Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(moduli space)`

.
Showing records 1 – 30 of
58 total matches.

Search Limiters

Dates

- 2016 – 2020 (25)
- 2011 – 2015 (24)
- 2006 – 2010 (10)

▼ Search Limiters

Virginia Tech

1. StClair, Jessica Lindsey. Geometry of Spaces of Planar Quadrilaterals.

Degree: PhD, Mathematics, 2011, Virginia Tech

URL: http://hdl.handle.net/10919/26887

► The purpose of this dissertation is to investigate the geometry of spaces of planar quadrilaterals. The topology of *moduli* spaces of planar quadrilaterals (the set…
(more)

Subjects/Keywords: Holonomy; Robotics; Riemannian Metric; Moduli Space; Pre-Moduli Space; Differential Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

StClair, J. L. (2011). Geometry of Spaces of Planar Quadrilaterals. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26887

Chicago Manual of Style (16^{th} Edition):

StClair, Jessica Lindsey. “Geometry of Spaces of Planar Quadrilaterals.” 2011. Doctoral Dissertation, Virginia Tech. Accessed July 10, 2020. http://hdl.handle.net/10919/26887.

MLA Handbook (7^{th} Edition):

StClair, Jessica Lindsey. “Geometry of Spaces of Planar Quadrilaterals.” 2011. Web. 10 Jul 2020.

Vancouver:

StClair JL. Geometry of Spaces of Planar Quadrilaterals. [Internet] [Doctoral dissertation]. Virginia Tech; 2011. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10919/26887.

Council of Science Editors:

StClair JL. Geometry of Spaces of Planar Quadrilaterals. [Doctoral Dissertation]. Virginia Tech; 2011. Available from: http://hdl.handle.net/10919/26887

Duke University

2. Kordek, Kevin A. Theta Functions and the Structure of Torelli Groups in Low Genus .

Degree: 2015, Duke University

URL: http://hdl.handle.net/10161/9908

► The Torelli group Tg of a closed orientable surface Sg of genus g >1 is the group of isotopy classes of orientation-preserving diffeomorphisms of…
(more)

Subjects/Keywords: Mathematics; moduli space; theta function; Torelli

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kordek, K. A. (2015). Theta Functions and the Structure of Torelli Groups in Low Genus . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/9908

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kordek, Kevin A. “Theta Functions and the Structure of Torelli Groups in Low Genus .” 2015. Thesis, Duke University. Accessed July 10, 2020. http://hdl.handle.net/10161/9908.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kordek, Kevin A. “Theta Functions and the Structure of Torelli Groups in Low Genus .” 2015. Web. 10 Jul 2020.

Vancouver:

Kordek KA. Theta Functions and the Structure of Torelli Groups in Low Genus . [Internet] [Thesis]. Duke University; 2015. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10161/9908.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kordek KA. Theta Functions and the Structure of Torelli Groups in Low Genus . [Thesis]. Duke University; 2015. Available from: http://hdl.handle.net/10161/9908

Not specified: Masters Thesis or Doctoral Dissertation

Harvard University

3. Deopurkar, Anand. Alternate Compactifications of Hurwitz Spaces.

Degree: PhD, Mathematics, 2012, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10086270

►

We construct several modular compactifications of the Hurwitz *space* (H^{d}_{g/h}) of genus g curves expressed as d-sheeted, simply branched covers of genus h curves. They…
(more)

Subjects/Keywords: Hurwitz space; Maroni; mathematics; birational geometry; trigonal curve; moduli space

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Deopurkar, A. (2012). Alternate Compactifications of Hurwitz Spaces. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:10086270

Chicago Manual of Style (16^{th} Edition):

Deopurkar, Anand. “Alternate Compactifications of Hurwitz Spaces.” 2012. Doctoral Dissertation, Harvard University. Accessed July 10, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:10086270.

MLA Handbook (7^{th} Edition):

Deopurkar, Anand. “Alternate Compactifications of Hurwitz Spaces.” 2012. Web. 10 Jul 2020.

Vancouver:

Deopurkar A. Alternate Compactifications of Hurwitz Spaces. [Internet] [Doctoral dissertation]. Harvard University; 2012. [cited 2020 Jul 10]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10086270.

Council of Science Editors:

Deopurkar A. Alternate Compactifications of Hurwitz Spaces. [Doctoral Dissertation]. Harvard University; 2012. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10086270

Lehigh University

4.
Zhang, Yingying.
Geometric Quantization of Classical Metrics on the *Moduli* *Space* of Canonical Metrics.

Degree: PhD, Mathematics, 2014, Lehigh University

URL: https://preserve.lehigh.edu/etd/1689

► In this thesis, two topics will be studied. In the first part, we investigate the geometric quantization of the Weil-Petersson metric on the *moduli* *space*…
(more)

Subjects/Keywords: canonical metrics; geometric quantization; moduli space; Mathematics; Physical Sciences and Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhang, Y. (2014). Geometric Quantization of Classical Metrics on the Moduli Space of Canonical Metrics. (Doctoral Dissertation). Lehigh University. Retrieved from https://preserve.lehigh.edu/etd/1689

Chicago Manual of Style (16^{th} Edition):

Zhang, Yingying. “Geometric Quantization of Classical Metrics on the Moduli Space of Canonical Metrics.” 2014. Doctoral Dissertation, Lehigh University. Accessed July 10, 2020. https://preserve.lehigh.edu/etd/1689.

MLA Handbook (7^{th} Edition):

Zhang, Yingying. “Geometric Quantization of Classical Metrics on the Moduli Space of Canonical Metrics.” 2014. Web. 10 Jul 2020.

Vancouver:

Zhang Y. Geometric Quantization of Classical Metrics on the Moduli Space of Canonical Metrics. [Internet] [Doctoral dissertation]. Lehigh University; 2014. [cited 2020 Jul 10]. Available from: https://preserve.lehigh.edu/etd/1689.

