Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(integral equations)`

.
Showing records 1 – 30 of
306 total matches.

◁ [1] [2] [3] [4] [5] … [11] ▶

Search Limiters

Dates

- 2016 – 2020 (54)
- 2011 – 2015 (80)
- 2006 – 2010 (56)
- 2001 – 2005 (28)
- 1996 – 2000 (23)
- 1991 – 1995 (10)
- 1986 – 1990 (15)
- 1981 – 1985 (15)
- 1976 – 1980 (10)
- 1971 – 1975 (12)

Universities

Degrees

- PhD (86)
- Docteur es (31)
- MS (20)

Languages

- English (175)
- Greek (23)
- French (17)
- Portuguese (10)

▼ Search Limiters

Tartu University

1.
Vikerpuur, Mikk.
Numerical solution of fractional differential * equations*
.

Degree: 2020, Tartu University

URL: http://hdl.handle.net/10062/66907

► Murrulised tuletised (s.t. tuletised, mille järk ei ole täisarv) on pakkunud huvi juba alates ajast, millal I. Newton ja G. W. Leibniz rajasid matemaatilise analüüsi…
(more)

Subjects/Keywords: splines; differential equations; integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vikerpuur, M. (2020). Numerical solution of fractional differential equations . (Thesis). Tartu University. Retrieved from http://hdl.handle.net/10062/66907

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Vikerpuur, Mikk. “Numerical solution of fractional differential equations .” 2020. Thesis, Tartu University. Accessed August 10, 2020. http://hdl.handle.net/10062/66907.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Vikerpuur, Mikk. “Numerical solution of fractional differential equations .” 2020. Web. 10 Aug 2020.

Vancouver:

Vikerpuur M. Numerical solution of fractional differential equations . [Internet] [Thesis]. Tartu University; 2020. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/10062/66907.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vikerpuur M. Numerical solution of fractional differential equations . [Thesis]. Tartu University; 2020. Available from: http://hdl.handle.net/10062/66907

Not specified: Masters Thesis or Doctoral Dissertation

Oregon State University

2.
Mirkovich, Christina Josephine.
Applications of collectively compact operator theory to the existence of eigenvalues of *integral* * equations*.

Degree: MS, Mathematics, 1973, Oregon State University

URL: http://hdl.handle.net/1957/46130

The existence of eigenvalues is shown for certain types of
integral equations with continuous kernels, the proofs utilizing some
basic results of collectively compact operator approximation theory.
*Advisors/Committee Members: Lee, John W. (advisor).*

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mirkovich, C. J. (1973). Applications of collectively compact operator theory to the existence of eigenvalues of integral equations. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/46130

Chicago Manual of Style (16^{th} Edition):

Mirkovich, Christina Josephine. “Applications of collectively compact operator theory to the existence of eigenvalues of integral equations.” 1973. Masters Thesis, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/46130.

MLA Handbook (7^{th} Edition):

Mirkovich, Christina Josephine. “Applications of collectively compact operator theory to the existence of eigenvalues of integral equations.” 1973. Web. 10 Aug 2020.

Vancouver:

Mirkovich CJ. Applications of collectively compact operator theory to the existence of eigenvalues of integral equations. [Internet] [Masters thesis]. Oregon State University; 1973. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/46130.

Council of Science Editors:

Mirkovich CJ. Applications of collectively compact operator theory to the existence of eigenvalues of integral equations. [Masters Thesis]. Oregon State University; 1973. Available from: http://hdl.handle.net/1957/46130

Oregon State University

3.
Rall, Louis B.
Error bounds for iterative solutions of Fredholm *integral* * equations*.

Degree: MS, Mathematics, 1954, Oregon State University

URL: http://hdl.handle.net/1957/51736

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rall, L. B. (1954). Error bounds for iterative solutions of Fredholm integral equations. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/51736

Chicago Manual of Style (16^{th} Edition):

Rall, Louis B. “Error bounds for iterative solutions of Fredholm integral equations.” 1954. Masters Thesis, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/51736.

MLA Handbook (7^{th} Edition):

Rall, Louis B. “Error bounds for iterative solutions of Fredholm integral equations.” 1954. Web. 10 Aug 2020.

Vancouver:

Rall LB. Error bounds for iterative solutions of Fredholm integral equations. [Internet] [Masters thesis]. Oregon State University; 1954. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/51736.

Council of Science Editors:

Rall LB. Error bounds for iterative solutions of Fredholm integral equations. [Masters Thesis]. Oregon State University; 1954. Available from: http://hdl.handle.net/1957/51736

Oregon State University

4.
Glahn, Thomas Leroy.
An error bound for an iterative method of solving Fredholm *integral* * equations*.

Degree: MS, Mathematics, 1953, Oregon State University

URL: http://hdl.handle.net/1957/52102

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Glahn, T. L. (1953). An error bound for an iterative method of solving Fredholm integral equations. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/52102

Chicago Manual of Style (16^{th} Edition):

Glahn, Thomas Leroy. “An error bound for an iterative method of solving Fredholm integral equations.” 1953. Masters Thesis, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/52102.

