Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(kam theory). Showing records 1 – 14 of 14 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Johannes Gutenberg Universität Mainz

1. Albrecht, Joachim. Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind.

Degree: 2005, Johannes Gutenberg Universität Mainz

Es wird die Existenz invarianter Tori in Hamiltonschen Systemen bewiesen, die bis auf eine 2n-mal stetig differenzierbare Störung analytisch und integrabel sind, wobei n die… (more)

Subjects/Keywords: KAM-Theorie; KAM-Theory; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Albrecht, J. (2005). Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2005/830/

Chicago Manual of Style (16th Edition):

Albrecht, Joachim. “Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind.” 2005. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed November 26, 2020. http://ubm.opus.hbz-nrw.de/volltexte/2005/830/.

MLA Handbook (7th Edition):

Albrecht, Joachim. “Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind.” 2005. Web. 26 Nov 2020.

Vancouver:

Albrecht J. Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2005. [cited 2020 Nov 26]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2005/830/.

Council of Science Editors:

Albrecht J. Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2005. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2005/830/


University of Colorado

2. Fox, Adam Merritt. Destruction of Invariant Tori in Volume-Preserving Maps.

Degree: PhD, Applied Mathematics, 2013, University of Colorado

  Invariant rotational tori play an important role in the dynamics of volume-preserving maps. When integrable, all orbits lie on these tori and KAM theory(more)

Subjects/Keywords: KAM theory; Greene's residue criterion; near-critical conjugacies; Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fox, A. M. (2013). Destruction of Invariant Tori in Volume-Preserving Maps. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/appm_gradetds/36

Chicago Manual of Style (16th Edition):

Fox, Adam Merritt. “Destruction of Invariant Tori in Volume-Preserving Maps.” 2013. Doctoral Dissertation, University of Colorado. Accessed November 26, 2020. https://scholar.colorado.edu/appm_gradetds/36.

MLA Handbook (7th Edition):

Fox, Adam Merritt. “Destruction of Invariant Tori in Volume-Preserving Maps.” 2013. Web. 26 Nov 2020.

Vancouver:

Fox AM. Destruction of Invariant Tori in Volume-Preserving Maps. [Internet] [Doctoral dissertation]. University of Colorado; 2013. [cited 2020 Nov 26]. Available from: https://scholar.colorado.edu/appm_gradetds/36.

Council of Science Editors:

Fox AM. Destruction of Invariant Tori in Volume-Preserving Maps. [Doctoral Dissertation]. University of Colorado; 2013. Available from: https://scholar.colorado.edu/appm_gradetds/36


University of Texas – Austin

3. Maciejewski, James Michael. An application of KAM theory to a model for particle channelling in crystals and some related numerical simulations.

Degree: MA, Mathematics, 2010, University of Texas – Austin

 It has been seen in physical experiments as early as the 1960’s that when a positively charged particle is injected into a crystal in certain… (more)

Subjects/Keywords: KAM theory; Particle channelling; Crystals

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maciejewski, J. M. (2010). An application of KAM theory to a model for particle channelling in crystals and some related numerical simulations. (Masters Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-1092

Chicago Manual of Style (16th Edition):

Maciejewski, James Michael. “An application of KAM theory to a model for particle channelling in crystals and some related numerical simulations.” 2010. Masters Thesis, University of Texas – Austin. Accessed November 26, 2020. http://hdl.handle.net/2152/ETD-UT-2010-05-1092.

MLA Handbook (7th Edition):

Maciejewski, James Michael. “An application of KAM theory to a model for particle channelling in crystals and some related numerical simulations.” 2010. Web. 26 Nov 2020.

Vancouver:

Maciejewski JM. An application of KAM theory to a model for particle channelling in crystals and some related numerical simulations. [Internet] [Masters thesis]. University of Texas – Austin; 2010. [cited 2020 Nov 26]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-1092.

Council of Science Editors:

Maciejewski JM. An application of KAM theory to a model for particle channelling in crystals and some related numerical simulations. [Masters Thesis]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-1092


Australian National University

4. Gomes, Sean P. Quantum ergodicity in mixed and KAM Hamiltonian systems .

Degree: 2017, Australian National University

 In this thesis, we investigate quantum ergodicity for two classes of Hamiltonian systems satisfying intermediate dynamical hypotheses between the well understood extremes of ergodic flow… (more)

Subjects/Keywords: quantum ergodicity; microlocal analysis; semiclassical analysis; partial differential equations; spectral theory; KAM Hamiltonian systems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gomes, S. P. (2017). Quantum ergodicity in mixed and KAM Hamiltonian systems . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/154331

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gomes, Sean P. “Quantum ergodicity in mixed and KAM Hamiltonian systems .” 2017. Thesis, Australian National University. Accessed November 26, 2020. http://hdl.handle.net/1885/154331.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gomes, Sean P. “Quantum ergodicity in mixed and KAM Hamiltonian systems .” 2017. Web. 26 Nov 2020.

