Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(inverse limits). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Baylor University

1. Hamilton, Brent (Brent A.). Asymptotic arc-components in inverse limits of dendrites.

Degree: Mathematics., 2011, Baylor University

 We study asymptotic behavior arising in inverse limit spaces of dendrites. In particular, the inverse limit is constructed with a single unimodal bonding map, for… (more)

Subjects/Keywords: Topology.; Continuum theory.; Inverse limits.; Dendrites.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hamilton, B. (. A. ). (2011). Asymptotic arc-components in inverse limits of dendrites. (Thesis). Baylor University. Retrieved from http://hdl.handle.net/2104/8216

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hamilton, Brent (Brent A ). “Asymptotic arc-components in inverse limits of dendrites. ” 2011. Thesis, Baylor University. Accessed December 06, 2019. http://hdl.handle.net/2104/8216.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hamilton, Brent (Brent A ). “Asymptotic arc-components in inverse limits of dendrites. ” 2011. Web. 06 Dec 2019.

Vancouver:

Hamilton B(A). Asymptotic arc-components in inverse limits of dendrites. [Internet] [Thesis]. Baylor University; 2011. [cited 2019 Dec 06]. Available from: http://hdl.handle.net/2104/8216.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hamilton B(A). Asymptotic arc-components in inverse limits of dendrites. [Thesis]. Baylor University; 2011. Available from: http://hdl.handle.net/2104/8216

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Baylor University

2. Williams, Brian R. (Brian Robert), 1982-. Indecomposability in inverse limits.

Degree: Mathematics., 2010, Baylor University

 Topological inverse limits play an important in the theory of dynamical systems and in continuum theory. In this dissertation, we investigate classical inverse limits of… (more)

Subjects/Keywords: Inverse limits.; Julia sets.; Indecomposability.; Upper semicontinuous functions.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Williams, Brian R. (Brian Robert), 1. (2010). Indecomposability in inverse limits. (Thesis). Baylor University. Retrieved from http://hdl.handle.net/2104/8067

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Williams, Brian R. (Brian Robert), 1982-. “Indecomposability in inverse limits. ” 2010. Thesis, Baylor University. Accessed December 06, 2019. http://hdl.handle.net/2104/8067.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Williams, Brian R. (Brian Robert), 1982-. “Indecomposability in inverse limits. ” 2010. Web. 06 Dec 2019.

Vancouver:

Williams, Brian R. (Brian Robert) 1. Indecomposability in inverse limits. [Internet] [Thesis]. Baylor University; 2010. [cited 2019 Dec 06]. Available from: http://hdl.handle.net/2104/8067.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Williams, Brian R. (Brian Robert) 1. Indecomposability in inverse limits. [Thesis]. Baylor University; 2010. Available from: http://hdl.handle.net/2104/8067

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Bele Zelenko, Tina. Lastnost polnih projekcij za inverzne limite.

Degree: 2018, Univerza v Mariboru

Glavni namen tega magistrskega dela je predstaviti lastnost polnih projekcij za inverzne limite inverznih zaporedij kompaktnih metričnih prostorov tako z enoličnimi kot z večličnimi veznimi… (more)

Subjects/Keywords: inverzne limite; večlične funkcije; izrek o zaprtih podmnožicah; lastnost inverznih limit; inverse limits; set-valued functions; the closed subset theorem; inverse limits property; info:eu-repo/classification/udc/515.12(043.2)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bele Zelenko, T. (2018). Lastnost polnih projekcij za inverzne limite. (Masters Thesis). Univerza v Mariboru. Retrieved from https://dk.um.si/IzpisGradiva.php?id=69280 ; https://dk.um.si/Dokument.php?id=121696&dn= ; https://plus.si.cobiss.net/opac7/bib/23697160?lang=sl

Chicago Manual of Style (16th Edition):

Bele Zelenko, Tina. “Lastnost polnih projekcij za inverzne limite.” 2018. Masters Thesis, Univerza v Mariboru. Accessed December 06, 2019. https://dk.um.si/IzpisGradiva.php?id=69280 ; https://dk.um.si/Dokument.php?id=121696&dn= ; https://plus.si.cobiss.net/opac7/bib/23697160?lang=sl.