Council of Science Editors:

Zhang Y. Geometric Quantization of Classical Metrics on the Moduli Space of Canonical Metrics. [Doctoral Dissertation]. Lehigh University; 2014. Available from: https://preserve.lehigh.edu/etd/1689

University of Adelaide

5.
McCarthy, John Benjamin.
Hitchin's projectively flat connection and the *moduli* *space* of Higgs bundles.

Degree: 2018, University of Adelaide

URL: http://hdl.handle.net/2440/118163

► In this thesis we investigate the geometric quantization of *moduli* spaces of vector bundles over compact Riemann surfaces. In particular we will recall the geometric…
(more)

Subjects/Keywords: Hitchin; projectively flat connection; moduli space; Higgs bundles

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

McCarthy, J. B. (2018). Hitchin's projectively flat connection and the moduli space of Higgs bundles. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/118163

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

McCarthy, John Benjamin. “Hitchin's projectively flat connection and the moduli space of Higgs bundles.” 2018. Thesis, University of Adelaide. Accessed July 10, 2020. http://hdl.handle.net/2440/118163.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

McCarthy, John Benjamin. “Hitchin's projectively flat connection and the moduli space of Higgs bundles.” 2018. Web. 10 Jul 2020.

Vancouver:

McCarthy JB. Hitchin's projectively flat connection and the moduli space of Higgs bundles. [Internet] [Thesis]. University of Adelaide; 2018. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2440/118163.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McCarthy JB. Hitchin's projectively flat connection and the moduli space of Higgs bundles. [Thesis]. University of Adelaide; 2018. Available from: http://hdl.handle.net/2440/118163

Not specified: Masters Thesis or Doctoral Dissertation

University of Cambridge

6. Lund, Christian Overgaard. Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds.

Degree: PhD, 2019, University of Cambridge

URL: https://www.repository.cam.ac.uk/handle/1810/291967

► In this thesis we study Ricci-flat deformations of Ricci-flat Kähler metrics on compact orbifolds and asymptotically locally Euclidean(ALE) manifolds. In both cases we also study…
(more)

Subjects/Keywords: moduli space; Ricci-flat deformations; Calabi-Yau; orbifolds; asymptotically locally Euclidean

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lund, C. O. (2019). Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/291967

Chicago Manual of Style (16^{th} Edition):

Lund, Christian Overgaard. “Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds.” 2019. Doctoral Dissertation, University of Cambridge. Accessed July 10, 2020. https://www.repository.cam.ac.uk/handle/1810/291967.

MLA Handbook (7^{th} Edition):

Lund, Christian Overgaard. “Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds.” 2019. Web. 10 Jul 2020.

Vancouver:

Lund CO. Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds. [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2020 Jul 10]. Available from: https://www.repository.cam.ac.uk/handle/1810/291967.

Council of Science Editors:

Lund CO. Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds. [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://www.repository.cam.ac.uk/handle/1810/291967

Université Catholique de Louvain

7.
Cappelle, Natacha.
*Moduli**space* of self-dual connections in dimension greater than four for abelian Gauge groups.

Degree: 2018, Université Catholique de Louvain

URL: http://hdl.handle.net/2078.1/195702

►

In 1954, C. Yang and R. Mills created a Gauge Theory for strong interaction of Elementary Particles. More generally, they proved that it is possible… (more)

Subjects/Keywords: Moduli space; Gauge; Yang-Mills; Self-dual connection

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cappelle, N. (2018). Moduli space of self-dual connections in dimension greater than four for abelian Gauge groups. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/195702

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Cappelle, Natacha. “Moduli space of self-dual connections in dimension greater than four for abelian Gauge groups.” 2018. Thesis, Université Catholique de Louvain. Accessed July 10, 2020. http://hdl.handle.net/2078.1/195702.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Cappelle, Natacha. “Moduli space of self-dual connections in dimension greater than four for abelian Gauge groups.” 2018. Web. 10 Jul 2020.

Vancouver:

Cappelle N. Moduli space of self-dual connections in dimension greater than four for abelian Gauge groups. [Internet] [Thesis]. Université Catholique de Louvain; 2018. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2078.1/195702.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cappelle N. Moduli space of self-dual connections in dimension greater than four for abelian Gauge groups. [Thesis]. Université Catholique de Louvain; 2018. Available from: http://hdl.handle.net/2078.1/195702

Not specified: Masters Thesis or Doctoral Dissertation

University of Texas – Austin

8.
-3641-7265.
Asymptotic limits in the Hitchin *moduli* * space*.

Degree: PhD, Mathematics, 2016, University of Texas – Austin

URL: http://hdl.handle.net/2152/47002

► Given a Higgs bundle ([Higgs bundle symbol]), Hitchin's equations are equations for a Hermitian metric on the underlying vector bundle. Hitchin's equations are a coupled…
(more)

Subjects/Keywords: Hitchin moduli space; Higgs bundles; Hitchin’s equations; Asymptotic limits; Hermitian metric

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

-3641-7265. (2016). Asymptotic limits in the Hitchin moduli space. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47002

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Chicago Manual of Style (16^{th} Edition):

-3641-7265. “Asymptotic limits in the Hitchin moduli space.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed July 10, 2020. http://hdl.handle.net/2152/47002.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

MLA Handbook (7^{th} Edition):

-3641-7265. “Asymptotic limits in the Hitchin moduli space.” 2016. Web. 10 Jul 2020.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Vancouver:

-3641-7265. Asymptotic limits in the Hitchin moduli space. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2152/47002.

Author name may be incomplete

Council of Science Editors:

-3641-7265. Asymptotic limits in the Hitchin moduli space. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/47002

Author name may be incomplete

University of Texas – Austin

9. -4279-9802. Comparison theorems of phylogenetic spaces and algebraic fans.

