales, Richard P. GKM theory of rationally smooth group embeddings.

Degree: 2011, University of Western Ontario

 This thesis is concerned with the study of rationally smooth group embeddings. We prove that the equivariant cohomology of any of these compactificationscan be described,… (more)

Subjects/Keywords: equivariant cohomology; GKM theory; rationally smooth; algebraic monoids; group embeddings; toric varieties; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gonzales, R. P. (2011). GKM theory of rationally smooth group embeddings. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/216

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gonzales, Richard P. “GKM theory of rationally smooth group embeddings.” 2011. Thesis, University of Western Ontario. Accessed October 26, 2020. https://ir.lib.uwo.ca/etd/216.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gonzales, Richard P. “GKM theory of rationally smooth group embeddings.” 2011. Web. 26 Oct 2020.

Vancouver:

Gonzales RP. GKM theory of rationally smooth group embeddings. [Internet] [Thesis]. University of Western Ontario; 2011. [cited 2020 Oct 26]. Available from: https://ir.lib.uwo.ca/etd/216.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gonzales RP. GKM theory of rationally smooth group embeddings. [Thesis]. University of Western Ontario; 2011. Available from: https://ir.lib.uwo.ca/etd/216

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Waterloo

11. Davies, Sylvie. Algebraic Approaches to State Complexity of Regular Operations.

Degree: 2019, University of Waterloo

 The state complexity of operations on regular languages is an active area of research in theoretical computer science. Through connections with algebra, particularly the theory… (more)

Subjects/Keywords: formal languages; regular languages; finite automata; abstract algebra; group theory; monoid theory; groups; monoids; automata; state complexity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Davies, S. (2019). Algebraic Approaches to State Complexity of Regular Operations. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/15203

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Davies, Sylvie. “Algebraic Approaches to State Complexity of Regular Operations.” 2019. Thesis, University of Waterloo. Accessed October 26, 2020. http://hdl.handle.net/10012/15203.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Davies, Sylvie. “Algebraic Approaches to State Complexity of Regular Operations.” 2019. Web. 26 Oct 2020.

Vancouver:

Davies S. Algebraic Approaches to State Complexity of Regular Operations. [Internet] [Thesis]. University of Waterloo; 2019. [cited 2020 Oct 26]. Available from: http://hdl.handle.net/10012/15203.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Davies S. Algebraic Approaches to State Complexity of Regular Operations. [Thesis]. University of Waterloo; 2019. Available from: http://hdl.handle.net/10012/15203

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Waterloo

12. Krawetz, Bryan. Monoids and the State Complexity of the Operation root(<i>L</i>).

Degree: 2004, University of Waterloo

 In this thesis, we cover the general topic of state complexity. In particular, we examine the bounds on the state complexity of some different representations… (more)

Subjects/Keywords: Computer Science; state complexity; monoids; formal languages; regular languages

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Krawetz, B. (2004). Monoids and the State Complexity of the Operation root(<i>L</i>). (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/1034

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Krawetz, Bryan. “Monoids and the State Complexity of the Operation root(<i>L</i>).” 2004. Thesis, University of Waterloo. Accessed October 26, 2020. http://hdl.handle.net/10012/1034.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Krawetz, Bryan. “Monoids and the State Complexity of the Operation root(<i>L</i>).” 2004. Web. 26 Oct 2020.

Vancouver:

Krawetz B. Monoids and the State Complexity of the Operation root(<i>L</i>). [Internet] [Thesis]. University of Waterloo; 2004. [cited 2020 Oct 26]. Available from: http://hdl.handle.net/10012/1034.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Krawetz B. Monoids and the State Complexity of the Operation root(<i>L</i>). [Thesis]. University of Waterloo; 2004. Available from: http://hdl.handle.net/10012/1034

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Grosshans, Nathan. The limits of Nečiporuk's method and the power of programs over monoids taken from small varieties of finite monoids : Les limites de la méthode de Nečiporuk et le pouvoir des programmes sur monoïdes issus de petites variétiés de monoïdes finis.