MLA Handbook (7^{th} Edition):

Glahn, Thomas Leroy. “An error bound for an iterative method of solving Fredholm integral equations.” 1953. Web. 10 Aug 2020.

Vancouver:

Glahn TL. An error bound for an iterative method of solving Fredholm integral equations. [Internet] [Masters thesis]. Oregon State University; 1953. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/52102.

Council of Science Editors:

Glahn TL. An error bound for an iterative method of solving Fredholm integral equations. [Masters Thesis]. Oregon State University; 1953. Available from: http://hdl.handle.net/1957/52102

University of Tasmania

5.
Dow, Murray Leslie,1949-.
Singular equal * equations*.

Degree: 1977, University of Tasmania

URL: https://eprints.utas.edu.au/19430/1/whole_DowMurrayLeslie1977_thesis.pdf

► The classical analytic solution of the dominant singular *integral* equation ... is found by transforming the equation into a Riemann boundary problem. (The above *integral*…
(more)

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dow, M. L. (1977). Singular equal equations. (Thesis). University of Tasmania. Retrieved from https://eprints.utas.edu.au/19430/1/whole_DowMurrayLeslie1977_thesis.pdf

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Dow, Murray Leslie,1949-. “Singular equal equations.” 1977. Thesis, University of Tasmania. Accessed August 10, 2020. https://eprints.utas.edu.au/19430/1/whole_DowMurrayLeslie1977_thesis.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Dow, Murray Leslie,1949-. “Singular equal equations.” 1977. Web. 10 Aug 2020.

Vancouver:

Dow ML. Singular equal equations. [Internet] [Thesis]. University of Tasmania; 1977. [cited 2020 Aug 10]. Available from: https://eprints.utas.edu.au/19430/1/whole_DowMurrayLeslie1977_thesis.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dow ML. Singular equal equations. [Thesis]. University of Tasmania; 1977. Available from: https://eprints.utas.edu.au/19430/1/whole_DowMurrayLeslie1977_thesis.pdf

Not specified: Masters Thesis or Doctoral Dissertation

Oregon State University

6.
Jacoby, Jerome Jess.
Numerical integration of linear *integral* *equations* with weakly discontinuous kernels.

Degree: MS, Mathematics, 1968, Oregon State University

URL: http://hdl.handle.net/1957/47344

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jacoby, J. J. (1968). Numerical integration of linear integral equations with weakly discontinuous kernels. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/47344

Chicago Manual of Style (16^{th} Edition):

Jacoby, Jerome Jess. “Numerical integration of linear integral equations with weakly discontinuous kernels.” 1968. Masters Thesis, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/47344.

MLA Handbook (7^{th} Edition):

Jacoby, Jerome Jess. “Numerical integration of linear integral equations with weakly discontinuous kernels.” 1968. Web. 10 Aug 2020.

Vancouver:

Jacoby JJ. Numerical integration of linear integral equations with weakly discontinuous kernels. [Internet] [Masters thesis]. Oregon State University; 1968. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/47344.

Council of Science Editors:

Jacoby JJ. Numerical integration of linear integral equations with weakly discontinuous kernels. [Masters Thesis]. Oregon State University; 1968. Available from: http://hdl.handle.net/1957/47344

Oregon State University

7.
Aalto, Sergei Kalvin.
Reduction of Fredholm *integral* *equations* with Green's function kernels to Volterra * equations*.

Degree: MA, Mathematics, 1966, Oregon State University

URL: http://hdl.handle.net/1957/47865

► G. F. Drukarev has given a method for solving the Fredholm *equations* which arise in the study of collisions between electrons and atoms. He transforms…
(more)

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Aalto, S. K. (1966). Reduction of Fredholm integral equations with Green's function kernels to Volterra equations. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/47865

Chicago Manual of Style (16^{th} Edition):

Aalto, Sergei Kalvin. “Reduction of Fredholm integral equations with Green's function kernels to Volterra equations.” 1966. Masters Thesis, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/47865.

MLA Handbook (7^{th} Edition):

Aalto, Sergei Kalvin. “Reduction of Fredholm integral equations with Green's function kernels to Volterra equations.” 1966. Web. 10 Aug 2020.

Vancouver:

Aalto SK. Reduction of Fredholm integral equations with Green's function kernels to Volterra equations. [Internet] [Masters thesis]. Oregon State University; 1966. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/47865.