MLA Handbook (7th Edition):

Bele Zelenko, Tina. “Lastnost polnih projekcij za inverzne limite.” 2018. Web. 06 Dec 2019.

Vancouver:

Bele Zelenko T. Lastnost polnih projekcij za inverzne limite. [Internet] [Masters thesis]. Univerza v Mariboru; 2018. [cited 2019 Dec 06]. Available from: https://dk.um.si/IzpisGradiva.php?id=69280 ; https://dk.um.si/Dokument.php?id=121696&dn= ; https://plus.si.cobiss.net/opac7/bib/23697160?lang=sl.

Council of Science Editors:

Bele Zelenko T. Lastnost polnih projekcij za inverzne limite. [Masters Thesis]. Univerza v Mariboru; 2018. Available from: https://dk.um.si/IzpisGradiva.php?id=69280 ; https://dk.um.si/Dokument.php?id=121696&dn= ; https://plus.si.cobiss.net/opac7/bib/23697160?lang=sl


Baylor University

4. [No author]. Chaotic properties of set-valued dynamical systems.

Degree: 2016, Baylor University

 In this thesis, many classical results of topological dynamics are adapted to the set-valued case. In particular, focus is given to the notions of topological… (more)

Subjects/Keywords: Topological chaos. Set-valued dynamical systems. Set-valued inverse limits. Specification property. Topological entropy.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

author], [. (2016). Chaotic properties of set-valued dynamical systems. (Thesis). Baylor University. Retrieved from http://hdl.handle.net/2104/9605

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

author], [No. “Chaotic properties of set-valued dynamical systems. ” 2016. Thesis, Baylor University. Accessed December 06, 2019. http://hdl.handle.net/2104/9605.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

author], [No. “Chaotic properties of set-valued dynamical systems. ” 2016. Web. 06 Dec 2019.

Vancouver:

author] [. Chaotic properties of set-valued dynamical systems. [Internet] [Thesis]. Baylor University; 2016. [cited 2019 Dec 06]. Available from: http://hdl.handle.net/2104/9605.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

author] [. Chaotic properties of set-valued dynamical systems. [Thesis]. Baylor University; 2016. Available from: http://hdl.handle.net/2104/9605

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Colorado

5. Krupa, Matthew Gregory. Differential Geometry of Projective Limits of Manifolds.

Degree: PhD, Mathematics, 2016, University of Colorado

  The nascent theory of projective limits of manifolds in the category of locally R-ringed spaces is expanded and generalizations of differential geometric constructions, definitions,… (more)

Subjects/Keywords: Inverse Function Theorem; Normed Spaces; Projective Limits of Smooth Manifolds; Promanifolds; Sard's Theorem; Whitney Embedding Theorem; Geometry and Topology; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Krupa, M. G. (2016). Differential Geometry of Projective Limits of Manifolds. (Doctoral Dissertation). University of Colorado. Retrieved from http://scholar.colorado.edu/math_gradetds/47

Chicago Manual of Style (16th Edition):

Krupa, Matthew Gregory. “Differential Geometry of Projective Limits of Manifolds.” 2016. Doctoral Dissertation, University of Colorado. Accessed December 06, 2019. http://scholar.colorado.edu/math_gradetds/47.

MLA Handbook (7th Edition):

Krupa, Matthew Gregory. “Differential Geometry of Projective Limits of Manifolds.” 2016. Web. 06 Dec 2019.

Vancouver:

Krupa MG. Differential Geometry of Projective Limits of Manifolds. [Internet] [Doctoral dissertation]. University of Colorado; 2016. [cited 2019 Dec 06]. Available from: http://scholar.colorado.edu/math_gradetds/47.

Council of Science Editors:

Krupa MG. Differential Geometry of Projective Limits of Manifolds. [Doctoral Dissertation]. University of Colorado; 2016. Available from: http://scholar.colorado.edu/math_gradetds/47

.