Degree: Docteur es, Informatique, 2018, Université Paris-Saclay (ComUE); Université de Montréal

 Cette thèse porte sur des minorants pour des mesures de complexité liées à des sous-classes de la classe P de langages pouvant être décidés en… (more)

Subjects/Keywords: Complexité algorithmique; Minorants; Nečiporuk; Programmes sur monoïdes; Da; J; Computational complexity; Lower bounds; Nečiporuk; Programs over monoids; Da; J

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grosshans, N. (2018). The limits of Nečiporuk's method and the power of programs over monoids taken from small varieties of finite monoids : Les limites de la méthode de Nečiporuk et le pouvoir des programmes sur monoïdes issus de petites variétiés de monoïdes finis. (Doctoral Dissertation). Université Paris-Saclay (ComUE); Université de Montréal. Retrieved from http://www.theses.fr/2018SACLN028

Chicago Manual of Style (16th Edition):

Grosshans, Nathan. “The limits of Nečiporuk's method and the power of programs over monoids taken from small varieties of finite monoids : Les limites de la méthode de Nečiporuk et le pouvoir des programmes sur monoïdes issus de petites variétiés de monoïdes finis.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE); Université de Montréal. Accessed October 26, 2020. http://www.theses.fr/2018SACLN028.

MLA Handbook (7th Edition):

Grosshans, Nathan. “The limits of Nečiporuk's method and the power of programs over monoids taken from small varieties of finite monoids : Les limites de la méthode de Nečiporuk et le pouvoir des programmes sur monoïdes issus de petites variétiés de monoïdes finis.” 2018. Web. 26 Oct 2020.

Vancouver:

Grosshans N. The limits of Nečiporuk's method and the power of programs over monoids taken from small varieties of finite monoids : Les limites de la méthode de Nečiporuk et le pouvoir des programmes sur monoïdes issus de petites variétiés de monoïdes finis. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); Université de Montréal; 2018. [cited 2020 Oct 26]. Available from: http://www.theses.fr/2018SACLN028.

Council of Science Editors:

Grosshans N. The limits of Nečiporuk's method and the power of programs over monoids taken from small varieties of finite monoids : Les limites de la méthode de Nečiporuk et le pouvoir des programmes sur monoïdes issus de petites variétiés de monoïdes finis. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); Université de Montréal; 2018. Available from: http://www.theses.fr/2018SACLN028


University of KwaZulu-Natal

14. Van Alten, Clint Johann. An algebraic study of residuated ordered monoids and logics without exchange and contraction.

Degree: PhD, Mathematics, 1998, University of KwaZulu-Natal

Please refer to the thesis for the abstract. Advisors/Committee Members: Raftery, James Gordon. (advisor).

Subjects/Keywords: Mathematics.; Geometry, Algebraic.; Linear algebraic groups.; Monoids.; Algebras, Linear.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Van Alten, C. J. (1998). An algebraic study of residuated ordered monoids and logics without exchange and contraction. (Doctoral Dissertation). University of KwaZulu-Natal. Retrieved from http://hdl.handle.net/10413/3961

Chicago Manual of Style (16th Edition):

Van Alten, Clint Johann. “An algebraic study of residuated ordered monoids and logics without exchange and contraction.” 1998. Doctoral Dissertation, University of KwaZulu-Natal. Accessed October 26, 2020. http://hdl.handle.net/10413/3961.

MLA Handbook (7th Edition):

Van Alten, Clint Johann. “An algebraic study of residuated ordered monoids and logics without exchange and contraction.” 1998. Web. 26 Oct 2020.

Vancouver:

Van Alten CJ. An algebraic study of residuated ordered monoids and logics without exchange and contraction. [Internet] [Doctoral dissertation]. University of KwaZulu-Natal; 1998. [cited 2020 Oct 26]. Available from: http://hdl.handle.net/10413/3961.

Council of Science Editors:

Van Alten CJ. An algebraic study of residuated ordered monoids and logics without exchange and contraction. [Doctoral Dissertation]. University of KwaZulu-Natal; 1998. Available from: http://hdl.handle.net/10413/3961


Harvard University

15. Brantner, David Lukas Benjamin. The Lubin-Tate Theory of Spectral Lie Algebras.

Degree: PhD, 2017, Harvard University

We use equivariant discrete Morse theory to establish a general technique in poset topology and demonstrate its applicability by computing various equivariant properties of the… (more)

Subjects/Keywords: Morava E-theory; Lubin-Tate space; spectral Lie algebras; poset topology; discrete Morse theory; Andre-Quillen homology; monoids; Koszul duality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brantner, D. L. B. (2017). The Lubin-Tate Theory of Spectral Lie Algebras. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:41140243

Chicago Manual of Style (16th Edition):

Brantner, David Lukas Benjamin. “The Lubin-Tate Theory of Spectral Lie Algebras.” 2017. Doctoral Dissertation, Harvard University. Accessed October 26, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:41140243.

