Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(groupoids). Showing records 1 – 23 of 23 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of California – Berkeley

1. Hilaire, Christian. The Ricci Flow on Riemannian Groupoids.

Degree: Mathematics, 2015, University of California – Berkeley

 We study the Ricci flow on Riemannian groupoids. We assume that these groupoids are closed and that the space of orbits is compact and connected.… (more)

Subjects/Keywords: Mathematics; groupoids; Ricci flow

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hilaire, C. (2015). The Ricci Flow on Riemannian Groupoids. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/8tt1g240

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hilaire, Christian. “The Ricci Flow on Riemannian Groupoids.” 2015. Thesis, University of California – Berkeley. Accessed July 23, 2019. http://www.escholarship.org/uc/item/8tt1g240.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hilaire, Christian. “The Ricci Flow on Riemannian Groupoids.” 2015. Web. 23 Jul 2019.

Vancouver:

Hilaire C. The Ricci Flow on Riemannian Groupoids. [Internet] [Thesis]. University of California – Berkeley; 2015. [cited 2019 Jul 23]. Available from: http://www.escholarship.org/uc/item/8tt1g240.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hilaire C. The Ricci Flow on Riemannian Groupoids. [Thesis]. University of California – Berkeley; 2015. Available from: http://www.escholarship.org/uc/item/8tt1g240

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Victoria

2. Whittaker, Michael Fredrick. Groupoid C*-algebras of the pinwheel tiling.

Degree: Dept. of Mathematics and Statistics, 2008, University of Victoria

 Anderson and Putnam, and Kellendonk discovered methods of defining a C*- algebra on a noncommutative space associated with a tiling. The method employed was to… (more)

Subjects/Keywords: C*-algebras; Groupoids

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Whittaker, M. F. (2008). Groupoid C*-algebras of the pinwheel tiling. (Thesis). University of Victoria. Retrieved from http://hdl.handle.net/1828/776

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Whittaker, Michael Fredrick. “Groupoid C*-algebras of the pinwheel tiling.” 2008. Thesis, University of Victoria. Accessed July 23, 2019. http://hdl.handle.net/1828/776.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Whittaker, Michael Fredrick. “Groupoid C*-algebras of the pinwheel tiling.” 2008. Web. 23 Jul 2019.

Vancouver:

Whittaker MF. Groupoid C*-algebras of the pinwheel tiling. [Internet] [Thesis]. University of Victoria; 2008. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/1828/776.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Whittaker MF. Groupoid C*-algebras of the pinwheel tiling. [Thesis]. University of Victoria; 2008. Available from: http://hdl.handle.net/1828/776

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Adelaide

3. Roberts, David Michael. Fundamental bigroupoids and 2-covering spaces.

Degree: 2010, University of Adelaide

 This thesis introduces two main concepts: a fundamental bigroupoid of a topological groupoid and 2-covering spaces, a categorification of covering spaces. The first is applied… (more)

Subjects/Keywords: category theory; groupoids; algebraic topology; homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roberts, D. M. (2010). Fundamental bigroupoids and 2-covering spaces. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/62680

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Roberts, David Michael. “Fundamental bigroupoids and 2-covering spaces.” 2010. Thesis, University of Adelaide. Accessed July 23, 2019. http://hdl.handle.net/2440/62680.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Roberts, David Michael. “Fundamental bigroupoids and 2-covering spaces.” 2010. Web. 23 Jul 2019.

Vancouver:

Roberts DM. Fundamental bigroupoids and 2-covering spaces. [Internet] [Thesis]. University of Adelaide; 2010. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/2440/62680.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Roberts DM. Fundamental bigroupoids and 2-covering spaces. [Thesis]. University of Adelaide; 2010. Available from: http://hdl.handle.net/2440/62680

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Missouri – Columbia

4. Brigham, Dan. Quasi-Metric Geometry.

Degree: 2014, University of Missouri – Columbia

 [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Every time one sees |x-y|, one is looking at a specific metric acting on x… (more)

Subjects/Keywords: Quasi-metric spaces; Algebraic topology; Groupoids

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brigham, D. (2014). Quasi-Metric Geometry. (Thesis). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/45843

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Brigham, Dan. “Quasi-Metric Geometry.” 2014. Thesis, University of Missouri – Columbia. Accessed July 23, 2019. http://hdl.handle.net/10355/45843.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Brigham, Dan. “Quasi-Metric Geometry.” 2014. Web. 23 Jul 2019.

Vancouver:

Brigham D. Quasi-Metric Geometry. [Internet] [Thesis]. University of Missouri – Columbia; 2014. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/10355/45843.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brigham D. Quasi-Metric Geometry. [Thesis]. University of Missouri – Columbia; 2014. Available from: http://hdl.handle.net/10355/45843

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Pêgas, Luiz Henrique Pereira. Grupoides de Lie e o teorema de Noether na formulação lagrangiana da teoria clássica de campos.

Degree: PhD, Matemática Aplicada, 2014, University of São Paulo

O objetivo desta tese é oferecer um arcabouço que permita a modelagem de simetrias em fibrados suaves, que possuam um bom comportamento local. Para tanto,… (more)

Subjects/Keywords: classical field theory; groupoids; grupoides; simetrias; symmetries; teoria clássica de campos

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pêgas, L. H. P. (2014). Grupoides de Lie e o teorema de Noether na formulação lagrangiana da teoria clássica de campos. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45132/tde-07112014-152249/ ;

Chicago Manual of Style (16th Edition):

Pêgas, Luiz Henrique Pereira. “Grupoides de Lie e o teorema de Noether na formulação lagrangiana da teoria clássica de campos.” 2014. Doctoral Dissertation, University of São Paulo. Accessed July 23, 2019. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-07112014-152249/ ;.