Degree: PhD, Mathematics, 2019, University of Texas – Austin

URL: http://dx.doi.org/10.26153/tsw/5771

► Rapid developments in high-throughput sequencing have accumulated a wealth of cancer genomics data (44, 12), which has led to the use of phylogenetic methods becoming…
(more)

Subjects/Keywords: Phylogenetic tree; Phylogenetic network; Moduli space; Tumor evolution; Genomics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

-4279-9802. (2019). Comparison theorems of phylogenetic spaces and algebraic fans. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/5771

Author name may be incomplete

Chicago Manual of Style (16^{th} Edition):

-4279-9802. “Comparison theorems of phylogenetic spaces and algebraic fans.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed July 10, 2020. http://dx.doi.org/10.26153/tsw/5771.

Author name may be incomplete

MLA Handbook (7^{th} Edition):

-4279-9802. “Comparison theorems of phylogenetic spaces and algebraic fans.” 2019. Web. 10 Jul 2020.

Author name may be incomplete

Vancouver:

-4279-9802. Comparison theorems of phylogenetic spaces and algebraic fans. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2020 Jul 10]. Available from: http://dx.doi.org/10.26153/tsw/5771.

Author name may be incomplete

Council of Science Editors:

-4279-9802. Comparison theorems of phylogenetic spaces and algebraic fans. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/5771

Author name may be incomplete

10. Lund, Christian Overgaard. Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds.

Degree: PhD, 2019, University of Cambridge

URL: https://www.repository.cam.ac.uk/handle/1810/291967 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774749

► In this thesis we study Ricci-flat deformations of Ricci-flat Kähler metrics on compact orbifolds and asymptotically locally Euclidean(ALE) manifolds. In both cases we also study…
(more)

Subjects/Keywords: moduli space; Ricci-flat deformations; Calabi-Yau; orbifolds; asymptotically locally Euclidean

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lund, C. O. (2019). Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/291967 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774749

Chicago Manual of Style (16^{th} Edition):

Lund, Christian Overgaard. “Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds.” 2019. Doctoral Dissertation, University of Cambridge. Accessed July 10, 2020. https://www.repository.cam.ac.uk/handle/1810/291967 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774749.

MLA Handbook (7^{th} Edition):

Lund, Christian Overgaard. “Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds.” 2019. Web. 10 Jul 2020.

Vancouver:

Lund CO. Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds. [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2020 Jul 10]. Available from: https://www.repository.cam.ac.uk/handle/1810/291967 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774749.

Council of Science Editors:

Lund CO. Ricci-flat deformations of orbifolds and asymptotically locally Euclidean manifolds. [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://www.repository.cam.ac.uk/handle/1810/291967 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774749

Northeastern University

11.
Gamse, Elisheva Adina.
Two explorations in symplectic geometry: I. *Moduli* spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.

Degree: PhD, Department of Mathematics, 2016, Northeastern University

URL: http://hdl.handle.net/2047/D20211399

► In Part I we study the *moduli* *space* of holomorphic parabolic vector bundles over a curve, using combinatorial techniques to obtain information about the structure…
(more)

Subjects/Keywords: moduli space; geometric quantisation; Lie group actions; Symplectic geometry; Symplectic manifolds; Vector bundles; Moduli theory; Rings (Algebra); Lie groups; Quantum theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gamse, E. A. (2016). Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20211399

Chicago Manual of Style (16^{th} Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Doctoral Dissertation, Northeastern University. Accessed July 10, 2020. http://hdl.handle.net/2047/D20211399.

MLA Handbook (7^{th} Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Web. 10 Jul 2020.

Vancouver:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Internet] [Doctoral dissertation]. Northeastern University; 2016. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2047/D20211399.

Council of Science Editors:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Doctoral Dissertation]. Northeastern University; 2016. Available from: http://hdl.handle.net/2047/D20211399

University of Cincinnati

12. Lotito, Matteo. Geometric classification of 4d rank-1 N=2 superconformal field theories.

Degree: PhD, Arts and Sciences: Physics, 2018, University of Cincinnati

URL: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1530880263562131

► In this thesis work, we present a systematic classification of four dimensional rank-1 N=2 superconformal field theories (SCFTs).The analysis is based on extracting the low…
(more)

Subjects/Keywords: Physics; supersymmetric gauge theory; conformal field theory; extended supersymmetry; conformal and w symmetry; moduli space

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lotito, M. (2018). Geometric classification of 4d rank-1 N=2 superconformal field theories. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1530880263562131

Chicago Manual of Style (16^{th} Edition):

Lotito, Matteo. “Geometric classification of 4d rank-1 N=2 superconformal field theories.” 2018. Doctoral Dissertation, University of Cincinnati. Accessed July 10, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1530880263562131.

MLA Handbook (7^{th} Edition):

Lotito, Matteo. “Geometric classification of 4d rank-1 N=2 superconformal field theories.” 2018. Web. 10 Jul 2020.

Vancouver:

Lotito M. Geometric classification of 4d rank-1 N=2 superconformal field theories. [Internet] [Doctoral dissertation]. University of Cincinnati; 2018. [cited 2020 Jul 10]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1530880263562131.

Council of Science Editors:

Lotito M. Geometric classification of 4d rank-1 N=2 superconformal field theories. [Doctoral Dissertation]. University of Cincinnati; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1530880263562131

University of Georgia

13. Hobson, Natalie Laura Fleischmann. Vector bundles of conformal blocks in types a and c from a combinatorial approach.

Degree: PhD, Mathematics, 2017, University of Georgia

URL: http://hdl.handle.net/10724/37337

► Vector bundles of conformal blocks on M_{0,n} provide a collection of base point free divisors on M_{0,n} defined using representation theory. Specifically, from the data…
(more)

Subjects/Keywords: Moduli space of curves; vector bundles of conformal blocks; quantum cohomology; first Chern classes

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hobson, N. L. F. (2017). Vector bundles of conformal blocks in types a and c from a combinatorial approach. (Doctoral Dissertation). University of Georgia. Retrieved from http://hdl.handle.net/10724/37337

Chicago Manual of Style (16^{th} Edition):

Hobson, Natalie Laura Fleischmann. “Vector bundles of conformal blocks in types a and c from a combinatorial approach.” 2017. Doctoral Dissertation, University of Georgia. Accessed July 10, 2020. http://hdl.handle.net/10724/37337.