MLA Handbook (7th Edition):

Brantner, David Lukas Benjamin. “The Lubin-Tate Theory of Spectral Lie Algebras.” 2017. Web. 26 Oct 2020.

Vancouver:

Brantner DLB. The Lubin-Tate Theory of Spectral Lie Algebras. [Internet] [Doctoral dissertation]. Harvard University; 2017. [cited 2020 Oct 26]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:41140243.

Council of Science Editors:

Brantner DLB. The Lubin-Tate Theory of Spectral Lie Algebras. [Doctoral Dissertation]. Harvard University; 2017. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:41140243


Florida Atlantic University

16. Hopkins, Mary E. Weakly integrally closed domains and forbidden patterns.

Degree: PhD, 2009, Florida Atlantic University

Summary: An integral domain D is weakly integrally closed if whenever there is an element x in the quotient field of D and a nonzero… (more)

Subjects/Keywords: Mathematical analysis; Algebra, Homological; Monoids; Categories (Mathematics); Semigroup algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hopkins, M. E. (2009). Weakly integrally closed domains and forbidden patterns. (Doctoral Dissertation). Florida Atlantic University. Retrieved from http://purl.flvc.org/FAU/199327

Chicago Manual of Style (16th Edition):

Hopkins, Mary E. “Weakly integrally closed domains and forbidden patterns.” 2009. Doctoral Dissertation, Florida Atlantic University. Accessed October 26, 2020. http://purl.flvc.org/FAU/199327.

MLA Handbook (7th Edition):

Hopkins, Mary E. “Weakly integrally closed domains and forbidden patterns.” 2009. Web. 26 Oct 2020.

Vancouver:

Hopkins ME. Weakly integrally closed domains and forbidden patterns. [Internet] [Doctoral dissertation]. Florida Atlantic University; 2009. [cited 2020 Oct 26]. Available from: http://purl.flvc.org/FAU/199327.

Council of Science Editors:

Hopkins ME. Weakly integrally closed domains and forbidden patterns. [Doctoral Dissertation]. Florida Atlantic University; 2009. Available from: http://purl.flvc.org/FAU/199327


University of Western Ontario

17. O'Hara, Allen. A Study Of Green’s Relations On Algebraic Semigroups.

Degree: 2015, University of Western Ontario

 The purpose of this work is to enhance the understanding regular algebraic semigroups by considering the structural influence of Green's relations. There will be three… (more)

Subjects/Keywords: Algebraic semigroups; reductive monoids; Green’s relations; Adherence order; Renner monoid; semigroup supports; irreducible regular algebraic semigroups with zero; Algebraic Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

O'Hara, A. (2015). A Study Of Green’s Relations On Algebraic Semigroups. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3047

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

O'Hara, Allen. “A Study Of Green’s Relations On Algebraic Semigroups.” 2015. Thesis, University of Western Ontario. Accessed October 26, 2020. https://ir.lib.uwo.ca/etd/3047.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

O'Hara, Allen. “A Study Of Green’s Relations On Algebraic Semigroups.” 2015. Web. 26 Oct 2020.

Vancouver:

O'Hara A. A Study Of Green’s Relations On Algebraic Semigroups. [Internet] [Thesis]. University of Western Ontario; 2015. [cited 2020 Oct 26]. Available from: https://ir.lib.uwo.ca/etd/3047.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

O'Hara A. A Study Of Green’s Relations On Algebraic Semigroups. [Thesis]. University of Western Ontario; 2015. Available from: https://ir.lib.uwo.ca/etd/3047

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

18. Virmaux, Aladin. Théorie des représentations combinatoire de tours de monoïdes : Application à la catégorification et aux fonctions de parking : Combinatorial representation theory of tower monoids : Application to categorification and to parking functions.

Degree: Docteur es, Informatique, 2016, Université Paris-Saclay (ComUE)

 Cette thèse se situe en combinatoire algébrique, et plus particulièrement en théorie combinatoire des représentations linéaires des monoïdes finis.Rappelons qu'un monoïde est un ensemble fini… (more)

Subjects/Keywords: Combinatoire algébrique; Théorie des représentations; Monoïdes; Tours d'algèbres; Algèbres de Hopf; Fonctions de parking; Algebraic combinatorics; Representation theory; Monoids; Tower of algebras; Hopf algebras; Parking functions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Virmaux, A. (2016). Théorie des représentations combinatoire de tours de monoïdes : Application à la catégorification et aux fonctions de parking : Combinatorial representation theory of tower monoids : Application to categorification and to parking functions. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2016SACLS138

Chicago Manual of Style (16th Edition):

Virmaux, Aladin. “Théorie des représentations combinatoire de tours de monoïdes : Application à la catégorification et aux fonctions de parking : Combinatorial representation theory of tower monoids : Application to categorification and to parking functions.” 2016. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed October 26, 2020. http://www.theses.fr/2016SACLS138.

