Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(hydro elasticity). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Gaugain, Fabien. Analyse expérimentale et simulation numérique de l’interaction fluide-structure d’un hydrofoil élastique en écoulement subcavitant et cavitant : Numerical and experimental analisys of the fluid-structure interaction between an elastic hydrofoil and a subcavitating And cavitating flow.

Degree: Docteur es, Mécanique, 2013, Paris, ENSAM

Le développement de structures portantes flexibles dans le domaine naval, telles que les hélices ou les safrans, pose de nouveaux problèmes de dimensionnement. Cette thèse a pour but de développer une méthode de dimensionnement validée par des essais pour des structures portantes déformables soumises à des écoulements, éventuellement diphasiques de type cavitant. Les essais sont réalisés sur un hydrofoil de type NACA66-312(mod.), fabriqué en polyacetate, au sein du tunnel hydrodynamique de l'Institut de Recherche de l'Ecole Navale. Lors des essais, des mesures de déformations du profil portant ainsi que de niveaux vibratoires sont réalisées. Une méthode numérique couplant un code structure éléments finis (ANSYS Mechanical) avec un code fluide volumes finis (ANSYS CFX) par une méthode partitionnée, itérative, synchrone et séquentielle, laquelle est validée en terme de prédiction du déplacement et des contraintes pour des écoulements subcavitants dans un premier temps, puis pour des écoulements cavitants stables et instables.

The design of flexible lifting bodies in the naval industry, such as propelleror rudders, create some new design problems. This thesis proposes a numerical method validated by experimental comparison for solving the case of lifting bodies loaded by flow with or whitout cavitation. The tests are carried out in the hydrodynamic tunnel of the French Naval Academy Research Institute, on a polyacetate flexible hydrofoil NACA66-312 (mod.). During tests, strains and vibrations are measured for comparisons with numerical results. The numerical method uses a sequential synchrone iterative partitionned coupling betweena structural finite-element code (ANSYS Mechanical) and a finite-volume code (ANSYS CFX). Good agreement between numerical and experimental results for displacements, and stresses of the structure is highlighted. For the cavitating flow, a good agreement for the cavitation dynamic is observed and the stresses are evaluated with satisfying accuracy.

Advisors/Committee Members: Astolfi, Jacques-André (thesis director), Sigrist, Jean-François (thesis director), Deniset, François (thesis director).

Subjects/Keywords: Interaction fluide-structure; Hydro-elasticité; Cavitation; Simulation numérique; Expérimentation; Fluid-structure interaction; Hydro-elasticity; Cavitation; Numerical simulation; Experimentation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gaugain, F. (2013). Analyse expérimentale et simulation numérique de l’interaction fluide-structure d’un hydrofoil élastique en écoulement subcavitant et cavitant : Numerical and experimental analisys of the fluid-structure interaction between an elastic hydrofoil and a subcavitating And cavitating flow. (Doctoral Dissertation). Paris, ENSAM. Retrieved from http://www.theses.fr/2013ENAM0054

Chicago Manual of Style (16th Edition):

Gaugain, Fabien. “Analyse expérimentale et simulation numérique de l’interaction fluide-structure d’un hydrofoil élastique en écoulement subcavitant et cavitant : Numerical and experimental analisys of the fluid-structure interaction between an elastic hydrofoil and a subcavitating And cavitating flow.” 2013. Doctoral Dissertation, Paris, ENSAM. Accessed March 20, 2019. http://www.theses.fr/2013ENAM0054.

MLA Handbook (7th Edition):

Gaugain, Fabien. “Analyse expérimentale et simulation numérique de l’interaction fluide-structure d’un hydrofoil élastique en écoulement subcavitant et cavitant : Numerical and experimental analisys of the fluid-structure interaction between an elastic hydrofoil and a subcavitating And cavitating flow.” 2013. Web. 20 Mar 2019.

Vancouver:

Gaugain F. Analyse expérimentale et simulation numérique de l’interaction fluide-structure d’un hydrofoil élastique en écoulement subcavitant et cavitant : Numerical and experimental analisys of the fluid-structure interaction between an elastic hydrofoil and a subcavitating And cavitating flow. [Internet] [Doctoral dissertation]. Paris, ENSAM; 2013. [cited 2019 Mar 20]. Available from: http://www.theses.fr/2013ENAM0054.