Vancouver:

Gomes SP. Quantum ergodicity in mixed and KAM Hamiltonian systems . [Internet] [Thesis]. Australian National University; 2017. [cited 2020 Nov 26]. Available from: http://hdl.handle.net/1885/154331.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gomes SP. Quantum ergodicity in mixed and KAM Hamiltonian systems . [Thesis]. Australian National University; 2017. Available from: http://hdl.handle.net/1885/154331

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Pageault, Pierre. Fonctions de Lyapunov : une approche KAM faible : Lyapunov functions : a weak KAM approach.

Degree: Docteur es, Mathématiques, 2011, Lyon, École normale supérieure

Cette thèse est divisée en trois parties. Dans une première partie, on donne une description nouvelle des points récurrents par chaînes d'un système dynamique comme… (more)

Subjects/Keywords: Fonctions de Lyapunov; Systèmes dynamiques; Récurrence par chaînes; Théorème de Sard; Théorie KAM faible; Lyapunov function; Dynamical systems; Chain-recurrence; Sard's theorem; Weak KAM theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pageault, P. (2011). Fonctions de Lyapunov : une approche KAM faible : Lyapunov functions : a weak KAM approach. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2011ENSL0654

Chicago Manual of Style (16th Edition):

Pageault, Pierre. “Fonctions de Lyapunov : une approche KAM faible : Lyapunov functions : a weak KAM approach.” 2011. Doctoral Dissertation, Lyon, École normale supérieure. Accessed November 26, 2020. http://www.theses.fr/2011ENSL0654.

MLA Handbook (7th Edition):

Pageault, Pierre. “Fonctions de Lyapunov : une approche KAM faible : Lyapunov functions : a weak KAM approach.” 2011. Web. 26 Nov 2020.

Vancouver:

Pageault P. Fonctions de Lyapunov : une approche KAM faible : Lyapunov functions : a weak KAM approach. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2011. [cited 2020 Nov 26]. Available from: http://www.theses.fr/2011ENSL0654.

Council of Science Editors:

Pageault P. Fonctions de Lyapunov : une approche KAM faible : Lyapunov functions : a weak KAM approach. [Doctoral Dissertation]. Lyon, École normale supérieure; 2011. Available from: http://www.theses.fr/2011ENSL0654

6. Castan, Thibaut. Stability in the plane planetary three-body problem : Stabilité dans le problème à trois corps planétaire plan.

Degree: Docteur es, Mathématiques appliquées, 2017, Université Pierre et Marie Curie – Paris VI

Arnold a démontré l'existence de solutions quasipériodiques dans le problème planétaire à trois corps plan, sous réserve que la masse de deux des corps, les… (more)

Subjects/Keywords: Problème à trois corps; Théorie des perturbations; Théorème KAM; Systèmes hamiltoniens; Systèmes dynamiques; Géométrie symplectique; Three-body problem; Perturbation theory; KAM theorem; 519.6

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Castan, T. (2017). Stability in the plane planetary three-body problem : Stabilité dans le problème à trois corps planétaire plan. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2017PA066062

Chicago Manual of Style (16th Edition):

Castan, Thibaut. “Stability in the plane planetary three-body problem : Stabilité dans le problème à trois corps planétaire plan.” 2017. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed November 26, 2020. http://www.theses.fr/2017PA066062.

MLA Handbook (7th Edition):

Castan, Thibaut. “Stability in the plane planetary three-body problem : Stabilité dans le problème à trois corps planétaire plan.” 2017. Web. 26 Nov 2020.

Vancouver:

Castan T. Stability in the plane planetary three-body problem : Stabilité dans le problème à trois corps planétaire plan. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. [cited 2020 Nov 26]. Available from: http://www.theses.fr/2017PA066062.