Council of Science Editors:

Aalto SK. Reduction of Fredholm integral equations with Green's function kernels to Volterra equations. [Masters Thesis]. Oregon State University; 1966. Available from: http://hdl.handle.net/1957/47865

Oregon State University

8.
James, Ralph Leland.
The solution of singular volterra *integral* *equations* by successive approximations.

Degree: MS, Mathematics, 1965, Oregon State University

URL: http://hdl.handle.net/1957/48582

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

James, R. L. (1965). The solution of singular volterra integral equations by successive approximations. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/48582

Chicago Manual of Style (16^{th} Edition):

James, Ralph Leland. “The solution of singular volterra integral equations by successive approximations.” 1965. Masters Thesis, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/48582.

MLA Handbook (7^{th} Edition):

James, Ralph Leland. “The solution of singular volterra integral equations by successive approximations.” 1965. Web. 10 Aug 2020.

Vancouver:

James RL. The solution of singular volterra integral equations by successive approximations. [Internet] [Masters thesis]. Oregon State University; 1965. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/48582.

Council of Science Editors:

James RL. The solution of singular volterra integral equations by successive approximations. [Masters Thesis]. Oregon State University; 1965. Available from: http://hdl.handle.net/1957/48582

Oregon State University

9.
Weingarten, Fred Wesley.
On an *integral* equation occuring in the theory of wave propagation.

Degree: MS, Mathematics, 1964, Oregon State University

URL: http://hdl.handle.net/1957/48922

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Weingarten, F. W. (1964). On an integral equation occuring in the theory of wave propagation. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/48922

Chicago Manual of Style (16^{th} Edition):

Weingarten, Fred Wesley. “On an integral equation occuring in the theory of wave propagation.” 1964. Masters Thesis, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/48922.

MLA Handbook (7^{th} Edition):

Weingarten, Fred Wesley. “On an integral equation occuring in the theory of wave propagation.” 1964. Web. 10 Aug 2020.

Vancouver:

Weingarten FW. On an integral equation occuring in the theory of wave propagation. [Internet] [Masters thesis]. Oregon State University; 1964. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/48922.

Council of Science Editors:

Weingarten FW. On an integral equation occuring in the theory of wave propagation. [Masters Thesis]. Oregon State University; 1964. Available from: http://hdl.handle.net/1957/48922

Oregon State University

10.
Johnson, Ben Clarence.
*Integral**equations* involving special functions.

Degree: PhD, Mathematics, 1963, Oregon State University

URL: http://hdl.handle.net/1957/17199

See pdf

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Johnson, B. C. (1963). Integral equations involving special functions. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17199

Chicago Manual of Style (16^{th} Edition):

Johnson, Ben Clarence. “Integral equations involving special functions.” 1963. Doctoral Dissertation, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/17199.

MLA Handbook (7^{th} Edition):

Johnson, Ben Clarence. “Integral equations involving special functions.” 1963. Web. 10 Aug 2020.

Vancouver:

Johnson BC. Integral equations involving special functions. [Internet] [Doctoral dissertation]. Oregon State University; 1963. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/17199.

Council of Science Editors:

Johnson BC. Integral equations involving special functions. [Doctoral Dissertation]. Oregon State University; 1963. Available from: http://hdl.handle.net/1957/17199

Oregon State University

11.
Wirshup, Arthur D.
Application of the Puiseux polygon to the solution of nonlinear *integral* * equations*.

Degree: PhD, Mathematics, 1963, Oregon State University

URL: http://hdl.handle.net/1957/17399

See pdf
*Advisors/Committee Members: Lonseth, A. T. (advisor).*

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wirshup, A. D. (1963). Application of the Puiseux polygon to the solution of nonlinear integral equations. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17399

Chicago Manual of Style (16^{th} Edition):

Wirshup, Arthur D. “Application of the Puiseux polygon to the solution of nonlinear integral equations.” 1963. Doctoral Dissertation, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/17399.

MLA Handbook (7^{th} Edition):

Wirshup, Arthur D. “Application of the Puiseux polygon to the solution of nonlinear integral equations.” 1963. Web. 10 Aug 2020.

Vancouver:

Wirshup AD. Application of the Puiseux polygon to the solution of nonlinear integral equations. [Internet] [Doctoral dissertation]. Oregon State University; 1963. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/17399.

Council of Science Editors:

Wirshup AD. Application of the Puiseux polygon to the solution of nonlinear integral equations. [Doctoral Dissertation]. Oregon State University; 1963. Available from: http://hdl.handle.net/1957/17399

Oregon State University

12.
McFarland, James Edward.
Iterative solution of nonlinear *integral* * equations*.

Degree: PhD, Mathematics, 1960, Oregon State University

URL: http://hdl.handle.net/1957/17416

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

McFarland, J. E. (1960). Iterative solution of nonlinear integral equations. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17416

Chicago Manual of Style (16^{th} Edition):

McFarland, James Edward. “Iterative solution of nonlinear integral equations.” 1960. Doctoral Dissertation, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/17416.

MLA Handbook (7^{th} Edition):

McFarland, James Edward. “Iterative solution of nonlinear integral equations.” 1960. Web. 10 Aug 2020.