MLA Handbook (7th Edition):

Virmaux, Aladin. “Théorie des représentations combinatoire de tours de monoïdes : Application à la catégorification et aux fonctions de parking : Combinatorial representation theory of tower monoids : Application to categorification and to parking functions.” 2016. Web. 26 Oct 2020.

Vancouver:

Virmaux A. Théorie des représentations combinatoire de tours de monoïdes : Application à la catégorification et aux fonctions de parking : Combinatorial representation theory of tower monoids : Application to categorification and to parking functions. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2016. [cited 2020 Oct 26]. Available from: http://www.theses.fr/2016SACLS138.

Council of Science Editors:

Virmaux A. Théorie des représentations combinatoire de tours de monoïdes : Application à la catégorification et aux fonctions de parking : Combinatorial representation theory of tower monoids : Application to categorification and to parking functions. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2016. Available from: http://www.theses.fr/2016SACLS138

19. Panchadcharam, Elango. Categories of Mackey functors.

Degree: PhD, 2007, Macquarie University (Division of Information & Communication Sciences, Dept. of Mathematics)

Thesis by publication.

Bibliography: p. 119-123.

Introduction  – Mackey functors on compact closed categories  – Lax braidings and the lax centre  – On centres and… (more)

Subjects/Keywords: Functors; Closed categories (Mathematics); Monoids; Representations of groups; Braid theory; Monoidal categories; Topos

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Panchadcharam, E. (2007). Categories of Mackey functors. (Doctoral Dissertation). Macquarie University (Division of Information & Communication Sciences, Dept. of Mathematics). Retrieved from http://hdl.handle.net/1959.14/119

Chicago Manual of Style (16th Edition):

Panchadcharam, Elango. “Categories of Mackey functors.” 2007. Doctoral Dissertation, Macquarie University (Division of Information & Communication Sciences, Dept. of Mathematics). Accessed October 26, 2020. http://hdl.handle.net/1959.14/119.

MLA Handbook (7th Edition):

Panchadcharam, Elango. “Categories of Mackey functors.” 2007. Web. 26 Oct 2020.

Vancouver:

Panchadcharam E. Categories of Mackey functors. [Internet] [Doctoral dissertation]. Macquarie University (Division of Information & Communication Sciences, Dept. of Mathematics); 2007. [cited 2020 Oct 26]. Available from: http://hdl.handle.net/1959.14/119.

Council of Science Editors:

Panchadcharam E. Categories of Mackey functors. [Doctoral Dissertation]. Macquarie University (Division of Information & Communication Sciences, Dept. of Mathematics); 2007. Available from: http://hdl.handle.net/1959.14/119

20. Gay, Joël. Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups : Représentations de monoïdes et structures de treillis en combinatoire des groupes de Weyl.

Degree: Docteur es, Informatique, 2018, Université Paris-Saclay (ComUE)

 La combinatoire algébrique est le champ de recherche qui utilise des méthodes combinatoires et des algorithmes pour étudier les problèmes algébriques, et applique ensuite des… (more)

Subjects/Keywords: Informatique fondamentale; Combinatoire algébrique et géométrique; Algorithmique; Représentations de groupe et des monoïdes; Combinatoire des permutations; des arbres et des tableaux; Théorie des polytopes; Theoretical computer science; Algebraic and geometric combinatorics; Algorithm; Representation of groups and monoids; Combinatorics of permutations; trees and tableaux; Polytope theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gay, J. (2018). Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups : Représentations de monoïdes et structures de treillis en combinatoire des groupes de Weyl. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2018SACLS209

Chicago Manual of Style (16th Edition):

Gay, Joël. “Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups : Représentations de monoïdes et structures de treillis en combinatoire des groupes de Weyl.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed October 26, 2020. http://www.theses.fr/2018SACLS209.

MLA Handbook (7th Edition):

Gay, Joël. “Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups : Représentations de monoïdes et structures de treillis en combinatoire des groupes de Weyl.” 2018. Web. 26 Oct 2020.

