Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(hyperbolic problems). Showing records 1 – 16 of 16 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Colorado

1. Kalchev, Delyan Zhelev. Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems.

Degree: PhD, 2018, University of Colorado

  Least-squares finite element discretizations of first-order hyperbolic partial differential equations (PDEs) are proposed and studied. Hyperbolic problems are notorious for possessing solutions with jump… (more)

Subjects/Keywords: dual methods; finite element methods; first-order hyperbolic problems; hyperbolic balance laws; least-squares methods; negative-norm methods; Applied Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kalchev, D. Z. (2018). Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/appm_gradetds/118

Chicago Manual of Style (16th Edition):

Kalchev, Delyan Zhelev. “Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems.” 2018. Doctoral Dissertation, University of Colorado. Accessed August 18, 2019. https://scholar.colorado.edu/appm_gradetds/118.

MLA Handbook (7th Edition):

Kalchev, Delyan Zhelev. “Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems.” 2018. Web. 18 Aug 2019.

Vancouver:

Kalchev DZ. Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems. [Internet] [Doctoral dissertation]. University of Colorado; 2018. [cited 2019 Aug 18]. Available from: https://scholar.colorado.edu/appm_gradetds/118.

Council of Science Editors:

Kalchev DZ. Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems. [Doctoral Dissertation]. University of Colorado; 2018. Available from: https://scholar.colorado.edu/appm_gradetds/118


Virginia Tech

2. Mechaii, Idir. A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes.

Degree: PhD, Mathematics, 2012, Virginia Tech

 In this thesis, we present a simple and efficient \emph{a posteriori} error estimation procedure for a discontinuous finite element method applied to scalar first-order hyperbolic(more)

Subjects/Keywords: a posteriori error estimation; Discontinuous Galerkin method; hyperbolic problems; superconvergence; tetrahedral meshes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mechaii, I. (2012). A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/77344

Chicago Manual of Style (16th Edition):

Mechaii, Idir. “A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes.” 2012. Doctoral Dissertation, Virginia Tech. Accessed August 18, 2019. http://hdl.handle.net/10919/77344.

MLA Handbook (7th Edition):

Mechaii, Idir. “A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes.” 2012. Web. 18 Aug 2019.

Vancouver:

Mechaii I. A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes. [Internet] [Doctoral dissertation]. Virginia Tech; 2012. [cited 2019 Aug 18]. Available from: http://hdl.handle.net/10919/77344.

Council of Science Editors:

Mechaii I. A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes. [Doctoral Dissertation]. Virginia Tech; 2012. Available from: http://hdl.handle.net/10919/77344


Virginia Tech

3. Moon, Kihyo. Immersed Discontinuous Galerkin Methods for Acoustic Wave Propagation in Inhomogeneous Media.

Degree: PhD, Mathematics, 2016, Virginia Tech

 We present immersed discontinuous Galerkin finite element methods for one and two dimensional acoustic wave propagation problems in inhomogeneous media where elements are allowed to… (more)

Subjects/Keywords: Immersed Finite Element; Discontinuous Galerkin Method; Hyperbolic PDEs; Acoustic Wave Propagation; Inhomogeneous Media; Interface Problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moon, K. (2016). Immersed Discontinuous Galerkin Methods for Acoustic Wave Propagation in Inhomogeneous Media. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/70906

Chicago Manual of Style (16th Edition):

Moon, Kihyo. “Immersed Discontinuous Galerkin Methods for Acoustic Wave Propagation in Inhomogeneous Media.” 2016. Doctoral Dissertation, Virginia Tech. Accessed August 18, 2019. http://hdl.handle.net/10919/70906.

MLA Handbook (7th Edition):

Moon, Kihyo. “Immersed Discontinuous Galerkin Methods for Acoustic Wave Propagation in Inhomogeneous Media.” 2016. Web. 18 Aug 2019.