Vancouver:

McFarland JE. Iterative solution of nonlinear integral equations. [Internet] [Doctoral dissertation]. Oregon State University; 1960. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/17416.

Council of Science Editors:

McFarland JE. Iterative solution of nonlinear integral equations. [Doctoral Dissertation]. Oregon State University; 1960. Available from: http://hdl.handle.net/1957/17416

Oregon State University

13.
Nestell, Merlynd K.
The convergence of the discrete ordinates method for *integral* *equations* of anisotropic radiative transfer.

Degree: PhD, Mathematics, 1965, Oregon State University

URL: http://hdl.handle.net/1957/17412

See pdf
*Advisors/Committee Members: Anselone, P. M. (advisor).*

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nestell, M. K. (1965). The convergence of the discrete ordinates method for integral equations of anisotropic radiative transfer. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17412

Chicago Manual of Style (16^{th} Edition):

Nestell, Merlynd K. “The convergence of the discrete ordinates method for integral equations of anisotropic radiative transfer.” 1965. Doctoral Dissertation, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/17412.

MLA Handbook (7^{th} Edition):

Nestell, Merlynd K. “The convergence of the discrete ordinates method for integral equations of anisotropic radiative transfer.” 1965. Web. 10 Aug 2020.

Vancouver:

Nestell MK. The convergence of the discrete ordinates method for integral equations of anisotropic radiative transfer. [Internet] [Doctoral dissertation]. Oregon State University; 1965. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/17412.

Council of Science Editors:

Nestell MK. The convergence of the discrete ordinates method for integral equations of anisotropic radiative transfer. [Doctoral Dissertation]. Oregon State University; 1965. Available from: http://hdl.handle.net/1957/17412

Oregon State University

14.
Fredrickson, Elvy Lennea.
Application of the Schmidt theory to nonlinear *integral* * equations*.

Degree: PhD, Mathematics, 1954, Oregon State University

URL: http://hdl.handle.net/1957/17535

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fredrickson, E. L. (1954). Application of the Schmidt theory to nonlinear integral equations. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17535

Chicago Manual of Style (16^{th} Edition):

Fredrickson, Elvy Lennea. “Application of the Schmidt theory to nonlinear integral equations.” 1954. Doctoral Dissertation, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/17535.

MLA Handbook (7^{th} Edition):

Fredrickson, Elvy Lennea. “Application of the Schmidt theory to nonlinear integral equations.” 1954. Web. 10 Aug 2020.

Vancouver:

Fredrickson EL. Application of the Schmidt theory to nonlinear integral equations. [Internet] [Doctoral dissertation]. Oregon State University; 1954. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/17535.

Council of Science Editors:

Fredrickson EL. Application of the Schmidt theory to nonlinear integral equations. [Doctoral Dissertation]. Oregon State University; 1954. Available from: http://hdl.handle.net/1957/17535

Oregon State University

15.
Thompson, Gene Thomas.
On Bateman's method for solving linear *integral* * equations*.

Degree: PhD, Mathematics, 1955, Oregon State University

URL: http://hdl.handle.net/1957/17538

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Thompson, G. T. (1955). On Bateman's method for solving linear integral equations. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17538

Chicago Manual of Style (16^{th} Edition):

Thompson, Gene Thomas. “On Bateman's method for solving linear integral equations.” 1955. Doctoral Dissertation, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/17538.

MLA Handbook (7^{th} Edition):

Thompson, Gene Thomas. “On Bateman's method for solving linear integral equations.” 1955. Web. 10 Aug 2020.

Vancouver:

Thompson GT. On Bateman's method for solving linear integral equations. [Internet] [Doctoral dissertation]. Oregon State University; 1955. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/17538.

Council of Science Editors:

Thompson GT. On Bateman's method for solving linear integral equations. [Doctoral Dissertation]. Oregon State University; 1955. Available from: http://hdl.handle.net/1957/17538

16.
Kaluwa, Matthew Haantumbula.
*Integral**equations* : A survey of past and current developments.

Degree: 2012, University of Zimbabwe

URL: http://dspace.unza.zm/handle/123456789/1309

Subjects/Keywords: Integral equations.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kaluwa, M. H. (2012). Integral equations : A survey of past and current developments. (Thesis). University of Zimbabwe. Retrieved from http://dspace.unza.zm/handle/123456789/1309

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kaluwa, Matthew Haantumbula. “Integral equations : A survey of past and current developments.” 2012. Thesis, University of Zimbabwe. Accessed August 10, 2020. http://dspace.unza.zm/handle/123456789/1309.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kaluwa, Matthew Haantumbula. “Integral equations : A survey of past and current developments.” 2012. Web. 10 Aug 2020.