Vancouver:

Gay J. Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups : Représentations de monoïdes et structures de treillis en combinatoire des groupes de Weyl. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2018. [cited 2020 Oct 26]. Available from: http://www.theses.fr/2018SACLS209.

Council of Science Editors:

Gay J. Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups : Représentations de monoïdes et structures de treillis en combinatoire des groupes de Weyl. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2018. Available from: http://www.theses.fr/2018SACLS209

21. Van Rooijen, Lorijn. Une approche combinatoire du problème de séparation pour les langages réguliers : A combinatorial approach to the separation problem for regular languages.

Degree: Docteur es, Informatique, 2014, Bordeaux

Le problème de séparation pour une classe de langages S est le suivant : étant donnés deux langages L1 et L2, existe-t-il un langage appartenant… (more)

Subjects/Keywords: Langages réguliers; Séparation; Logiques; Automates; Monoïdes; Langages testables par morceaux; Langages non-ambigus; Langages localement testables; Langages localement testables à seuil; Langages algébriques; Regular languages; Separation; Logics; Automata; Monoids; Piecewise testable languages; Unambiguous languages; Locally testable languages; Locally threshold testable languages; Context-free languages

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Van Rooijen, L. (2014). Une approche combinatoire du problème de séparation pour les langages réguliers : A combinatorial approach to the separation problem for regular languages. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2014BORD0229

Chicago Manual of Style (16th Edition):

Van Rooijen, Lorijn. “Une approche combinatoire du problème de séparation pour les langages réguliers : A combinatorial approach to the separation problem for regular languages.” 2014. Doctoral Dissertation, Bordeaux. Accessed October 26, 2020. http://www.theses.fr/2014BORD0229.

MLA Handbook (7th Edition):

Van Rooijen, Lorijn. “Une approche combinatoire du problème de séparation pour les langages réguliers : A combinatorial approach to the separation problem for regular languages.” 2014. Web. 26 Oct 2020.

Vancouver:

Van Rooijen L. Une approche combinatoire du problème de séparation pour les langages réguliers : A combinatorial approach to the separation problem for regular languages. [Internet] [Doctoral dissertation]. Bordeaux; 2014. [cited 2020 Oct 26]. Available from: http://www.theses.fr/2014BORD0229.

Council of Science Editors:

Van Rooijen L. Une approche combinatoire du problème de séparation pour les langages réguliers : A combinatorial approach to the separation problem for regular languages. [Doctoral Dissertation]. Bordeaux; 2014. Available from: http://www.theses.fr/2014BORD0229

22. Firicel, Alina. Quelques contributions à l'étude des séries formelles à coefficients dans un corps fini : Some contributions at the study of Laurent series with coefficients in a finite field.

Degree: Docteur es, Mathématiques, 2010, Université Claude Bernard – Lyon I

 Cette thèse se situe à l'interface de trois grands domaines : la combinatoire des mots, la théorie des automates et la théorie des nombres. Plus… (more)

Subjects/Keywords: Séries de Laurent; Corps finis; Suites automatiques; Morphismes de monoïdes libres; Complexité de facteurs; Approximation diophantienne; Transcendance; Laurent series; Finite fields; Automatic sequences; Morphisms of free monoids; Subword complexity; Diophantine approximation; Transcendence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Firicel, A. (2010). Quelques contributions à l'étude des séries formelles à coefficients dans un corps fini : Some contributions at the study of Laurent series with coefficients in a finite field. (Doctoral Dissertation). Université Claude Bernard – Lyon I. Retrieved from http://www.theses.fr/2010LYO10276

Chicago Manual of Style (16th Edition):

Firicel, Alina. “Quelques contributions à l'étude des séries formelles à coefficients dans un corps fini : Some contributions at the study of Laurent series with coefficients in a finite field.” 2010. Doctoral Dissertation, Université Claude Bernard – Lyon I. Accessed October 26, 2020. http://www.theses.fr/2010LYO10276.

MLA Handbook (7th Edition):

Firicel, Alina. “Quelques contributions à l'étude des séries formelles à coefficients dans un corps fini : Some contributions at the study of Laurent series with coefficients in a finite field.” 2010. Web. 26 Oct 2020.

Vancouver:

Firicel A. Quelques contributions à l'étude des séries formelles à coefficients dans un corps fini : Some contributions at the study of Laurent series with coefficients in a finite field. [Internet] [Doctoral dissertation]. Université Claude Bernard – Lyon I; 2010. [cited 2020 Oct 26]. Available from: http://www.theses.fr/2010LYO10276.