MLA Handbook (7^{th} Edition):

Hobson, Natalie Laura Fleischmann. “Vector bundles of conformal blocks in types a and c from a combinatorial approach.” 2017. Web. 10 Jul 2020.

Vancouver:

Hobson NLF. Vector bundles of conformal blocks in types a and c from a combinatorial approach. [Internet] [Doctoral dissertation]. University of Georgia; 2017. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10724/37337.

Council of Science Editors:

Hobson NLF. Vector bundles of conformal blocks in types a and c from a combinatorial approach. [Doctoral Dissertation]. University of Georgia; 2017. Available from: http://hdl.handle.net/10724/37337

University of Oxford

14. Roeser, Markus Karl. The ASD equations in split signature and hypersymplectic geometry.

Degree: PhD, 2012, University of Oxford

URL: http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122

► This thesis is mainly concerned with the study of hypersymplectic structures in gauge theory. These structures arise via applications of the hypersymplectic quotient construction to…
(more)

Subjects/Keywords: 530.1435; Differential geometry; Hypersymplectic Geometry; Gauge Theory; Symplectic Geometry; Moduli Space; Moment Map; special Holonomy

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Roeser, M. K. (2012). The ASD equations in split signature and hypersymplectic geometry. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122

Chicago Manual of Style (16^{th} Edition):

Roeser, Markus Karl. “The ASD equations in split signature and hypersymplectic geometry.” 2012. Doctoral Dissertation, University of Oxford. Accessed July 10, 2020. http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122.

MLA Handbook (7^{th} Edition):

Roeser, Markus Karl. “The ASD equations in split signature and hypersymplectic geometry.” 2012. Web. 10 Jul 2020.

Vancouver:

Roeser MK. The ASD equations in split signature and hypersymplectic geometry. [Internet] [Doctoral dissertation]. University of Oxford; 2012. [cited 2020 Jul 10]. Available from: http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122.

Council of Science Editors:

Roeser MK. The ASD equations in split signature and hypersymplectic geometry. [Doctoral Dissertation]. University of Oxford; 2012. Available from: http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581122

Colorado State University

15. Blankers, Vance T. Properties of tautological classes and their intersections.

Degree: PhD, Mathematics, 2019, Colorado State University

URL: http://hdl.handle.net/10217/195376

► The tautological ring of the *moduli* *space* of curves is an object of interest to algebraic geometers in Gromov-Witten theory and enumerative geometry more broadly.…
(more)

Subjects/Keywords: intersection theory; tautological ring; algebraic geometry; Witten's conjecture; moduli space of curves

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Blankers, V. T. (2019). Properties of tautological classes and their intersections. (Doctoral Dissertation). Colorado State University. Retrieved from http://hdl.handle.net/10217/195376

Chicago Manual of Style (16^{th} Edition):

Blankers, Vance T. “Properties of tautological classes and their intersections.” 2019. Doctoral Dissertation, Colorado State University. Accessed July 10, 2020. http://hdl.handle.net/10217/195376.

MLA Handbook (7^{th} Edition):

Blankers, Vance T. “Properties of tautological classes and their intersections.” 2019. Web. 10 Jul 2020.

Vancouver:

Blankers VT. Properties of tautological classes and their intersections. [Internet] [Doctoral dissertation]. Colorado State University; 2019. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10217/195376.

Council of Science Editors:

Blankers VT. Properties of tautological classes and their intersections. [Doctoral Dissertation]. Colorado State University; 2019. Available from: http://hdl.handle.net/10217/195376

16. Alagal, Wafa Abdullah. Application of Bridgeland stability to the geometry of abelian surfaces.

Degree: PhD, 2016, University of Edinburgh

URL: http://hdl.handle.net/1842/20440

► A key property of projective varieties is the very ampleness of line bundles as this provides embeddings into projective *space* and allows us to express…
(more)

Subjects/Keywords: 516.3; ample; very ample; line bundle; abelian surface; stable sheaf; moduli space; Bridgeland’s stability condition

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Alagal, W. A. (2016). Application of Bridgeland stability to the geometry of abelian surfaces. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/20440

Chicago Manual of Style (16^{th} Edition):

Alagal, Wafa Abdullah. “Application of Bridgeland stability to the geometry of abelian surfaces.” 2016. Doctoral Dissertation, University of Edinburgh. Accessed July 10, 2020. http://hdl.handle.net/1842/20440.

MLA Handbook (7^{th} Edition):

Alagal, Wafa Abdullah. “Application of Bridgeland stability to the geometry of abelian surfaces.” 2016. Web. 10 Jul 2020.

Vancouver:

Alagal WA. Application of Bridgeland stability to the geometry of abelian surfaces. [Internet] [Doctoral dissertation]. University of Edinburgh; 2016. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1842/20440.

Council of Science Editors:

Alagal WA. Application of Bridgeland stability to the geometry of abelian surfaces. [Doctoral Dissertation]. University of Edinburgh; 2016. Available from: http://hdl.handle.net/1842/20440

17. Vizarreta, Eber Daniel Chuño. Elementos da teoria de Teichmüller.

Degree: Mestrado, Matemática, 2012, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032012-103343/ ;

►

Nesta disertação estudamos algumas ferramentas básicas relacionadas aos espaços de Teichmüller. Introduzimos o espaço de Teichmüller de gênero g ≥ 1, denotado por Tg. O… (more)

Subjects/Keywords: Coordenadas de Fenchel-Nielsen; Espaço de Fricke; Espaço de moduli; Espaço de Teichmüller; Fenchel-Nielsen coordinates; Fricke space; Fuchsian group; Grupo fuchsiano; Moduli space; Riemann surface; Superfícies de Riemann; Teichmüller space

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vizarreta, E. D. C. (2012). Elementos da teoria de Teichmüller. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032012-103343/ ;

Chicago Manual of Style (16^{th} Edition):

Vizarreta, Eber Daniel Chuño. “Elementos da teoria de Teichmüller.” 2012. Masters Thesis, University of São Paulo. Accessed July 10, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032012-103343/ ;.