Vancouver:

Moon K. Immersed Discontinuous Galerkin Methods for Acoustic Wave Propagation in Inhomogeneous Media. [Internet] [Doctoral dissertation]. Virginia Tech; 2016. [cited 2019 Aug 18]. Available from: http://hdl.handle.net/10919/70906.

Council of Science Editors:

Moon K. Immersed Discontinuous Galerkin Methods for Acoustic Wave Propagation in Inhomogeneous Media. [Doctoral Dissertation]. Virginia Tech; 2016. Available from: http://hdl.handle.net/10919/70906


University of Colorado

4. Kalchev, Delyan Zhelev. Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems.

Degree: PhD, Applied Mathematics, 2018, University of Colorado

  Least-squares finite element discretizations of first-order hyperbolic partial differential equations (PDEs) are proposed and studied. Hyperbolic problems are notorious for possessing solutions with jump… (more)

Subjects/Keywords: first-order hyperbolic problems; balance laws; conservation laws; space-time discretization; least-squares methods; finite element methods; Numerical Analysis and Computation; Partial Differential Equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kalchev, D. Z. (2018). Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/appm_gradetds/138

Chicago Manual of Style (16th Edition):

Kalchev, Delyan Zhelev. “Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems.” 2018. Doctoral Dissertation, University of Colorado. Accessed August 18, 2019. https://scholar.colorado.edu/appm_gradetds/138.

MLA Handbook (7th Edition):

Kalchev, Delyan Zhelev. “Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems.” 2018. Web. 18 Aug 2019.

Vancouver:

Kalchev DZ. Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems. [Internet] [Doctoral dissertation]. University of Colorado; 2018. [cited 2019 Aug 18]. Available from: https://scholar.colorado.edu/appm_gradetds/138.

Council of Science Editors:

Kalchev DZ. Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems. [Doctoral Dissertation]. University of Colorado; 2018. Available from: https://scholar.colorado.edu/appm_gradetds/138


University of Oxford

5. Stevens, Ben. Short-time structural stability of compressible vortex sheets with surface tension.

Degree: PhD, 2014, University of Oxford

 The main purpose of this work is to prove short-time structural stability of compressible vortex sheets with surface tension. The main result can be summarised… (more)

Subjects/Keywords: 518; Fluid mechanics (mathematics); Partial differential equations; Free Boundary Problems; Compressible Fluid Dynamics; Hyperbolic Conservation Laws; Contact Discontinuities; Euler Equations; Vortex Sheets; Existence and Uniqueness Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stevens, B. (2014). Short-time structural stability of compressible vortex sheets with surface tension. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:378713da-cd05-4b9a-856d-bee2b0fb47ce ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627878

Chicago Manual of Style (16th Edition):

Stevens, Ben. “Short-time structural stability of compressible vortex sheets with surface tension.” 2014. Doctoral Dissertation, University of Oxford. Accessed August 18, 2019. http://ora.ox.ac.uk/objects/uuid:378713da-cd05-4b9a-856d-bee2b0fb47ce ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627878.

MLA Handbook (7th Edition):

Stevens, Ben. “Short-time structural stability of compressible vortex sheets with surface tension.” 2014. Web. 18 Aug 2019.

Vancouver:

Stevens B. Short-time structural stability of compressible vortex sheets with surface tension. [Internet] [Doctoral dissertation]. University of Oxford; 2014. [cited 2019 Aug 18]. Available from: http://ora.ox.ac.uk/objects/uuid:378713da-cd05-4b9a-856d-bee2b0fb47ce ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627878.