Vancouver:

Kaluwa MH. Integral equations : A survey of past and current developments. [Internet] [Thesis]. University of Zimbabwe; 2012. [cited 2020 Aug 10]. Available from: http://dspace.unza.zm/handle/123456789/1309.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kaluwa MH. Integral equations : A survey of past and current developments. [Thesis]. University of Zimbabwe; 2012. Available from: http://dspace.unza.zm/handle/123456789/1309

Not specified: Masters Thesis or Doctoral Dissertation

University of Toronto

17.
Patel, Utkarsh.
Reduced-order *Integral* Equation Methods to Solve Complex Electromagnetic Problems.

Degree: PhD, 2019, University of Toronto

URL: http://hdl.handle.net/1807/97581

► Despite vast advancements in computational hardware capabilities, full-wave electromagnetic simulations of many multiscale problems continue to be a daunting task. Multiscale problems are encountered, for…
(more)

Subjects/Keywords: Integral equations; Surface Methods; 0607

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Patel, U. (2019). Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/97581

Chicago Manual of Style (16^{th} Edition):

Patel, Utkarsh. “Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems.” 2019. Doctoral Dissertation, University of Toronto. Accessed August 10, 2020. http://hdl.handle.net/1807/97581.

MLA Handbook (7^{th} Edition):

Patel, Utkarsh. “Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems.” 2019. Web. 10 Aug 2020.

Vancouver:

Patel U. Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems. [Internet] [Doctoral dissertation]. University of Toronto; 2019. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1807/97581.

Council of Science Editors:

Patel U. Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems. [Doctoral Dissertation]. University of Toronto; 2019. Available from: http://hdl.handle.net/1807/97581

University of Minnesota

18.
Bu, Fanbin.
* Integral* equation methods for the simulation of viscoelastic ultrasound vibro-acoustography.

Degree: PhD, Mathematics, 2011, University of Minnesota

URL: http://purl.umn.edu/117262

► This thesis work originated from a collaborative project with J. Greenleaf and M. Fatemi at the Ultrasound Research Laboratory at the Mayo Clinic. The main…
(more)

Subjects/Keywords: Integral equations; Viscoelastic; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bu, F. (2011). Integral equation methods for the simulation of viscoelastic ultrasound vibro-acoustography. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/117262

Chicago Manual of Style (16^{th} Edition):

Bu, Fanbin. “Integral equation methods for the simulation of viscoelastic ultrasound vibro-acoustography.” 2011. Doctoral Dissertation, University of Minnesota. Accessed August 10, 2020. http://purl.umn.edu/117262.

MLA Handbook (7^{th} Edition):

Bu, Fanbin. “Integral equation methods for the simulation of viscoelastic ultrasound vibro-acoustography.” 2011. Web. 10 Aug 2020.

Vancouver:

Bu F. Integral equation methods for the simulation of viscoelastic ultrasound vibro-acoustography. [Internet] [Doctoral dissertation]. University of Minnesota; 2011. [cited 2020 Aug 10]. Available from: http://purl.umn.edu/117262.

Council of Science Editors:

Bu F. Integral equation methods for the simulation of viscoelastic ultrasound vibro-acoustography. [Doctoral Dissertation]. University of Minnesota; 2011. Available from: http://purl.umn.edu/117262

Georgia Tech

19.
Lovelady, David Lowell.
The behavior of solutions of Stieltjes *integral* * equations*.

Degree: PhD, Mathematics, 1971, Georgia Tech

URL: http://hdl.handle.net/1853/28559

Subjects/Keywords: Integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lovelady, D. L. (1971). The behavior of solutions of Stieltjes integral equations. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/28559

Chicago Manual of Style (16^{th} Edition):

Lovelady, David Lowell. “The behavior of solutions of Stieltjes integral equations.” 1971. Doctoral Dissertation, Georgia Tech. Accessed August 10, 2020. http://hdl.handle.net/1853/28559.

MLA Handbook (7^{th} Edition):

Lovelady, David Lowell. “The behavior of solutions of Stieltjes integral equations.” 1971. Web. 10 Aug 2020.

Vancouver:

Lovelady DL. The behavior of solutions of Stieltjes integral equations. [Internet] [Doctoral dissertation]. Georgia Tech; 1971. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1853/28559.

Council of Science Editors:

Lovelady DL. The behavior of solutions of Stieltjes integral equations. [Doctoral Dissertation]. Georgia Tech; 1971. Available from: http://hdl.handle.net/1853/28559

Oregon State University

20. Scarborough, Stephen D. A moment rate characterization for stochastic integrals.

Degree: PhD, Mathematics, 1982, Oregon State University

URL: http://hdl.handle.net/1957/17502

See pdf.
*Advisors/Committee Members: Carter, David S. (advisor).*

Subjects/Keywords: Stochastic integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Scarborough, S. D. (1982). A moment rate characterization for stochastic integrals. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17502

Chicago Manual of Style (16^{th} Edition):

Scarborough, Stephen D. “A moment rate characterization for stochastic integrals.” 1982. Doctoral Dissertation, Oregon State University. Accessed August 10, 2020. http://hdl.handle.net/1957/17502.