Council of Science Editors:

Firicel A. Quelques contributions à l'étude des séries formelles à coefficients dans un corps fini : Some contributions at the study of Laurent series with coefficients in a finite field. [Doctoral Dissertation]. Université Claude Bernard – Lyon I; 2010. Available from: http://www.theses.fr/2010LYO10276


University of Victoria

23. Bruce, Chris. C*-algebras from actions of congruence monoids.

Degree: Department of Mathematics and Statistics, 2020, University of Victoria

 We initiate the study of a new class of semigroup C*-algebras arising from number-theoretic considerations; namely, we generalize the construction of Cuntz, Deninger, and Laca… (more)

Subjects/Keywords: C*-algebras; Semigroup C*-algebras; Operator algebras; Primitive ideals; KMS states; C*-dynamical system; Number fields; Rings of algebraic integers; Congruence monoids; von Neumann algebras; Noncommutative geometry; Faithful representations; Groupoid C*-algebras; Type III_1 factors

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bruce, C. (2020). C*-algebras from actions of congruence monoids. (Thesis). University of Victoria. Retrieved from http://hdl.handle.net/1828/11689

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bruce, Chris. “C*-algebras from actions of congruence monoids.” 2020. Thesis, University of Victoria. Accessed October 26, 2020. http://hdl.handle.net/1828/11689.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bruce, Chris. “C*-algebras from actions of congruence monoids.” 2020. Web. 26 Oct 2020.

Vancouver:

Bruce C. C*-algebras from actions of congruence monoids. [Internet] [Thesis]. University of Victoria; 2020. [cited 2020 Oct 26]. Available from: http://hdl.handle.net/1828/11689.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bruce C. C*-algebras from actions of congruence monoids. [Thesis]. University of Victoria; 2020. Available from: http://hdl.handle.net/1828/11689

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Florida

24. McDill, Jean Marie. Categorical embeddings and linearizations.

Degree: 1971, University of Florida

Subjects/Keywords: Automorphisms; Coordinate systems; Embeddings; Hausdorff spaces; Homomorphisms; Isomorphism; Mathematics; Monoids; Morphisms; Topological theorems; Categories (Mathematics); Mathematics thesis Ph. D

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McDill, J. M. (1971). Categorical embeddings and linearizations. (Thesis). University of Florida. Retrieved from https://ufdc.ufl.edu/UF00097681

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

McDill, Jean Marie. “Categorical embeddings and linearizations.” 1971. Thesis, University of Florida. Accessed October 26, 2020. https://ufdc.ufl.edu/UF00097681.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

McDill, Jean Marie. “Categorical embeddings and linearizations.” 1971. Web. 26 Oct 2020.

Vancouver:

McDill JM. Categorical embeddings and linearizations. [Internet] [Thesis]. University of Florida; 1971. [cited 2020 Oct 26]. Available from: https://ufdc.ufl.edu/UF00097681.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McDill JM. Categorical embeddings and linearizations. [Thesis]. University of Florida; 1971. Available from: https://ufdc.ufl.edu/UF00097681

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Florida

25. Maxwell, Stephen Jackson, 1945-. Certain well-factored categories.

Degree: 1970, University of Florida

Subjects/Keywords: Adjoints; Algebra; Equivalence relation; Factorization; Functors; Hogs; Monoids; Morphisms; Semigroups; Uniqueness; Algebra, Homological; Categories (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maxwell, Stephen Jackson, 1. (1970). Certain well-factored categories. (Thesis). University of Florida. Retrieved from https://ufdc.ufl.edu/UF00098432

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Maxwell, Stephen Jackson, 1945-. “Certain well-factored categories.” 1970. Thesis, University of Florida. Accessed October 26, 2020. https://ufdc.ufl.edu/UF00098432.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Maxwell, Stephen Jackson, 1945-. “Certain well-factored categories.” 1970. Web. 26 Oct 2020.

Vancouver:

Maxwell, Stephen Jackson 1. Certain well-factored categories. [Internet] [Thesis]. University of Florida; 1970. [cited 2020 Oct 26]. Available from: https://ufdc.ufl.edu/UF00098432.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Maxwell, Stephen Jackson 1. Certain well-factored categories. [Thesis]. University of Florida; 1970. Available from: https://ufdc.ufl.edu/UF00098432

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Montréal

26. Grosshans, Nathan. The limits of Nečiporuk’s method and the power of programs over monoids taken from small varieties of finite monoids.