Council of Science Editors:

Stevens B. Short-time structural stability of compressible vortex sheets with surface tension. [Doctoral Dissertation]. University of Oxford; 2014. Available from: http://ora.ox.ac.uk/objects/uuid:378713da-cd05-4b9a-856d-bee2b0fb47ce ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627878


Virginia Tech

6. Baccouch, Mahboub. Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes.

Degree: PhD, Mathematics, 2008, Virginia Tech

 In this thesis, we present new superconvergence properties of discontinuous Galerkin (DG) methods for two-dimensional hyperbolic problems. We investigate the superconvergence properties of the DG… (more)

Subjects/Keywords: hyperbolic problems; a posteriori errorestimates; Discontinuous Galerkin method; triangular meshes; superconvergence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baccouch, M. (2008). Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26331

Chicago Manual of Style (16th Edition):

Baccouch, Mahboub. “Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes.” 2008. Doctoral Dissertation, Virginia Tech. Accessed August 18, 2019. http://hdl.handle.net/10919/26331.

MLA Handbook (7th Edition):

Baccouch, Mahboub. “Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes.” 2008. Web. 18 Aug 2019.

Vancouver:

Baccouch M. Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes. [Internet] [Doctoral dissertation]. Virginia Tech; 2008. [cited 2019 Aug 18]. Available from: http://hdl.handle.net/10919/26331.

Council of Science Editors:

Baccouch M. Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes. [Doctoral Dissertation]. Virginia Tech; 2008. Available from: http://hdl.handle.net/10919/26331

7. Renaud, Adrien. The Discontinuous Galerkin Material Point Method : Application to hyperbolic problems in solid mechanics : Extension de la Méthode des Points Matériels à l'approximation de Galerkin Discontinue : Application aux problèmes hyperboliques en mécanique des solides.

Degree: Docteur es, Mécanique, 2018, Ecole centrale de Nantes

Dans cette thèse, la Méthode des Points Matériels (MPM) est étendue à l’approximation de Galerkin Discontinue (DG) et appliquée aux problèmes hyperboliques en mécanique des… (more)

Subjects/Keywords: Problèmes hyperboliques; Approximation de Galerkin discontinue; Méthode des points matériels; Hyperélasticité; Ondes simples plastiques; Grandes transformations; Hyperbolic problems; Discontinuous Galerkin approximation; Material point method; Hyperelasticity; Plastic simple waves; Finite deformation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Renaud, A. (2018). The Discontinuous Galerkin Material Point Method : Application to hyperbolic problems in solid mechanics : Extension de la Méthode des Points Matériels à l'approximation de Galerkin Discontinue : Application aux problèmes hyperboliques en mécanique des solides. (Doctoral Dissertation). Ecole centrale de Nantes. Retrieved from http://www.theses.fr/2018ECDN0058

Chicago Manual of Style (16th Edition):

Renaud, Adrien. “The Discontinuous Galerkin Material Point Method : Application to hyperbolic problems in solid mechanics : Extension de la Méthode des Points Matériels à l'approximation de Galerkin Discontinue : Application aux problèmes hyperboliques en mécanique des solides.” 2018. Doctoral Dissertation, Ecole centrale de Nantes. Accessed August 18, 2019. http://www.theses.fr/2018ECDN0058.

MLA Handbook (7th Edition):

Renaud, Adrien. “The Discontinuous Galerkin Material Point Method : Application to hyperbolic problems in solid mechanics : Extension de la Méthode des Points Matériels à l'approximation de Galerkin Discontinue : Application aux problèmes hyperboliques en mécanique des solides.” 2018. Web. 18 Aug 2019.

Vancouver:

Renaud A. The Discontinuous Galerkin Material Point Method : Application to hyperbolic problems in solid mechanics : Extension de la Méthode des Points Matériels à l'approximation de Galerkin Discontinue : Application aux problèmes hyperboliques en mécanique des solides. [Internet] [Doctoral dissertation]. Ecole centrale de Nantes; 2018. [cited 2019 Aug 18]. Available from: http://www.theses.fr/2018ECDN0058.