MLA Handbook (7^{th} Edition):

Scarborough, Stephen D. “A moment rate characterization for stochastic integrals.” 1982. Web. 10 Aug 2020.

Vancouver:

Scarborough SD. A moment rate characterization for stochastic integrals. [Internet] [Doctoral dissertation]. Oregon State University; 1982. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/1957/17502.

Council of Science Editors:

Scarborough SD. A moment rate characterization for stochastic integrals. [Doctoral Dissertation]. Oregon State University; 1982. Available from: http://hdl.handle.net/1957/17502

Iowa State University

21.
Langenhop, Carl Eric.
Properties of kernels of *integral* *equations* whose iterates satisfy linear relations.

Degree: 1948, Iowa State University

URL: https://lib.dr.iastate.edu/rtd/12897

► The principle result obtained in this thesis is the theorem that if the iterated kernels of an *integral* equation satisfy a linear relation a1K1x,y +a2K2x,y…
(more)

Subjects/Keywords: Integral equations; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Langenhop, C. E. (1948). Properties of kernels of integral equations whose iterates satisfy linear relations. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/rtd/12897

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Langenhop, Carl Eric. “Properties of kernels of integral equations whose iterates satisfy linear relations.” 1948. Thesis, Iowa State University. Accessed August 10, 2020. https://lib.dr.iastate.edu/rtd/12897.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Langenhop, Carl Eric. “Properties of kernels of integral equations whose iterates satisfy linear relations.” 1948. Web. 10 Aug 2020.

Vancouver:

Langenhop CE. Properties of kernels of integral equations whose iterates satisfy linear relations. [Internet] [Thesis]. Iowa State University; 1948. [cited 2020 Aug 10]. Available from: https://lib.dr.iastate.edu/rtd/12897.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Langenhop CE. Properties of kernels of integral equations whose iterates satisfy linear relations. [Thesis]. Iowa State University; 1948. Available from: https://lib.dr.iastate.edu/rtd/12897

Not specified: Masters Thesis or Doctoral Dissertation

Michigan State University

22.
Wang, Haiyan.
Existence and multiplicity of positive solutions of nonlinear *integral* and differential * equations*.

Degree: PhD, Department of Mathematics, 1997, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:26264

Subjects/Keywords: Nonlinear integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang, H. (1997). Existence and multiplicity of positive solutions of nonlinear integral and differential equations. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:26264

Chicago Manual of Style (16^{th} Edition):

Wang, Haiyan. “Existence and multiplicity of positive solutions of nonlinear integral and differential equations.” 1997. Doctoral Dissertation, Michigan State University. Accessed August 10, 2020. http://etd.lib.msu.edu/islandora/object/etd:26264.

MLA Handbook (7^{th} Edition):

Wang, Haiyan. “Existence and multiplicity of positive solutions of nonlinear integral and differential equations.” 1997. Web. 10 Aug 2020.

Vancouver:

Wang H. Existence and multiplicity of positive solutions of nonlinear integral and differential equations. [Internet] [Doctoral dissertation]. Michigan State University; 1997. [cited 2020 Aug 10]. Available from: http://etd.lib.msu.edu/islandora/object/etd:26264.

Council of Science Editors:

Wang H. Existence and multiplicity of positive solutions of nonlinear integral and differential equations. [Doctoral Dissertation]. Michigan State University; 1997. Available from: http://etd.lib.msu.edu/islandora/object/etd:26264

University of Minnesota

23. Ortan, Alexandra. Efficient numerical algorithms for virtual design in nanoplasmonics.

Degree: PhD, Mathematics, 2017, University of Minnesota

URL: http://hdl.handle.net/11299/188915

► Nanomaterials have given rise to many devices, from high-density data storage to optical bio-sensors capable of detecting specific biochemicals. The design of new nanodevices relies…
(more)

Subjects/Keywords: Integral Equations; Nanoplasmonics; Numerical Methods; Optimization

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ortan, A. (2017). Efficient numerical algorithms for virtual design in nanoplasmonics. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/188915

Chicago Manual of Style (16^{th} Edition):

Ortan, Alexandra. “Efficient numerical algorithms for virtual design in nanoplasmonics.” 2017. Doctoral Dissertation, University of Minnesota. Accessed August 10, 2020. http://hdl.handle.net/11299/188915.

MLA Handbook (7^{th} Edition):

Ortan, Alexandra. “Efficient numerical algorithms for virtual design in nanoplasmonics.” 2017. Web. 10 Aug 2020.

Vancouver:

Ortan A. Efficient numerical algorithms for virtual design in nanoplasmonics. [Internet] [Doctoral dissertation]. University of Minnesota; 2017. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/11299/188915.