Degree: 2019, Université de Montréal

Subjects/Keywords: Complexité algorithmique; Minorants; Nečiporuk; Programmes sur monoïdes; DA; J; Computational complexity; Lower bounds; Programs over monoids; Applied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grosshans, N. (2019). The limits of Nečiporuk’s method and the power of programs over monoids taken from small varieties of finite monoids. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/21738

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Grosshans, Nathan. “The limits of Nečiporuk’s method and the power of programs over monoids taken from small varieties of finite monoids.” 2019. Thesis, Université de Montréal. Accessed October 26, 2020. http://hdl.handle.net/1866/21738.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Grosshans, Nathan. “The limits of Nečiporuk’s method and the power of programs over monoids taken from small varieties of finite monoids.” 2019. Web. 26 Oct 2020.

Vancouver:

Grosshans N. The limits of Nečiporuk’s method and the power of programs over monoids taken from small varieties of finite monoids. [Internet] [Thesis]. Université de Montréal; 2019. [cited 2020 Oct 26]. Available from: http://hdl.handle.net/1866/21738.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Grosshans N. The limits of Nečiporuk’s method and the power of programs over monoids taken from small varieties of finite monoids. [Thesis]. Université de Montréal; 2019. Available from: http://hdl.handle.net/1866/21738

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Florida

27. Wright, Reverdy Edmond, 1933-. Theorems for finite automata.

Degree: 1971, University of Florida

Subjects/Keywords: Automata; Equivalence relation; Homomorphisms; Ions; Isomorphism; Mathematical congruence; Matrices; Monoids; Semigroups; Submonoids; Finite automata, Theorems for; Machine theory; Mathematics thesis Ph. D; Sequential machine theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wright, Reverdy Edmond, 1. (1971). Theorems for finite automata. (Thesis). University of Florida. Retrieved from https://ufdc.ufl.edu/UF00097698

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wright, Reverdy Edmond, 1933-. “Theorems for finite automata.” 1971. Thesis, University of Florida. Accessed October 26, 2020. https://ufdc.ufl.edu/UF00097698.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wright, Reverdy Edmond, 1933-. “Theorems for finite automata.” 1971. Web. 26 Oct 2020.

Vancouver:

Wright, Reverdy Edmond 1. Theorems for finite automata. [Internet] [Thesis]. University of Florida; 1971. [cited 2020 Oct 26]. Available from: https://ufdc.ufl.edu/UF00097698.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wright, Reverdy Edmond 1. Theorems for finite automata. [Thesis]. University of Florida; 1971. Available from: https://ufdc.ufl.edu/UF00097698

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

28. Wilson, Wilf A. Computational techniques in finite semigroup theory.

Degree: PhD, 2019, University of St Andrews

 A semigroup is simply a set with an associative binary operation; computational semigroup theory is the branch of mathematics concerned with developing techniques for computing… (more)

Subjects/Keywords: Semigroup theory; Computational algebra; Maximal subsemigroups; Semigroups; Computational semigroup theory; Rees matrix semigroups; Rees 0-matrix semigroups; Direct products; Algorithms; Transformation semigroups; Diagram monoids; Partition monoids; Monoids; Generating sets; Green's relations; QA182.W5; Semigroups – Data processing; Algebra – Data processing; Group theory

…Containment of the diagram monoids from Section 5.3 The graph ∆(Pn )… …subsemigroups of finite monoids. In Chapter 5, we exploit the techniques described in Chapter 4 in… …transformation and diagram monoids. In particular, we describe the maximal subsemigroups of many… …monoids of order- or orientation-preserving or -reversing partial transformations, along with… …the maximal subsemigroups of the Motzkin, Brauer, Jones and partition monoids, and several… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wilson, W. A. (2019). Computational techniques in finite semigroup theory. (Doctoral Dissertation). University of St Andrews. Retrieved from http://hdl.handle.net/10023/16521

Chicago Manual of Style (16th Edition):

Wilson, Wilf A. “Computational techniques in finite semigroup theory.” 2019. Doctoral Dissertation, University of St Andrews. Accessed October 26, 2020. http://hdl.handle.net/10023/16521.

MLA Handbook (7th Edition):

Wilson, Wilf A. “Computational techniques in finite semigroup theory.” 2019. Web. 26 Oct 2020.

Vancouver:

Wilson WA. Computational techniques in finite semigroup theory. [Internet] [Doctoral dissertation]. University of St Andrews; 2019. [cited 2020 Oct 26]. Available from: http://hdl.handle.net/10023/16521.