Council of Science Editors:

Castan T. Stability in the plane planetary three-body problem : Stabilité dans le problème à trois corps planétaire plan. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. Available from: http://www.theses.fr/2017PA066062


Penn State University

7. Chen, Dong. On some problems in Lagrangian Dynamics and Finsler Geometry.

Degree: 2017, Penn State University

 The purpose of this dissertation is to present several applications of enveloping functions and dual lens maps to geometry and dynamical systems. In Chapter 1… (more)

Subjects/Keywords: KAM theory; Finsler metric; duel lens map Hamiltonian flow; perturbation; metric entropy; duel lens map; Hamiltonian flow; perturbation; metric entropy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, D. (2017). On some problems in Lagrangian Dynamics and Finsler Geometry. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/14421dxc360

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chen, Dong. “On some problems in Lagrangian Dynamics and Finsler Geometry.” 2017. Thesis, Penn State University. Accessed November 26, 2020. https://submit-etda.libraries.psu.edu/catalog/14421dxc360.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chen, Dong. “On some problems in Lagrangian Dynamics and Finsler Geometry.” 2017. Web. 26 Nov 2020.

Vancouver:

Chen D. On some problems in Lagrangian Dynamics and Finsler Geometry. [Internet] [Thesis]. Penn State University; 2017. [cited 2020 Nov 26]. Available from: https://submit-etda.libraries.psu.edu/catalog/14421dxc360.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen D. On some problems in Lagrangian Dynamics and Finsler Geometry. [Thesis]. Penn State University; 2017. Available from: https://submit-etda.libraries.psu.edu/catalog/14421dxc360

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Liu, Jian-Long. Preservation of Periodicity in Variational Integrators.

Degree: MS, Mathematics, 2015, San Jose State University

  Classical numerical integrators do not preserve symplecticity, a structure inherent in Hamiltonian systems. Thus, the trajectories they produce cannot be expected to possess the… (more)

Subjects/Keywords: hamiltonian system; kam theory; periodicity; perturbation theory; symplectic integrator; variational integrator

…Kolmogorov-Arnold-Moser (KAM) theory from classical perturbation theory, with a sketch of… …CHAPTER 3 KAM THEORY In this chapter, we attempt to motivate and explain the progression of the… …initial development of the subject of KAM theory through perturbation theory. We then state the… …original coordinates. 3.1 Perturbation Theory KAM theory has its roots in classical perturbation… …KAM theory through the problems of small divisors. In perturbation theory, given a Liouville… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, J. (2015). Preservation of Periodicity in Variational Integrators. (Masters Thesis). San Jose State University. Retrieved from https://doi.org/10.31979/etd.c4z9-y9yp ; https://scholarworks.sjsu.edu/etd_theses/4596

Chicago Manual of Style (16th Edition):

Liu, Jian-Long. “Preservation of Periodicity in Variational Integrators.” 2015. Masters Thesis, San Jose State University. Accessed November 26, 2020. https://doi.org/10.31979/etd.c4z9-y9yp ; https://scholarworks.sjsu.edu/etd_theses/4596.

MLA Handbook (7th Edition):

Liu, Jian-Long. “Preservation of Periodicity in Variational Integrators.” 2015. Web. 26 Nov 2020.

Vancouver:

Liu J. Preservation of Periodicity in Variational Integrators. [Internet] [Masters thesis]. San Jose State University; 2015. [cited 2020 Nov 26]. Available from: https://doi.org/10.31979/etd.c4z9-y9yp ; https://scholarworks.sjsu.edu/etd_theses/4596.

Council of Science Editors:

Liu J. Preservation of Periodicity in Variational Integrators. [Masters Thesis]. San Jose State University; 2015. Available from: https://doi.org/10.31979/etd.c4z9-y9yp ; https://scholarworks.sjsu.edu/etd_theses/4596


Georgia Tech

9. Viveros Rogel, Jorge. An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems.

Degree: PhD, Mathematics, 2007, Georgia Tech

 We prove the existence and linear stability of quasi-periodic breather solutions in a 1d Hamiltonian lattice of identical, weakly-coupled, anharmonic oscillators with general on-site potentials… (more)

Subjects/Keywords: KAM theory; Hamiltonian; Lattice; Quasi-periodic breathers; Oscillations; Hamiltonian systems; Energy transfer; Lattice theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Viveros Rogel, J. (2007). An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/19869

Chicago Manual of Style (16th Edition):

Viveros Rogel, Jorge. “An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems.” 2007. Doctoral Dissertation, Georgia Tech. Accessed November 26, 2020. http://hdl.handle.net/1853/19869.

MLA Handbook (7th Edition):

Viveros Rogel, Jorge. “An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems.” 2007. Web. 26 Nov 2020.

Vancouver:

Viveros Rogel J. An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems. [Internet] [Doctoral dissertation]. Georgia Tech; 2007. [cited 2020 Nov 26]. Available from: http://hdl.handle.net/1853/19869.