Council of Science Editors:

Ortan A. Efficient numerical algorithms for virtual design in nanoplasmonics. [Doctoral Dissertation]. University of Minnesota; 2017. Available from: http://hdl.handle.net/11299/188915

24.
Thomas, Sophy Margaret.
Numerical analysis of some *integral* *equations* with singularities.

Degree: PhD, 2006, University of Chester

URL: http://hdl.handle.net/10034/70394

► In this thesis we consider new approaches to the numerical solution of a class of Volterra *integral* *equations*, which contain a kernel with singularity of…
(more)

Subjects/Keywords: 518.66; integral equations : Volterra integral equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Thomas, S. M. (2006). Numerical analysis of some integral equations with singularities. (Doctoral Dissertation). University of Chester. Retrieved from http://hdl.handle.net/10034/70394

Chicago Manual of Style (16^{th} Edition):

Thomas, Sophy Margaret. “Numerical analysis of some integral equations with singularities.” 2006. Doctoral Dissertation, University of Chester. Accessed August 10, 2020. http://hdl.handle.net/10034/70394.

MLA Handbook (7^{th} Edition):

Thomas, Sophy Margaret. “Numerical analysis of some integral equations with singularities.” 2006. Web. 10 Aug 2020.

Vancouver:

Thomas SM. Numerical analysis of some integral equations with singularities. [Internet] [Doctoral dissertation]. University of Chester; 2006. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/10034/70394.

Council of Science Editors:

Thomas SM. Numerical analysis of some integral equations with singularities. [Doctoral Dissertation]. University of Chester; 2006. Available from: http://hdl.handle.net/10034/70394

25.
Sreenivas, P C.
On special functions, *integral* transforms and *integral*
* equations*.

Degree: 2008, Kannur University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/2578

Appendix p. 238-240
*Advisors/Committee Members: Nambisan, T M Vasudevan.*

Subjects/Keywords: Mathematics; Integral equations; Integral transforms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sreenivas, P. C. (2008). On special functions, integral transforms and integral equations. (Thesis). Kannur University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/2578

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sreenivas, P C. “On special functions, integral transforms and integral equations.” 2008. Thesis, Kannur University. Accessed August 10, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/2578.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sreenivas, P C. “On special functions, integral transforms and integral equations.” 2008. Web. 10 Aug 2020.

Vancouver:

Sreenivas PC. On special functions, integral transforms and integral equations. [Internet] [Thesis]. Kannur University; 2008. [cited 2020 Aug 10]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/2578.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sreenivas PC. On special functions, integral transforms and integral equations. [Thesis]. Kannur University; 2008. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/2578

Not specified: Masters Thesis or Doctoral Dissertation

26.
Vidhya, N.
Special functions and *integral* transforms.

Degree: 2008, Kannur University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/2586

References p. 259, Appendix
p.260-262
*Advisors/Committee Members: Nambisan, T M Vasudevan.*

Subjects/Keywords: Integral Transforms; Mathematics; Integral Equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vidhya, N. (2008). Special functions and integral transforms. (Thesis). Kannur University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/2586

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Vidhya, N. “Special functions and integral transforms.” 2008. Thesis, Kannur University. Accessed August 10, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/2586.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Vidhya, N. “Special functions and integral transforms.” 2008. Web. 10 Aug 2020.

Vancouver:

Vidhya N. Special functions and integral transforms. [Internet] [Thesis]. Kannur University; 2008. [cited 2020 Aug 10]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/2586.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vidhya N. Special functions and integral transforms. [Thesis]. Kannur University; 2008. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/2586

Not specified: Masters Thesis or Doctoral Dissertation

27. Ortiz guzman, John Erick. Fast boundary element formulations for electromagnetic modelling in biological tissues : Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiques.

Degree: Docteur es, Génie électrique, 2017, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire

URL: http://www.theses.fr/2017IMTA0051

►

Cette thèse présente plusieurs nouvelles techniques pour la convergence rapide des solutions aux éléments de frontière de problèmes électromagnétiques. Une attention spéciale a été dédiée… (more)

Subjects/Keywords: Equations intégrales; Électroencéphalographie; Électromagnétisme numérique; Integral equations; Electroencephalography; Computational electromagnetics; 004

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ortiz guzman, J. E. (2017). Fast boundary element formulations for electromagnetic modelling in biological tissues : Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiques. (Doctoral Dissertation). Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire. Retrieved from http://www.theses.fr/2017IMTA0051

Chicago Manual of Style (16^{th} Edition):

Ortiz guzman, John Erick. “Fast boundary element formulations for electromagnetic modelling in biological tissues : Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiques.” 2017. Doctoral Dissertation, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire. Accessed August 10, 2020. http://www.theses.fr/2017IMTA0051.

MLA Handbook (7^{th} Edition):

Ortiz guzman, John Erick. “Fast boundary element formulations for electromagnetic modelling in biological tissues : Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiques.” 2017. Web. 10 Aug 2020.