Council of Science Editors:

Gaugain F. Analyse expérimentale et simulation numérique de l’interaction fluide-structure d’un hydrofoil élastique en écoulement subcavitant et cavitant : Numerical and experimental analisys of the fluid-structure interaction between an elastic hydrofoil and a subcavitating And cavitating flow. [Doctoral Dissertation]. Paris, ENSAM; 2013. Available from: http://www.theses.fr/2013ENAM0054


Delft University of Technology

2. Maljaars, P.J. Hydro-elastic analysis of flexible marine propellers.

Degree: 2019, Delft University of Technology

Higher efficiencies, higher cavitation inception speeds and reduced acoustic signature are claimed benefits of flexible composite propellers. Analysing the hydrodynamic performance of these flexible propellers, implies that a coupled fluid-structure interaction (FSI) computation has to be performed. An FSI coupling can be monolithic, which means the equations for the fluid and structural sub-problem are merged into one set of equations and solved simultaneously. Another approach is to apply a partitioned coupling, in which the existing fluid and structural sub-problem are sequentially solved. Then, coupling iterations are performed to converge to the monolithic solution. When coupling iterations are omitted, the approach becomes a so-called loose coupling. Due to the relatively high fluid added mass, flexible propeller computations require a strong coupling including coupling iterations. Coupling iterations make these kind of computations CPU intensive and therefore it is of importance to solve the structural and fluid problem efficiently. Advisors/Committee Members: Kaminski, M.L., van Terwisga, T.J.C., Delft University of Technology.

Subjects/Keywords: flexible propellers; composite propellers; hydro-elasticity; fluid-structure interaction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maljaars, P. J. (2019). Hydro-elastic analysis of flexible marine propellers. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; urn:NBN:nl:ui:24-uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; 19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; urn:isbn:978-94-6375-233-6 ; 10.4233/uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; urn:NBN:nl:ui:24-uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; http://resolver.tudelft.nl/uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6

Chicago Manual of Style (16th Edition):

Maljaars, P J. “Hydro-elastic analysis of flexible marine propellers.” 2019. Doctoral Dissertation, Delft University of Technology. Accessed March 20, 2019. http://resolver.tudelft.nl/uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; urn:NBN:nl:ui:24-uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; 19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; urn:isbn:978-94-6375-233-6 ; 10.4233/uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; urn:NBN:nl:ui:24-uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; http://resolver.tudelft.nl/uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6.

MLA Handbook (7th Edition):

Maljaars, P J. “Hydro-elastic analysis of flexible marine propellers.” 2019. Web. 20 Mar 2019.

Vancouver:

Maljaars PJ. Hydro-elastic analysis of flexible marine propellers. [Internet] [Doctoral dissertation]. Delft University of Technology; 2019. [cited 2019 Mar 20]. Available from: http://resolver.tudelft.nl/uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; urn:NBN:nl:ui:24-uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; 19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; urn:isbn:978-94-6375-233-6 ; 10.4233/uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; urn:NBN:nl:ui:24-uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; http://resolver.tudelft.nl/uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6.

Council of Science Editors:

Maljaars PJ. Hydro-elastic analysis of flexible marine propellers. [Doctoral Dissertation]. Delft University of Technology; 2019. Available from: http://resolver.tudelft.nl/uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; urn:NBN:nl:ui:24-uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; 19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; urn:isbn:978-94-6375-233-6 ; 10.4233/uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; urn:NBN:nl:ui:24-uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6 ; http://resolver.tudelft.nl/uuid:19c9610b-9a72-42a6-8340-2ba01ec78cc6

3. Manolas, Dimitris. Hydro-aero-elastic analysis of offshore wind turbines.

Degree: 2015, National Technical University of Athens (NTUA); Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ)