MLA Handbook (7^{th} Edition):

Vizarreta, Eber Daniel Chuño. “Elementos da teoria de Teichmüller.” 2012. Web. 10 Jul 2020.

Vancouver:

Vizarreta EDC. Elementos da teoria de Teichmüller. [Internet] [Masters thesis]. University of São Paulo; 2012. [cited 2020 Jul 10]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032012-103343/ ;.

Council of Science Editors:

Vizarreta EDC. Elementos da teoria de Teichmüller. [Masters Thesis]. University of São Paulo; 2012. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032012-103343/ ;

University of California – Berkeley

18.
Shih, Sheng-Yu Darren.
A Contemporary Study in Gauge Theory and Mathematical Physics: Holomorphic Anomaly in Gauge Theory on ALE *Space* & Freudenthal Gauge Theory.

Degree: Physics, 2014, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/7853m0cs

► This thesis covers two distinct parts: Holomorphic Anomaly in Gauge Theory on ALE *Space* and Freudenthal Gauge Theory.In part I, I presented a concise review…
(more)

Subjects/Keywords: Physics; Theoretical physics; Mathematics; Anomaly; Freudenthal Triple System; Gauge Field Theory; Moduli Space; String Theory; Supersymmetry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shih, S. D. (2014). A Contemporary Study in Gauge Theory and Mathematical Physics: Holomorphic Anomaly in Gauge Theory on ALE Space & Freudenthal Gauge Theory. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/7853m0cs

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Shih, Sheng-Yu Darren. “A Contemporary Study in Gauge Theory and Mathematical Physics: Holomorphic Anomaly in Gauge Theory on ALE Space & Freudenthal Gauge Theory.” 2014. Thesis, University of California – Berkeley. Accessed July 10, 2020. http://www.escholarship.org/uc/item/7853m0cs.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Shih, Sheng-Yu Darren. “A Contemporary Study in Gauge Theory and Mathematical Physics: Holomorphic Anomaly in Gauge Theory on ALE Space & Freudenthal Gauge Theory.” 2014. Web. 10 Jul 2020.

Vancouver:

Shih SD. A Contemporary Study in Gauge Theory and Mathematical Physics: Holomorphic Anomaly in Gauge Theory on ALE Space & Freudenthal Gauge Theory. [Internet] [Thesis]. University of California – Berkeley; 2014. [cited 2020 Jul 10]. Available from: http://www.escholarship.org/uc/item/7853m0cs.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shih SD. A Contemporary Study in Gauge Theory and Mathematical Physics: Holomorphic Anomaly in Gauge Theory on ALE Space & Freudenthal Gauge Theory. [Thesis]. University of California – Berkeley; 2014. Available from: http://www.escholarship.org/uc/item/7853m0cs

Not specified: Masters Thesis or Doctoral Dissertation

19.
Xia, Bingyu.
* Moduli* spaces of Bridgeland semistable complexes.

Degree: PhD, Mathematics, 2017, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1491824968521162

► This thesis studies *moduli* spaces of semistable complexes in two aspects: the first one is an interesting example of a *moduli* *space* in higher dimension,…
(more)

Subjects/Keywords: Mathematics; derived category, moduli space, stability condition

…*moduli* *space* of Bridgeland
semistable complexes on surfaces. For example, [ABCH13, CHW14… …*moduli* *space* of semistable
objects in each chamber with respect to the path γ, we have:
(1… …interesting features on analyzing the singularities of the *moduli* *space*: it is the first time that… …*Space* of Bridgeland Semistable Complexes
In general, the existence of a coarse *moduli* *space*… …or a good *moduli* *space* in
the sense of [Alp12] for the *moduli* stack of Bridgeland…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Xia, B. (2017). Moduli spaces of Bridgeland semistable complexes. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1491824968521162

Chicago Manual of Style (16^{th} Edition):

Xia, Bingyu. “Moduli spaces of Bridgeland semistable complexes.” 2017. Doctoral Dissertation, The Ohio State University. Accessed July 10, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1491824968521162.

MLA Handbook (7^{th} Edition):

Xia, Bingyu. “Moduli spaces of Bridgeland semistable complexes.” 2017. Web. 10 Jul 2020.

Vancouver:

Xia B. Moduli spaces of Bridgeland semistable complexes. [Internet] [Doctoral dissertation]. The Ohio State University; 2017. [cited 2020 Jul 10]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1491824968521162.

Council of Science Editors:

Xia B. Moduli spaces of Bridgeland semistable complexes. [Doctoral Dissertation]. The Ohio State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1491824968521162

Johannes Gutenberg Universität Mainz

20.
Zowislok, Markus.
On *moduli* spaces of semistable sheaves on K3 surfaces.

Degree: 2010, Johannes Gutenberg Universität Mainz

URL: http://ubm.opus.hbz-nrw.de/volltexte/2010/2287/

►

Ich untersuche die nicht bereits durch die Arbeit "Singular symplectic *moduli* spaces" von Kaledin, Lehn und Sorger (Invent. Math. 164 (2006), no. 3) abgedeckten Fälle…
(more)

Subjects/Keywords: symplektische Varietät, Modulraum, nichtgenerischer ampler Divisor, getwistete Stabilität; symplectic variety, moduli space, nongeneric ample divisor, twisted stability; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zowislok, M. (2010). On moduli spaces of semistable sheaves on K3 surfaces. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2010/2287/

Chicago Manual of Style (16^{th} Edition):

Zowislok, Markus. “On moduli spaces of semistable sheaves on K3 surfaces.” 2010. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed July 10, 2020. http://ubm.opus.hbz-nrw.de/volltexte/2010/2287/.