Vancouver:

Ortiz guzman JE. Fast boundary element formulations for electromagnetic modelling in biological tissues : Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiques. [Internet] [Doctoral dissertation]. Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire; 2017. [cited 2020 Aug 10]. Available from: http://www.theses.fr/2017IMTA0051.

Council of Science Editors:

Ortiz guzman JE. Fast boundary element formulations for electromagnetic modelling in biological tissues : Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiques. [Doctoral Dissertation]. Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire; 2017. Available from: http://www.theses.fr/2017IMTA0051

University of Johannesburg

28.
Mamba, Hlukaphi Sithando.
Numerical solutions for a class of nonlinear volterra *integral* equation.

Degree: 2015, University of Johannesburg

URL: http://hdl.handle.net/10210/15077

►

M.Sc. (Applied Mathematics)

Numerous studies on linear and nonlinear Volterra *integral* *equations* (VIEs), have been performed. These studies mainly considered the existence and uniqueness of…
(more)

Subjects/Keywords: Volterra equations; Integral equations; Numerical analysis; Mathematical analysis

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mamba, H. S. (2015). Numerical solutions for a class of nonlinear volterra integral equation. (Thesis). University of Johannesburg. Retrieved from http://hdl.handle.net/10210/15077

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mamba, Hlukaphi Sithando. “Numerical solutions for a class of nonlinear volterra integral equation.” 2015. Thesis, University of Johannesburg. Accessed August 10, 2020. http://hdl.handle.net/10210/15077.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mamba, Hlukaphi Sithando. “Numerical solutions for a class of nonlinear volterra integral equation.” 2015. Web. 10 Aug 2020.

Vancouver:

Mamba HS. Numerical solutions for a class of nonlinear volterra integral equation. [Internet] [Thesis]. University of Johannesburg; 2015. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/10210/15077.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mamba HS. Numerical solutions for a class of nonlinear volterra integral equation. [Thesis]. University of Johannesburg; 2015. Available from: http://hdl.handle.net/10210/15077

Not specified: Masters Thesis or Doctoral Dissertation

University of Oklahoma

29.
Bennett, John Bruce.
Volterra *integral* *equations* and Fr'echet differentials.

Degree: PhD, 1973, University of Oklahoma

URL: http://hdl.handle.net/11244/3572

Subjects/Keywords: Integral equations.; Mathematics.; Differential equations.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bennett, J. B. (1973). Volterra integral equations and Fr'echet differentials. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/3572

Chicago Manual of Style (16^{th} Edition):

Bennett, John Bruce. “Volterra integral equations and Fr'echet differentials.” 1973. Doctoral Dissertation, University of Oklahoma. Accessed August 10, 2020. http://hdl.handle.net/11244/3572.

MLA Handbook (7^{th} Edition):

Bennett, John Bruce. “Volterra integral equations and Fr'echet differentials.” 1973. Web. 10 Aug 2020.

Vancouver:

Bennett JB. Volterra integral equations and Fr'echet differentials. [Internet] [Doctoral dissertation]. University of Oklahoma; 1973. [cited 2020 Aug 10]. Available from: http://hdl.handle.net/11244/3572.

Council of Science Editors:

Bennett JB. Volterra integral equations and Fr'echet differentials. [Doctoral Dissertation]. University of Oklahoma; 1973. Available from: http://hdl.handle.net/11244/3572

University of Colorado

30.
Ma, Chao.
Qualitative and quantitative analysis of nonlinear *integral* and differential * equations*.

Degree: PhD, Mathematics, 2013, University of Colorado

URL: https://scholar.colorado.edu/math_gradetds/21

► This thesis consists of two parts: in part one (Chapter 3, 4, 5), we study the qualitative and quantitative properties of the positive solutions…
(more)

Subjects/Keywords: integral equations; partial differential equations; qualitative analysis; quantitative analysis; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ma, C. (2013). Qualitative and quantitative analysis of nonlinear integral and differential equations. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/21

Chicago Manual of Style (16^{th} Edition):

Ma, Chao. “Qualitative and quantitative analysis of nonlinear integral and differential equations.” 2013. Doctoral Dissertation, University of Colorado. Accessed August 10, 2020. https://scholar.colorado.edu/math_gradetds/21.

MLA Handbook (7^{th} Edition):

Ma, Chao. “Qualitative and quantitative analysis of nonlinear integral and differential equations.” 2013. Web. 10 Aug 2020.

Vancouver:

Ma C. Qualitative and quantitative analysis of nonlinear integral and differential equations. [Internet] [Doctoral dissertation]. University of Colorado; 2013. [cited 2020 Aug 10]. Available from: https://scholar.colorado.edu/math_gradetds/21.

Council of Science Editors:

Ma C. Qualitative and quantitative analysis of nonlinear integral and differential equations. [Doctoral Dissertation]. University of Colorado; 2013. Available from: https://scholar.colorado.edu/math_gradetds/21