Council of Science Editors:

Renaud A. The Discontinuous Galerkin Material Point Method : Application to hyperbolic problems in solid mechanics : Extension de la Méthode des Points Matériels à l'approximation de Galerkin Discontinue : Application aux problèmes hyperboliques en mécanique des solides. [Doctoral Dissertation]. Ecole centrale de Nantes; 2018. Available from: http://www.theses.fr/2018ECDN0058


Rochester Institute of Technology

8. Choroszylow, Ewan. Solution of the Transonic Potential Flow Equation By Finite Differences for the Hydraulic Analogy.

Degree: Mechanical Engineering, 1976, Rochester Institute of Technology

 A numerical procedure is presented for the solution of the transonic potential flow equation around an isolated airfoil, for the hydraulic analogy. The numerical method… (more)

Subjects/Keywords: Finite difference method; Hyperbolic flow problems; Mechanical engineering; Thesis; Transonic potential flow equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Choroszylow, E. (1976). Solution of the Transonic Potential Flow Equation By Finite Differences for the Hydraulic Analogy. (Thesis). Rochester Institute of Technology. Retrieved from https://scholarworks.rit.edu/theses/5904

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Choroszylow, Ewan. “Solution of the Transonic Potential Flow Equation By Finite Differences for the Hydraulic Analogy.” 1976. Thesis, Rochester Institute of Technology. Accessed August 18, 2019. https://scholarworks.rit.edu/theses/5904.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Choroszylow, Ewan. “Solution of the Transonic Potential Flow Equation By Finite Differences for the Hydraulic Analogy.” 1976. Web. 18 Aug 2019.

Vancouver:

Choroszylow E. Solution of the Transonic Potential Flow Equation By Finite Differences for the Hydraulic Analogy. [Internet] [Thesis]. Rochester Institute of Technology; 1976. [cited 2019 Aug 18]. Available from: https://scholarworks.rit.edu/theses/5904.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Choroszylow E. Solution of the Transonic Potential Flow Equation By Finite Differences for the Hydraulic Analogy. [Thesis]. Rochester Institute of Technology; 1976. Available from: https://scholarworks.rit.edu/theses/5904

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade do Estado do Rio de Janeiro

9. Nelson Machado Barbosa. Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo.

Degree: Master, 2010, Universidade do Estado do Rio de Janeiro

O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água no reservatório a fim de manter a pressão necessária para… (more)

Subjects/Keywords: Recuperação secundária do petróleo Modelos matemáticos; Equações diferenciais hiperbólicas Soluções numéricas; Burgers, Equação de; Lei da conservação (Matemática); Equações hiperbólicas não lineares; Problemas de Burgers e Buckley-Leverett; Método composto LWLF-k; Secondary recovery of oil - Mathematical models; Differential equations, Hyperbolic - Numerical solutions; Burgers equation; Conservation laws (Mathematics); Nonlinear hyperbolic equations; Burgers and Buckley-Leverett problems; LWLF-k Composite Scheme; MATEMATICA APLICADA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barbosa, N. M. (2010). Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo. (Masters Thesis). Universidade do Estado do Rio de Janeiro. Retrieved from http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1290 ;

Chicago Manual of Style (16th Edition):

Barbosa, Nelson Machado. “Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo.” 2010. Masters Thesis, Universidade do Estado do Rio de Janeiro. Accessed August 18, 2019. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1290 ;.

MLA Handbook (7th Edition):

Barbosa, Nelson Machado. “Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo.” 2010. Web. 18 Aug 2019.

Vancouver:

Barbosa NM. Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo. [Internet] [Masters thesis]. Universidade do Estado do Rio de Janeiro; 2010. [cited 2019 Aug 18]. Available from: http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1290 ;.

Council of Science Editors:

Barbosa NM. Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo. [Masters Thesis]. Universidade do Estado do Rio de Janeiro; 2010. Available from: http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1290 ;


University of Illinois – Urbana-Champaign

10. Yan, Su. Computational modeling and simulation of nonlinear electromagnetic and multiphysics problems.

Degree: PhD, Electrical & Computer Engr, 2016, University of Illinois – Urbana-Champaign

 In this dissertation, nonlinear electromagnetic and multiphysics problems are modeled and simulated using various three-dimensional full-wave methods in the time domain. The problems under consideration… (more)