The present Ph.D. thesis aims at developing simulation tools for the integrated analysis of offshore wind turbines detailed in two parts. The first part concludes hGAST, a general fully coupled hydro-servo-aero-elastic simulation platform for offshore wind turbines. It is formulated within the framework of analytic dynamics for mechanical systems. Each of its building modules, namely the aerodynamic, hydrodynamic, structural, dynamics and control, is considered separately and nonlinear couplings are applied between the interfaces. The structural part is based on the multibody dynamic formulation. Each member, or part of it in the sub-body approach, is modeled as a Timoshenko beam and solved using the Finite Element Method (FEM). The aerodynamic loads are calculated based on the Blade Element Momentum Theory (BEMT) or the free wake vortex particle method GenUVP, while hydrodynamic loading is considered either using potential theory or Morison’s equation. A dynamic mooring line model is adopted in the case of floating Wind Turbines (WT) using co-rotating truss elements defined in the FEM context as well. Any variable speed / variable pitch controller can be considered either defined by external subroutines or Dynamic Link Library (DLL) files, in most cases corresponding to linear control elements (PID). hGAST performs nonlinear time domain simulations, as well as modal and stability analysis based on a consistent linearization process. By defining the environmental conditions (wind, wave and sea current states), fatigue and extreme loads are estimated within the framework of the IEC standard.hGAST can consistently model all bottom based and floating offshore Wind Turbine (OWT) concepts for both horizontal and vertical axis rotors and is verified by code-to-code comparisons for a monopile, a jacket, a semi-submersible and a spar-buoy floater for the NREL 5MW Reference WT related to the OC3 and OC4 IEA Annexes.In engineering science terms, the present thesis:-Assesses the 3D aerodynamic effects on the behavior of offshore wind turbines by comparing the BEMT and the free wake method in the case of the spar-buoy. The main differences appear in asymmetric inflow conditions, while BEMT is on the safe side in damage equivalent loads (DELs) estimation for this concept.-Assesses the geometric nonlinear effects due to large deflections by comparing the 1st order baseline beam model to the 2nd order beam model and the sub-bodies model both accounting for geometric nonlinearities. It is concluded that the bending-torsion coupling is identified as the main drive of the differences between linear and nonlinear modeling predictions. The linear (1st order) beam modeling is still acceptable except for the torsion of the blade.The second part concerns the development of two hydrodynamic solvers. The first one, freFLOW is a hybrid integral equation method for the solution of the wave-body interaction hydrodynamic problem in the frequency domain. It is based on the Boundary Element Method (BEM), while the analytic solution is imposed at…

Subjects/Keywords: υδρο-σερβο-αερο-ελαστικότητα; Υπεράκτια αιολική ενέργεια; πλωτή ανεμογεννήτρια; ΜΗ-ΓΡΑΜΜΙΚΟΙ ΚΥΜΑΤΙΣΜΟΙ; επιλύτης υδροδυναμικού προβλήματος στο πεδίο της συχνότητας; hydro-servo-aero-elasticity; Offshore wind energy; floating wind turbine; fully non-linear numerical wave tank; frequency domain boundary integral panel method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Manolas, D. (2015). Hydro-aero-elastic analysis of offshore wind turbines. (Thesis). National Technical University of Athens (NTUA); Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ). Retrieved from http://hdl.handle.net/10442/hedi/37152

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Manolas, Dimitris. “Hydro-aero-elastic analysis of offshore wind turbines.” 2015. Thesis, National Technical University of Athens (NTUA); Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ). Accessed March 20, 2019. http://hdl.handle.net/10442/hedi/37152.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Manolas, Dimitris. “Hydro-aero-elastic analysis of offshore wind turbines.” 2015. Web. 20 Mar 2019.

Vancouver:

Manolas D. Hydro-aero-elastic analysis of offshore wind turbines. [Internet] [Thesis]. National Technical University of Athens (NTUA); Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ); 2015. [cited 2019 Mar 20]. Available from: http://hdl.handle.net/10442/hedi/37152.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Manolas D. Hydro-aero-elastic analysis of offshore wind turbines. [Thesis]. National Technical University of Athens (NTUA); Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ); 2015. Available from: http://hdl.handle.net/10442/hedi/37152

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.