MLA Handbook (7^{th} Edition):

Zowislok, Markus. “On moduli spaces of semistable sheaves on K3 surfaces.” 2010. Web. 10 Jul 2020.

Vancouver:

Zowislok M. On moduli spaces of semistable sheaves on K3 surfaces. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2010. [cited 2020 Jul 10]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2010/2287/.

Council of Science Editors:

Zowislok M. On moduli spaces of semistable sheaves on K3 surfaces. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2010. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2010/2287/

Brigham Young University

21. Francis, Amanda. New Computational Techniques in FJRW Theory with Applications to Landau Ginzburg Mirror Symmetry.

Degree: PhD, 2012, Brigham Young University

URL: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4264&context=etd

► Mirror symmetry is a phenomenon from physics that has inspired a lot of interesting mathematics. In the Landau-Ginzburg setting, we have two constructions, the A…
(more)

Subjects/Keywords: FJRW Theory; Moduli Space of Curves; Frobenius algebra; Frobenius manifold; cohomological eld theory; genus-g; k-point correlators; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Francis, A. (2012). New Computational Techniques in FJRW Theory with Applications to Landau Ginzburg Mirror Symmetry. (Doctoral Dissertation). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4264&context=etd

Chicago Manual of Style (16^{th} Edition):

Francis, Amanda. “New Computational Techniques in FJRW Theory with Applications to Landau Ginzburg Mirror Symmetry.” 2012. Doctoral Dissertation, Brigham Young University. Accessed July 10, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4264&context=etd.

MLA Handbook (7^{th} Edition):

Francis, Amanda. “New Computational Techniques in FJRW Theory with Applications to Landau Ginzburg Mirror Symmetry.” 2012. Web. 10 Jul 2020.

Vancouver:

Francis A. New Computational Techniques in FJRW Theory with Applications to Landau Ginzburg Mirror Symmetry. [Internet] [Doctoral dissertation]. Brigham Young University; 2012. [cited 2020 Jul 10]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4264&context=etd.

Council of Science Editors:

Francis A. New Computational Techniques in FJRW Theory with Applications to Landau Ginzburg Mirror Symmetry. [Doctoral Dissertation]. Brigham Young University; 2012. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4264&context=etd

Universitat Autònoma de Barcelona

22. Marín Pérez, David. Problemas de módulos para una clase de foliaciones holomorfas.

Degree: Departament de Matemàtiques, 2001, Universitat Autònoma de Barcelona

URL: http://hdl.handle.net/10803/3067

Subjects/Keywords: Moduli space; Holomorphic foliation; Holonomy; Ciències Experimentals; 514

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Marín Pérez, D. (2001). Problemas de módulos para una clase de foliaciones holomorfas. (Thesis). Universitat Autònoma de Barcelona. Retrieved from http://hdl.handle.net/10803/3067

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Marín Pérez, David. “Problemas de módulos para una clase de foliaciones holomorfas.” 2001. Thesis, Universitat Autònoma de Barcelona. Accessed July 10, 2020. http://hdl.handle.net/10803/3067.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Marín Pérez, David. “Problemas de módulos para una clase de foliaciones holomorfas.” 2001. Web. 10 Jul 2020.

Vancouver:

Marín Pérez D. Problemas de módulos para una clase de foliaciones holomorfas. [Internet] [Thesis]. Universitat Autònoma de Barcelona; 2001. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10803/3067.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Marín Pérez D. Problemas de módulos para una clase de foliaciones holomorfas. [Thesis]. Universitat Autònoma de Barcelona; 2001. Available from: http://hdl.handle.net/10803/3067

Not specified: Masters Thesis or Doctoral Dissertation

University of Texas – Austin

23. -0377-1586. Towards a self-dual geometric Langlands program.

Degree: PhD, Mathematics, 2018, University of Texas – Austin

URL: http://hdl.handle.net/2152/67577

► This thesis is comprised of two logically separate but conjecturally related parts. In the first part of the thesis I study theories of class S…
(more)

Subjects/Keywords: Geometric Langlands; Representation theory; Quantum field theory; QFT; Cartier duality; Mirror symmetry; Higgs bundle; Moduli space; Class S; Theory X

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

-0377-1586. (2018). Towards a self-dual geometric Langlands program. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/67577

Author name may be incomplete

Chicago Manual of Style (16^{th} Edition):

-0377-1586. “Towards a self-dual geometric Langlands program.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed July 10, 2020. http://hdl.handle.net/2152/67577.

Author name may be incomplete

MLA Handbook (7^{th} Edition):

-0377-1586. “Towards a self-dual geometric Langlands program.” 2018. Web. 10 Jul 2020.

Author name may be incomplete

Vancouver:

-0377-1586. Towards a self-dual geometric Langlands program. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2152/67577.

Author name may be incomplete

Council of Science Editors:

-0377-1586. Towards a self-dual geometric Langlands program. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/67577

Author name may be incomplete

24.
Camara, Malick.
Tautological rings of *moduli* spaces of curves : Anneaux tautologiques d'espaces de modules de courbes.