Subjects/Keywords: Nonlinear Electromagnetic Problems; Multiphysics Problems; Multiscale Problems; Time-Domain Simulation; Newton's Method; Jiles-Atherton Model; Hysteresis Model; Nonuniform Time-Stepping Scheme; Time-Domain Finite Element Method (TDFEM); Discontinuous Galerkin Time-Domain (DGTD) Method; Local Discontinuous Galerkin (LDG) Method; High-Power Microwave (HPM); Dielectric Breakdown; Air Breakdown; Electromagnetic – Plasma Interaction; Boltzmann's Equation; Nonlinear Conductivity; Plasma Fluid Model; Plasma Formation; Plasma Shielding; Hyperbolic Equation; Diffusion Equation; Divergence Cleaning Technique; Purely Hyperbolic Maxwell Equations; Damped Hyperbolic Maxwell Equations; Continuity Preserving; Dynamic h-Adaptation Algorithm; Dynamic p-Adaptation Algorithm; Adaptive Cartesian Mesh; Local Time-Stepping

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yan, S. (2016). Computational modeling and simulation of nonlinear electromagnetic and multiphysics problems. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/93014

Chicago Manual of Style (16th Edition):

Yan, Su. “Computational modeling and simulation of nonlinear electromagnetic and multiphysics problems.” 2016. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed August 18, 2019. http://hdl.handle.net/2142/93014.

MLA Handbook (7th Edition):

Yan, Su. “Computational modeling and simulation of nonlinear electromagnetic and multiphysics problems.” 2016. Web. 18 Aug 2019.

Vancouver:

Yan S. Computational modeling and simulation of nonlinear electromagnetic and multiphysics problems. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2016. [cited 2019 Aug 18]. Available from: http://hdl.handle.net/2142/93014.

Council of Science Editors:

Yan S. Computational modeling and simulation of nonlinear electromagnetic and multiphysics problems. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2016. Available from: http://hdl.handle.net/2142/93014


Tulane University

11. Kurochkin, Dmitry V. Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes.

Degree: PhD, Tulane University

We develop novel numerical methods for optimization problems subject to constraints given by nonlinear hyperbolic systems of conservation and balance laws in one space dimension.… (more)

Subjects/Keywords: PDE-constrained Optimization Problems; Hyperbolic Systems Of Conservation And Balance Laws; Linear Adjoint System; School of Science & Engineering; Mathematics; Ph.D

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kurochkin, D. V. (n.d.). Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes. (Doctoral Dissertation). Tulane University. Retrieved from https://digitallibrary.tulane.edu/islandora/object/tulane:27958

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Chicago Manual of Style (16th Edition):

Kurochkin, Dmitry V. “Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes.” Doctoral Dissertation, Tulane University. Accessed August 18, 2019. https://digitallibrary.tulane.edu/islandora/object/tulane:27958.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

MLA Handbook (7th Edition):

Kurochkin, Dmitry V. “Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes.” Web. 18 Aug 2019.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Vancouver:

Kurochkin DV. Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes. [Internet] [Doctoral dissertation]. Tulane University; [cited 2019 Aug 18]. Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:27958.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Council of Science Editors:

Kurochkin DV. Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes. [Doctoral Dissertation]. Tulane University; Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:27958

Note: this citation may be lacking information needed for this citation format:
No year of publication.

12. Svadlenka, Karel. 自由境界を含む体積保存条件つき発展問題の解析と数値計算 : Mathematical analysis and numerical computation of volume-constrained evolutionary problems, involving free boundaries.

Degree: 2017, Kanazawa University / 金沢大学

金沢大学大学院自然科学研究科

金沢大学大学院自然科学研究科博士論文, 133p.