Council of Science Editors:

Viveros Rogel J. An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems. [Doctoral Dissertation]. Georgia Tech; 2007. Available from: http://hdl.handle.net/1853/19869


Universiteit Utrecht

10. Rink, B.W. Geometry and dynamics in Hamiltonian lattices.

Degree: 2003, Universiteit Utrecht

 E. Fermi, J. Pasta and S. Ulam introduced the Fermi-Pasta-Ulam lattice in the 1950s as a classical mechanical model for a mono-atomic crystal or a… (more)

Subjects/Keywords: Wiskunde en Informatica; Fermi-Pasta-Ulam chain; Birkhoff normal forms; symmetry; resonance; dynamics; invariant manifolds; singular reduction; monodromy; KAM theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rink, B. W. (2003). Geometry and dynamics in Hamiltonian lattices. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/884

Chicago Manual of Style (16th Edition):

Rink, B W. “Geometry and dynamics in Hamiltonian lattices.” 2003. Doctoral Dissertation, Universiteit Utrecht. Accessed November 26, 2020. http://dspace.library.uu.nl:8080/handle/1874/884.

MLA Handbook (7th Edition):

Rink, B W. “Geometry and dynamics in Hamiltonian lattices.” 2003. Web. 26 Nov 2020.

Vancouver:

Rink BW. Geometry and dynamics in Hamiltonian lattices. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2003. [cited 2020 Nov 26]. Available from: http://dspace.library.uu.nl:8080/handle/1874/884.

Council of Science Editors:

Rink BW. Geometry and dynamics in Hamiltonian lattices. [Doctoral Dissertation]. Universiteit Utrecht; 2003. Available from: http://dspace.library.uu.nl:8080/handle/1874/884

11. Rink, B.W. Geometry and dynamics in Hamiltonian lattices.

Degree: 2003, University Utrecht

 E. Fermi, J. Pasta and S. Ulam introduced the Fermi-Pasta-Ulam lattice in the 1950s as a classical mechanical model for a mono-atomic crystal or a… (more)

Subjects/Keywords: Fermi-Pasta-Ulam chain; Birkhoff normal forms; symmetry; resonance; dynamics; invariant manifolds; singular reduction; monodromy; KAM theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rink, B. W. (2003). Geometry and dynamics in Hamiltonian lattices. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/884 ; URN:NBN:NL:UI:10-1874-884 ; URN:NBN:NL:UI:10-1874-884 ; https://dspace.library.uu.nl/handle/1874/884

Chicago Manual of Style (16th Edition):

Rink, B W. “Geometry and dynamics in Hamiltonian lattices.” 2003. Doctoral Dissertation, University Utrecht. Accessed November 26, 2020. https://dspace.library.uu.nl/handle/1874/884 ; URN:NBN:NL:UI:10-1874-884 ; URN:NBN:NL:UI:10-1874-884 ; https://dspace.library.uu.nl/handle/1874/884.

MLA Handbook (7th Edition):

Rink, B W. “Geometry and dynamics in Hamiltonian lattices.” 2003. Web. 26 Nov 2020.

Vancouver:

Rink BW. Geometry and dynamics in Hamiltonian lattices. [Internet] [Doctoral dissertation]. University Utrecht; 2003. [cited 2020 Nov 26]. Available from: https://dspace.library.uu.nl/handle/1874/884 ; URN:NBN:NL:UI:10-1874-884 ; URN:NBN:NL:UI:10-1874-884 ; https://dspace.library.uu.nl/handle/1874/884.

Council of Science Editors:

Rink BW. Geometry and dynamics in Hamiltonian lattices. [Doctoral Dissertation]. University Utrecht; 2003. Available from: https://dspace.library.uu.nl/handle/1874/884 ; URN:NBN:NL:UI:10-1874-884 ; URN:NBN:NL:UI:10-1874-884 ; https://dspace.library.uu.nl/handle/1874/884

12. Viana Camejo, Mikel. Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains.

Degree: PhD, Mathematics, 2018, Georgia Tech

We present a very general theory that includes results on the persistence of quasi-periodic orbits of systems subject to quasi-periodic perturbations. Advisors/Committee Members: Loss, Michael (committee member), Zeng, Chongchun (committee member), Jorba, Angel (committee member), Bonetto, Federico (committee member).

Subjects/Keywords: Quasi-periodic dynamics; KAM theory; Lower dimensional elliptic tori; Skew-products; Compensated domains

…50s and 60s (the KAM theory). The systematic numerical treatment is more recent… …x29; where ∆c0 := U0−1 ψ0−1 ∆c0 . It is standard in KAM theory to argue that the term eR U0… …tori for fibered holomorphic maps In this paper we present a very general theory that… …kx − ykB . This condition is very important for the function theory in D. This is joint… …1 CHAPTER I INTRODUCTION The goal of this paper is to present a very general theory of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Viana Camejo, M. (2018). Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/59176

Chicago Manual of Style (16th Edition):

Viana Camejo, Mikel. “Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains.” 2018. Doctoral Dissertation, Georgia Tech. Accessed November 26, 2020. http://hdl.handle.net/1853/59176.