Council of Science Editors:

Wilson WA. Computational techniques in finite semigroup theory. [Doctoral Dissertation]. University of St Andrews; 2019. Available from: http://hdl.handle.net/10023/16521

29. Golubitsky, Letitia Mihaela. Descent Systems, Eulerian Polynomials and Toric Varieties.

Degree: 2011, University of Western Ontario

 It is well-known that the Eulerian polynomials, which count permutations in S_n by their number of descents, give the h-polynomial/h-vector of the simple polytopes known… (more)

Subjects/Keywords: algebraic monoids; cross section lattice; toric varieties; betti numbers; descent systems; eulerian polynomials; semisimple algebraic group; Algebra; Mathematics; Physical Sciences and Mathematics

…polytope Pλ to be simple using the theory of algebraic monoids that he developed along with… …is structured as follows. In Chapter 1 we introduce the J-irreducible monoids of type J and… …x5D; and [37]. Chapter 1 Algebraic monoids 1.1 Cross section lattice In this… …monoids developed by Renner and Putcha. For references, we cite the texts [24], [… …monoids. It is in some sense the monoid analogue of the CoxeterDynkin graph. It shows which G… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Golubitsky, L. M. (2011). Descent Systems, Eulerian Polynomials and Toric Varieties. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/134

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Golubitsky, Letitia Mihaela. “Descent Systems, Eulerian Polynomials and Toric Varieties.” 2011. Thesis, University of Western Ontario. Accessed October 26, 2020. https://ir.lib.uwo.ca/etd/134.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Golubitsky, Letitia Mihaela. “Descent Systems, Eulerian Polynomials and Toric Varieties.” 2011. Web. 26 Oct 2020.

Vancouver:

Golubitsky LM. Descent Systems, Eulerian Polynomials and Toric Varieties. [Internet] [Thesis]. University of Western Ontario; 2011. [cited 2020 Oct 26]. Available from: https://ir.lib.uwo.ca/etd/134.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Golubitsky LM. Descent Systems, Eulerian Polynomials and Toric Varieties. [Thesis]. University of Western Ontario; 2011. Available from: https://ir.lib.uwo.ca/etd/134

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

30. Hage, Nohra. Study of plactic monoids by rewriting methods : Etude des monoïdes plaxiques par des méthodes de réécriture.

Degree: Docteur es, Mathématiques, 2016, Lyon

Cette thèse est consacrée à l’étude des monoïdes plaxiques par une nouvelle approche utilisant des méthodes issues de la réécriture. Ces méthodes sont appliquées à… (more)

Subjects/Keywords: Monoïdes plaxiques; Réécriture; Problème du mot; Problème des syzygies; Présentations convergentes; Présentations cohérentes; Complétion de Squier; Complétion de Knuth–Bendix; Tableaux de Young; Algorithmes d’insertion de Schensted; Algorithmes d’insertion de Lecouvey; Bases cristallines; Modèle des chemins de Littelmann; Plactic monoids; Rewriting theory; Word problem; Syzygies problem; Convergent presentations; Coherent presentations; Squier’s completion; Knuth–Bendix’s completion; Young tableaux; Schensted’s insertion algorithm; Lecouvey’s insetion algorithm; Crystal bases; Littelmann path model

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hage, N. (2016). Study of plactic monoids by rewriting methods : Etude des monoïdes plaxiques par des méthodes de réécriture. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2016LYSES065

Chicago Manual of Style (16th Edition):

Hage, Nohra. “Study of plactic monoids by rewriting methods : Etude des monoïdes plaxiques par des méthodes de réécriture.” 2016. Doctoral Dissertation, Lyon. Accessed October 26, 2020. http://www.theses.fr/2016LYSES065.

MLA Handbook (7th Edition):

Hage, Nohra. “Study of plactic monoids by rewriting methods : Etude des monoïdes plaxiques par des méthodes de réécriture.” 2016. Web. 26 Oct 2020.

Vancouver:

Hage N. Study of plactic monoids by rewriting methods : Etude des monoïdes plaxiques par des méthodes de réécriture. [Internet] [Doctoral dissertation]. Lyon; 2016. [cited 2020 Oct 26]. Available from: http://www.theses.fr/2016LYSES065.

Council of Science Editors:

Hage N. Study of plactic monoids by rewriting methods : Etude des monoïdes plaxiques par des méthodes de réécriture. [Doctoral Dissertation]. Lyon; 2016. Available from: http://www.theses.fr/2016LYSES065

[1] [2]

.