取得学位:博士(理学),授与番号:自博甲第966号,授与年月日:2008年3月22日,授与大学:金沢大学,論文主査:小俣, 正朗

Subjects/Keywords: partial differential equations of parabolic and hyperbolic type; integral constraints; free boundary problems; variational method; discrete Morse flow; regularity; numerical computation; finite element method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Svadlenka, K. (2017). 自由境界を含む体積保存条件つき発展問題の解析と数値計算 : Mathematical analysis and numerical computation of volume-constrained evolutionary problems, involving free boundaries. (Thesis). Kanazawa University / 金沢大学. Retrieved from http://hdl.handle.net/2297/9574

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Svadlenka, Karel. “自由境界を含む体積保存条件つき発展問題の解析と数値計算 : Mathematical analysis and numerical computation of volume-constrained evolutionary problems, involving free boundaries.” 2017. Thesis, Kanazawa University / 金沢大学. Accessed August 18, 2019. http://hdl.handle.net/2297/9574.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Svadlenka, Karel. “自由境界を含む体積保存条件つき発展問題の解析と数値計算 : Mathematical analysis and numerical computation of volume-constrained evolutionary problems, involving free boundaries.” 2017. Web. 18 Aug 2019.

Vancouver:

Svadlenka K. 自由境界を含む体積保存条件つき発展問題の解析と数値計算 : Mathematical analysis and numerical computation of volume-constrained evolutionary problems, involving free boundaries. [Internet] [Thesis]. Kanazawa University / 金沢大学; 2017. [cited 2019 Aug 18]. Available from: http://hdl.handle.net/2297/9574.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Svadlenka K. 自由境界を含む体積保存条件つき発展問題の解析と数値計算 : Mathematical analysis and numerical computation of volume-constrained evolutionary problems, involving free boundaries. [Thesis]. Kanazawa University / 金沢大学; 2017. Available from: http://hdl.handle.net/2297/9574

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Bordeaux I

13. Marcou, Alice. Interactions d’ondes et de bord : Sur la répartition des valeurs des fonctions arithmétiques.

Degree: Docteur es, Mathématiques appliquées, 2011, Université de Bordeaux I

Tout d'abord, des ondes de surface, solutions de problèmes aux limites hyperboliques non linéaires, sont étudiées : on construit une solution BKW sous forme de… (more)

Subjects/Keywords: Ondes de surface; Problèmes aux limites non linéaires; Développement BKW; Développement asymptotique rigoureux; Ondes de Rayleigh non linéaires; Rectification; Élasticité; Réflexion de discontinuités; Problèmes aux limites hyperboliques non linéaires faiblement stables; Condition faible de Lopatinski; Condition (WR); Perte d'une dérivée; Solutions striées; Surface waves; Nonlinear boundary value problems; WKB expansion; Rigorous asymptotic expansion; Non linear Rayleigh waves; Rectification; Elasticity; Reflection of discontinuities; Nonlinear weakly stable hyperbolic IBVP; Weak Lopatinski condition; (WR) condition; Loss of one derivative; Striated solutions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marcou, A. (2011). Interactions d’ondes et de bord : Sur la répartition des valeurs des fonctions arithmétiques. (Doctoral Dissertation). Université de Bordeaux I. Retrieved from http://www.theses.fr/2011BOR14267

Chicago Manual of Style (16th Edition):

Marcou, Alice. “Interactions d’ondes et de bord : Sur la répartition des valeurs des fonctions arithmétiques.” 2011. Doctoral Dissertation, Université de Bordeaux I. Accessed August 18, 2019. http://www.theses.fr/2011BOR14267.

MLA Handbook (7th Edition):

Marcou, Alice. “Interactions d’ondes et de bord : Sur la répartition des valeurs des fonctions arithmétiques.” 2011. Web. 18 Aug 2019.

Vancouver:

Marcou A. Interactions d’ondes et de bord : Sur la répartition des valeurs des fonctions arithmétiques. [Internet] [Doctoral dissertation]. Université de Bordeaux I; 2011. [cited 2019 Aug 18]. Available from: http://www.theses.fr/2011BOR14267.