Degree: Docteur es, Mathématiques, 2016, Université Pierre et Marie Curie – Paris VI

URL: http://www.theses.fr/2016PA066459

►

Les espaces de modules de Riemann répondent au problème de la classification des surfaces de Riemann compactes d'un genre donné. Le sujet de cette thèse… (more)

Subjects/Keywords: Espaces de modules; Anneau tautologique; Relation tautologique; Géométrie algébrique; Surfaces de Riemann; Courbe réelle; Moduli space; Tautological ring; Tautological relation; 510

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Camara, M. (2016). Tautological rings of moduli spaces of curves : Anneaux tautologiques d'espaces de modules de courbes. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2016PA066459

Chicago Manual of Style (16^{th} Edition):

Camara, Malick. “Tautological rings of moduli spaces of curves : Anneaux tautologiques d'espaces de modules de courbes.” 2016. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed July 10, 2020. http://www.theses.fr/2016PA066459.

MLA Handbook (7^{th} Edition):

Camara, Malick. “Tautological rings of moduli spaces of curves : Anneaux tautologiques d'espaces de modules de courbes.” 2016. Web. 10 Jul 2020.

Vancouver:

Camara M. Tautological rings of moduli spaces of curves : Anneaux tautologiques d'espaces de modules de courbes. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2016. [cited 2020 Jul 10]. Available from: http://www.theses.fr/2016PA066459.

Council of Science Editors:

Camara M. Tautological rings of moduli spaces of curves : Anneaux tautologiques d'espaces de modules de courbes. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2016. Available from: http://www.theses.fr/2016PA066459

25.
Ygouf, Florent.
Feuilletage isopériodique de l'espace de modules des surfaces de translation : Isoperiodic foliation on *moduli* *space* of translation surfaces.

Degree: Docteur es, Mathématiques, 2019, Université Grenoble Alpes (ComUE)

URL: http://www.theses.fr/2019GREAM025

►

Les strates de l'espace de modules des di__erentielles ab_eliennes sont naturellementmunies d'un feuilletage holomorphe, appel_e feuilletage isop_eriodique (ou feuilletagesdes p_eriodes aboslues, ou encore feuilletage du… (more)

Subjects/Keywords: Surface de translation; Feuilletage isopériodique; Pseudo-Anosov; Espace de module; Translation surface; Isoperiodic foliation; Pseudo-Anosov; Moduli space; 510

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ygouf, F. (2019). Feuilletage isopériodique de l'espace de modules des surfaces de translation : Isoperiodic foliation on moduli space of translation surfaces. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2019GREAM025

Chicago Manual of Style (16^{th} Edition):

Ygouf, Florent. “Feuilletage isopériodique de l'espace de modules des surfaces de translation : Isoperiodic foliation on moduli space of translation surfaces.” 2019. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed July 10, 2020. http://www.theses.fr/2019GREAM025.

MLA Handbook (7^{th} Edition):

Ygouf, Florent. “Feuilletage isopériodique de l'espace de modules des surfaces de translation : Isoperiodic foliation on moduli space of translation surfaces.” 2019. Web. 10 Jul 2020.

Vancouver:

Ygouf F. Feuilletage isopériodique de l'espace de modules des surfaces de translation : Isoperiodic foliation on moduli space of translation surfaces. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2019. [cited 2020 Jul 10]. Available from: http://www.theses.fr/2019GREAM025.

Council of Science Editors:

Ygouf F. Feuilletage isopériodique de l'espace de modules des surfaces de translation : Isoperiodic foliation on moduli space of translation surfaces. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2019. Available from: http://www.theses.fr/2019GREAM025

University of Minnesota

26. Yu, Hao. Topological field theory and quantum master equation in two dimensions.

Degree: PhD, Mathematics, 2011, University of Minnesota

URL: http://purl.umn.edu/101830

► In our thesis, I give the analogy of the main results in Kevin Costello's paper "The Gromov-Witten potential associated to a TCFT" for open-closed topological…
(more)

Subjects/Keywords: Batalin-Vilkovisky algebra; Geometric chain; Moduli space; Quantum master equation; Riemann surface; Topological field theory; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yu, H. (2011). Topological field theory and quantum master equation in two dimensions. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/101830

Chicago Manual of Style (16^{th} Edition):

Yu, Hao. “Topological field theory and quantum master equation in two dimensions.” 2011. Doctoral Dissertation, University of Minnesota. Accessed July 10, 2020. http://purl.umn.edu/101830.

MLA Handbook (7^{th} Edition):

Yu, Hao. “Topological field theory and quantum master equation in two dimensions.” 2011. Web. 10 Jul 2020.

Vancouver:

Yu H. Topological field theory and quantum master equation in two dimensions. [Internet] [Doctoral dissertation]. University of Minnesota; 2011. [cited 2020 Jul 10]. Available from: http://purl.umn.edu/101830.

Council of Science Editors:

Yu H. Topological field theory and quantum master equation in two dimensions. [Doctoral Dissertation]. University of Minnesota; 2011. Available from: http://purl.umn.edu/101830

University of Melbourne

27.
Amaris, Armando Jose Rodado.
Weierstrass points and canonical cell decompositions of the *moduli* and Teichmuller Spaces of Riemann surfaces of genus two.

Degree: 2007, University of Melbourne

URL: http://hdl.handle.net/11343/39243

► A genus-two Riemann surface admits a canonical decomposition into Dirichlet polygons determined by its six Weierstrass points. All possible associated graphs are determined explicitly from…
(more)

Subjects/Keywords: Riemann surfaces of genus two; Moduli space; circle patterns

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Amaris, A. J. R. (2007). Weierstrass points and canonical cell decompositions of the moduli and Teichmuller Spaces of Riemann surfaces of genus two. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/39243

Chicago Manual of Style (16^{th} Edition):

Amaris, Armando Jose Rodado. “Weierstrass points and canonical cell decompositions of the moduli and Teichmuller Spaces of Riemann surfaces of genus two.” 2007. Doctoral Dissertation, University of Melbourne. Accessed July 10, 2020. http://hdl.handle.net/11343/39243.

MLA Handbook (7^{th} Edition):

Amaris, Armando Jose Rodado. “Weierstrass points and canonical cell decompositions of the moduli and Teichmuller Spaces of Riemann surfaces of genus two.” 2007. Web. 10 Jul 2020.