MLA Handbook (7th Edition):

Viana Camejo, Mikel. “Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains.” 2018. Web. 26 Nov 2020.

Vancouver:

Viana Camejo M. Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains. [Internet] [Doctoral dissertation]. Georgia Tech; 2018. [cited 2020 Nov 26]. Available from: http://hdl.handle.net/1853/59176.

Council of Science Editors:

Viana Camejo M. Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains. [Doctoral Dissertation]. Georgia Tech; 2018. Available from: http://hdl.handle.net/1853/59176


University of Notre Dame

13. Qun Ma. Novel Multiscale Algorithms for Molecular Dynamics</h1>.

Degree: Computer Science and Engineering, 2003, University of Notre Dame

  In post-genomic computational biology and bioinformatics, long simulations of the dynamics of molecular systems, particularly biological molecules such as proteins and DNA, require advances… (more)

Subjects/Keywords: KAM theory; mollified Impulse method; nonlinear instability; targeted Langevin stabilization; long molecular dynamics simulations; multiple time stepping; Verlet-I/r-RESPA/Impulse

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ma, Q. (2003). Novel Multiscale Algorithms for Molecular Dynamics</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/4q77fq99533

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ma, Qun. “Novel Multiscale Algorithms for Molecular Dynamics</h1>.” 2003. Thesis, University of Notre Dame. Accessed November 26, 2020. https://curate.nd.edu/show/4q77fq99533.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ma, Qun. “Novel Multiscale Algorithms for Molecular Dynamics</h1>.” 2003. Web. 26 Nov 2020.

Vancouver:

Ma Q. Novel Multiscale Algorithms for Molecular Dynamics</h1>. [Internet] [Thesis]. University of Notre Dame; 2003. [cited 2020 Nov 26]. Available from: https://curate.nd.edu/show/4q77fq99533.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ma Q. Novel Multiscale Algorithms for Molecular Dynamics</h1>. [Thesis]. University of Notre Dame; 2003. Available from: https://curate.nd.edu/show/4q77fq99533

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

14. Mandorino, Vito. Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians.

Degree: Docteur es, Mathématiques appliquées, 2013, Paris 9

Dans cette thèse nous étudions la dynamique engendrée par une famille de flots Hamiltoniens. Un tel système dynamique à plusieurs générateurs est aussi appelé ‘polysystème’.… (more)

Subjects/Keywords: Dynamique hamiltonienne et lagrangienne; Théorie KAM faible; Diffusion d’Arnold; Polysystème; Semi-groupe de Lax-Oleinik; Ensembles d’Aubry et Mañé; Propriétés génériques; Théorie géométrique du contrôle; Ensemble atteignable; Théorème de transversalité de Thom; Ensemble rectifiable; Hamiltonian and Lagrangian dynamics; Weak KAM theory; Arnold diffusion; Polysystem; Lax-Oleinik semigroup; Aubry and Mañé sets; Generic properties; Geometric control theory; Reachable set; Thom’s transversality theorem; Rectifiable set

…approach of Mather and Fathi’s weak KAM theory has been fruitful, especially in the framework of… …Kam theory, for which we refer to [Fat]. The ideas will be close to those in… …issue de la théorie KAM faible. Dans la Partie 2 nous considérons le cas d’un polysystème… …Polysystèmes hamiltoniens temps discret (approche avec la théorie KAM faible) Dans cette… …Notons que les hamiltoniens Tonelli sont les hamiltoniens standard de la théorie KAM faible… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mandorino, V. (2013). Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians. (Doctoral Dissertation). Paris 9. Retrieved from http://www.theses.fr/2013PA090003

Chicago Manual of Style (16th Edition):

Mandorino, Vito. “Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians.” 2013. Doctoral Dissertation, Paris 9. Accessed November 26, 2020. http://www.theses.fr/2013PA090003.

MLA Handbook (7th Edition):

Mandorino, Vito. “Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians.” 2013. Web. 26 Nov 2020.

Vancouver:

Mandorino V. Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians. [Internet] [Doctoral dissertation]. Paris 9; 2013. [cited 2020 Nov 26]. Available from: http://www.theses.fr/2013PA090003.

Council of Science Editors:

Mandorino V. Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians. [Doctoral Dissertation]. Paris 9; 2013. Available from: http://www.theses.fr/2013PA090003

.