Council of Science Editors:

Marcou A. Interactions d’ondes et de bord : Sur la répartition des valeurs des fonctions arithmétiques. [Doctoral Dissertation]. Université de Bordeaux I; 2011. Available from: http://www.theses.fr/2011BOR14267

14. ΣΤΡΑΤΗΣ, ΙΩΑΝΝΗΣ. ΕΠΙΛΥΣΙΜΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΠΡΟΒΛΗΜΑΤΩΝ ΣΥΝΟΡΙΑΚΩΝ ΤΙΜΩΝ.

Degree: 1987, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); National and Kapodistrian University of Athens

THE EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR A NON- LINEAR BOUNDARY VALUE PROBLEM INVOLVING A FOURTH-ORDER HYPERBOLIC EQUATION WITH DAMPING ARE STUDIED. MOREOVER, THE… (more)

Subjects/Keywords: HYPERBOLIC EQUATIONS WITH DAMPING; HYPERBOLIC EQUATIONS WITHOUT DAMPING; MULTIPLE SOLUTIONS; NON INVERTIBLE LINEAR OPERATORS; NON-LINEAR BOUNDARY VALUE PROBLEMS; NON-LINEAR EQUATIONS; NON-LINEAR PERTURBATIONS; Periodic solutions; Variational method; ΜΕΘΟΔΟΣ ΤΥΠΟΥ ΛΟΓΙΣΜΟΥ ΜΕΤΑΒΟΛΩΝ; ΜΗ ΑΝΤΙΣΤΡΕΨΙΜΟΙ ΓΡΑΜΜΙΚΟΙ ΤΕΛΕΣΤΕΣ; ΜΗ ΓΡΑΜΜΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΣΥΝΟΡΙΑΚΩΝ ΤΙΜΩΝ; ΜΗ ΓΡΑΜΜΙΚΕΣ ΔΙΑΤΑΡΑΧΕΣ; ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ; Περιοδικές λύσεις; ΠΟΛΛΑΠΛΕΣ ΛΥΣΕΙΣ; ΥΠΕΡΒΟΛΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ; ΥΠΕΡΒΟΛΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΧΩΡΙΣ ΑΠΟΣΒΕΣΗ

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

ΣΤΡΑΤΗΣ, . (1987). ΕΠΙΛΥΣΙΜΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΠΡΟΒΛΗΜΑΤΩΝ ΣΥΝΟΡΙΑΚΩΝ ΤΙΜΩΝ. (Thesis). Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); National and Kapodistrian University of Athens. Retrieved from http://hdl.handle.net/10442/hedi/1011

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

ΣΤΡΑΤΗΣ, ΙΩΑΝΝΗΣ. “ΕΠΙΛΥΣΙΜΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΠΡΟΒΛΗΜΑΤΩΝ ΣΥΝΟΡΙΑΚΩΝ ΤΙΜΩΝ.” 1987. Thesis, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); National and Kapodistrian University of Athens. Accessed August 18, 2019. http://hdl.handle.net/10442/hedi/1011.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

ΣΤΡΑΤΗΣ, ΙΩΑΝΝΗΣ. “ΕΠΙΛΥΣΙΜΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΠΡΟΒΛΗΜΑΤΩΝ ΣΥΝΟΡΙΑΚΩΝ ΤΙΜΩΝ.” 1987. Web. 18 Aug 2019.

Vancouver:

ΣΤΡΑΤΗΣ . ΕΠΙΛΥΣΙΜΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΠΡΟΒΛΗΜΑΤΩΝ ΣΥΝΟΡΙΑΚΩΝ ΤΙΜΩΝ. [Internet] [Thesis]. Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); National and Kapodistrian University of Athens; 1987. [cited 2019 Aug 18]. Available from: http://hdl.handle.net/10442/hedi/1011.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

ΣΤΡΑΤΗΣ . ΕΠΙΛΥΣΙΜΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΠΡΟΒΛΗΜΑΤΩΝ ΣΥΝΟΡΙΑΚΩΝ ΤΙΜΩΝ. [Thesis]. Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); National and Kapodistrian University of Athens; 1987. Available from: http://hdl.handle.net/10442/hedi/1011

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

15. Chen, Weitao. Fast Sweeping Methods for Steady State Hyperbolic Conservation Problems and Numerical Applications for Shape Optimization and Computational Cell Biology.