Vancouver:

Amaris AJR. Weierstrass points and canonical cell decompositions of the moduli and Teichmuller Spaces of Riemann surfaces of genus two. [Internet] [Doctoral dissertation]. University of Melbourne; 2007. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/11343/39243.

Council of Science Editors:

Amaris AJR. Weierstrass points and canonical cell decompositions of the moduli and Teichmuller Spaces of Riemann surfaces of genus two. [Doctoral Dissertation]. University of Melbourne; 2007. Available from: http://hdl.handle.net/11343/39243

University of Melbourne

28.
DO, NORMAN NAM VAN.
Intersection theory on *moduli* spaces of curves via hyperbolic geometry.

Degree: 2008, University of Melbourne

URL: http://hdl.handle.net/11343/39762

This work draws together Kontsevich’s combinatorial approach and Mirzakhani’s hyperbolic approach to Witten’s conjecture into a coherent narrative.

Subjects/Keywords: moduli space; hyperbolic surface; Weil–Petersson symplectic form

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

DO, N. N. V. (2008). Intersection theory on moduli spaces of curves via hyperbolic geometry. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/39762

Chicago Manual of Style (16^{th} Edition):

DO, NORMAN NAM VAN. “Intersection theory on moduli spaces of curves via hyperbolic geometry.” 2008. Doctoral Dissertation, University of Melbourne. Accessed July 10, 2020. http://hdl.handle.net/11343/39762.

MLA Handbook (7^{th} Edition):

DO, NORMAN NAM VAN. “Intersection theory on moduli spaces of curves via hyperbolic geometry.” 2008. Web. 10 Jul 2020.

Vancouver:

DO NNV. Intersection theory on moduli spaces of curves via hyperbolic geometry. [Internet] [Doctoral dissertation]. University of Melbourne; 2008. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/11343/39762.

Council of Science Editors:

DO NNV. Intersection theory on moduli spaces of curves via hyperbolic geometry. [Doctoral Dissertation]. University of Melbourne; 2008. Available from: http://hdl.handle.net/11343/39762

University of Arizona

29.
Shao, Yijun.
A Compactification of the *Space* of Algebraic Maps from P^1 to a Grassmannian
.

Degree: 2010, University of Arizona

URL: http://hdl.handle.net/10150/194715

► Let Md be the *moduli* *space* of algebraic maps (morphisms) of degree d from P^{1} to a fixed Grassmannian. The main purpose of this thesis…
(more)

Subjects/Keywords: blow up; moduli space; normal crossing divisor; Quot scheme

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shao, Y. (2010). A Compactification of the Space of Algebraic Maps from P^1 to a Grassmannian . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/194715

Chicago Manual of Style (16^{th} Edition):

Shao, Yijun. “A Compactification of the Space of Algebraic Maps from P^1 to a Grassmannian .” 2010. Doctoral Dissertation, University of Arizona. Accessed July 10, 2020. http://hdl.handle.net/10150/194715.

MLA Handbook (7^{th} Edition):

Shao, Yijun. “A Compactification of the Space of Algebraic Maps from P^1 to a Grassmannian .” 2010. Web. 10 Jul 2020.

Vancouver:

Shao Y. A Compactification of the Space of Algebraic Maps from P^1 to a Grassmannian . [Internet] [Doctoral dissertation]. University of Arizona; 2010. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10150/194715.

Council of Science Editors:

Shao Y. A Compactification of the Space of Algebraic Maps from P^1 to a Grassmannian . [Doctoral Dissertation]. University of Arizona; 2010. Available from: http://hdl.handle.net/10150/194715

30.
Nitz, Frederic T.
On Lattice-Like Subgroups of Witt Group Schemes, and Associated *Moduli* Spaces.

Degree: Mathematics, 2012, University of California – Santa Cruz

URL: http://www.escholarship.org/uc/item/3zg7f3kc

► In this work we define a *moduli* problem for subgroups of powers of Witt group schemes which we believe to be a good analogue for…
(more)

Subjects/Keywords: Mathematics; Theoretical mathematics; Algebraic Geometry; Moduli Space; Witt Vectors

…times finding the correct statement of the problem is just as hard as
finding the *moduli* *space*… …complicated to recreate here.
1.3
*Moduli* Problems
A common theme in algebraic geometry is the task… …of finding *moduli* spaces.
A good first example is the idea of classifying lines through… …functions act by pullback. Now the question of understanding the *space*
of lines is transformed… …to first hope that it is representable, and if it is, you can
examine the *space* that…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nitz, F. T. (2012). On Lattice-Like Subgroups of Witt Group Schemes, and Associated Moduli Spaces. (Thesis). University of California – Santa Cruz. Retrieved from http://www.escholarship.org/uc/item/3zg7f3kc

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Nitz, Frederic T. “On Lattice-Like Subgroups of Witt Group Schemes, and Associated Moduli Spaces.” 2012. Thesis, University of California – Santa Cruz. Accessed July 10, 2020. http://www.escholarship.org/uc/item/3zg7f3kc.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Nitz, Frederic T. “On Lattice-Like Subgroups of Witt Group Schemes, and Associated Moduli Spaces.” 2012. Web. 10 Jul 2020.

Vancouver:

Nitz FT. On Lattice-Like Subgroups of Witt Group Schemes, and Associated Moduli Spaces. [Internet] [Thesis]. University of California – Santa Cruz; 2012. [cited 2020 Jul 10]. Available from: http://www.escholarship.org/uc/item/3zg7f3kc.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Nitz FT. On Lattice-Like Subgroups of Witt Group Schemes, and Associated Moduli Spaces. [Thesis]. University of California – Santa Cruz; 2012. Available from: http://www.escholarship.org/uc/item/3zg7f3kc

Not specified: Masters Thesis or Doctoral Dissertation