Degree: PhD, Mathematics, 2013, The Ohio State University

 This thesis consists of three parts.In the first part, we develop a numerical solver for steady states of hyperbolic conservation problems with high order of… (more)

Subjects/Keywords: Mathematics; Applied Mathematics; steady states; hyperbolic conservation laws; fast sweeping; Lax-Friedrichs; WENO; shape optimization; optical device; eigenvalue problems; steepest descent; computational cell biology; yeast mating; level set method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, W. (2013). Fast Sweeping Methods for Steady State Hyperbolic Conservation Problems and Numerical Applications for Shape Optimization and Computational Cell Biology. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1366279632

Chicago Manual of Style (16th Edition):

Chen, Weitao. “Fast Sweeping Methods for Steady State Hyperbolic Conservation Problems and Numerical Applications for Shape Optimization and Computational Cell Biology.” 2013. Doctoral Dissertation, The Ohio State University. Accessed August 18, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366279632.

MLA Handbook (7th Edition):

Chen, Weitao. “Fast Sweeping Methods for Steady State Hyperbolic Conservation Problems and Numerical Applications for Shape Optimization and Computational Cell Biology.” 2013. Web. 18 Aug 2019.

Vancouver:

Chen W. Fast Sweeping Methods for Steady State Hyperbolic Conservation Problems and Numerical Applications for Shape Optimization and Computational Cell Biology. [Internet] [Doctoral dissertation]. The Ohio State University; 2013. [cited 2019 Aug 18]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1366279632.

Council of Science Editors:

Chen W. Fast Sweeping Methods for Steady State Hyperbolic Conservation Problems and Numerical Applications for Shape Optimization and Computational Cell Biology. [Doctoral Dissertation]. The Ohio State University; 2013. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1366279632


University of South Africa

16. Fish, Washiela. Non-euclidean geometry and its possible role in the secondary school mathematics syllabus.

Degree: 1996, University of South Africa

 There are numerous problems associated with the teaching of Euclidean geometry at secondary schools today. Students do not see the necessity of proving results which… (more)

Subjects/Keywords: Euclidean geometry; Parallel postulate; non-Euclidean geometry; Mathematical-historical aspects; Hyperbolic geometry; Consistency; Poincare model; Philosophical implications; Senior secondary mathematics syllabus; Teaching-learning problems in geometry; Misconceptions about mathematics; Van Hiele model of development in geometry; Mathematical competency of teachers; Pre-assessment strategies; Teaching-learning strategies; Evaluation strategies

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fish, W. (1996). Non-euclidean geometry and its possible role in the secondary school mathematics syllabus. (Masters Thesis). University of South Africa. Retrieved from http://hdl.handle.net/10500/16789

Chicago Manual of Style (16th Edition):

Fish, Washiela. “Non-euclidean geometry and its possible role in the secondary school mathematics syllabus.” 1996. Masters Thesis, University of South Africa. Accessed August 18, 2019. http://hdl.handle.net/10500/16789.

MLA Handbook (7th Edition):

Fish, Washiela. “Non-euclidean geometry and its possible role in the secondary school mathematics syllabus.” 1996. Web. 18 Aug 2019.

Vancouver:

Fish W. Non-euclidean geometry and its possible role in the secondary school mathematics syllabus. [Internet] [Masters thesis]. University of South Africa; 1996. [cited 2019 Aug 18]. Available from: http://hdl.handle.net/10500/16789.

Council of Science Editors:

Fish W. Non-euclidean geometry and its possible role in the secondary school mathematics syllabus. [Masters Thesis]. University of South Africa; 1996. Available from: http://hdl.handle.net/10500/16789

.