MLA Handbook (7th Edition):

Pêgas, Luiz Henrique Pereira. “Grupoides de Lie e o teorema de Noether na formulação lagrangiana da teoria clássica de campos.” 2014. Web. 23 Jul 2019.

Vancouver:

Pêgas LHP. Grupoides de Lie e o teorema de Noether na formulação lagrangiana da teoria clássica de campos. [Internet] [Doctoral dissertation]. University of São Paulo; 2014. [cited 2019 Jul 23]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-07112014-152249/ ;.

Council of Science Editors:

Pêgas LHP. Grupoides de Lie e o teorema de Noether na formulação lagrangiana da teoria clássica de campos. [Doctoral Dissertation]. University of São Paulo; 2014. Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-07112014-152249/ ;


Universiteit Utrecht

6. Mestre Fernandez da Silva, J.N. Differentiable stacks: stratifications, measures and deformations.

Degree: 2016, Universiteit Utrecht

 The core of this thesis arises as two studies on the differential geometry of Lie groupoids and of the singular (i .e., not smooth) spaces… (more)

Subjects/Keywords: Lie groupoids; differentiable stacks; stratifications; transverse measures; deformation theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mestre Fernandez da Silva, J. N. (2016). Differentiable stacks: stratifications, measures and deformations. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/329028

Chicago Manual of Style (16th Edition):

Mestre Fernandez da Silva, J N. “Differentiable stacks: stratifications, measures and deformations.” 2016. Doctoral Dissertation, Universiteit Utrecht. Accessed July 23, 2019. http://dspace.library.uu.nl:8080/handle/1874/329028.

MLA Handbook (7th Edition):

Mestre Fernandez da Silva, J N. “Differentiable stacks: stratifications, measures and deformations.” 2016. Web. 23 Jul 2019.

Vancouver:

Mestre Fernandez da Silva JN. Differentiable stacks: stratifications, measures and deformations. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2016. [cited 2019 Jul 23]. Available from: http://dspace.library.uu.nl:8080/handle/1874/329028.

Council of Science Editors:

Mestre Fernandez da Silva JN. Differentiable stacks: stratifications, measures and deformations. [Doctoral Dissertation]. Universiteit Utrecht; 2016. Available from: http://dspace.library.uu.nl:8080/handle/1874/329028


University of California – Berkeley

7. Canez, Santiago Valencia. Double Groupoids, Orbifolds, and the Symplectic Category.

Degree: Mathematics, 2011, University of California – Berkeley

 Motivated by an attempt to better understand the notion of a symplectic stack, we introduce the notion of a \emph{symplectic hopfoid}, which should be thought… (more)

Subjects/Keywords: Mathematics; category theory; differential geometry; groupoids; orbifolds; stacks; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Canez, S. V. (2011). Double Groupoids, Orbifolds, and the Symplectic Category. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/7df5f00t

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Canez, Santiago Valencia. “Double Groupoids, Orbifolds, and the Symplectic Category.” 2011. Thesis, University of California – Berkeley. Accessed July 23, 2019. http://www.escholarship.org/uc/item/7df5f00t.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Canez, Santiago Valencia. “Double Groupoids, Orbifolds, and the Symplectic Category.” 2011. Web. 23 Jul 2019.

Vancouver:

Canez SV. Double Groupoids, Orbifolds, and the Symplectic Category. [Internet] [Thesis]. University of California – Berkeley; 2011. [cited 2019 Jul 23]. Available from: http://www.escholarship.org/uc/item/7df5f00t.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Canez SV. Double Groupoids, Orbifolds, and the Symplectic Category. [Thesis]. University of California – Berkeley; 2011. Available from: http://www.escholarship.org/uc/item/7df5f00t

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of the Western Cape

8. Allie, Imran. Meta-Cayley Graphs on Dihedral Groups .

Degree: 2017, University of the Western Cape

 The pursuit of graphs which are vertex-transitive and non-Cayley on groups has been ongoing for some time. There has long been evidence to suggest that… (more)

Subjects/Keywords: Cayley graphs; Automorphisms; meta-Cayley graphs; Dihedral groups; Groupoids

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Allie, I. (2017). Meta-Cayley Graphs on Dihedral Groups . (Thesis). University of the Western Cape. Retrieved from http://hdl.handle.net/11394/5440

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Allie, Imran. “Meta-Cayley Graphs on Dihedral Groups .” 2017. Thesis, University of the Western Cape. Accessed July 23, 2019. http://hdl.handle.net/11394/5440.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Allie, Imran. “Meta-Cayley Graphs on Dihedral Groups .” 2017. Web. 23 Jul 2019.

Vancouver:

Allie I. Meta-Cayley Graphs on Dihedral Groups . [Internet] [Thesis]. University of the Western Cape; 2017. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/11394/5440.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Allie I. Meta-Cayley Graphs on Dihedral Groups . [Thesis]. University of the Western Cape; 2017. Available from: http://hdl.handle.net/11394/5440

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Ottawa

9. Hajji, Wadii. Representation Theory of Compact Inverse Semigroups .

Degree: 2011, University of Ottawa

 W. D. Munn proved that a finite dimensional representation of an inverse semigroup is equivalent to a ⋆-representation if and only if it is bounded.… (more)

Subjects/Keywords: Inverse Semigroups; Groupoids; Representations; Compact Inverse Semigroups; Semilattices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hajji, W. (2011). Representation Theory of Compact Inverse Semigroups . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/20183

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hajji, Wadii. “Representation Theory of Compact Inverse Semigroups .” 2011. Thesis, University of Ottawa. Accessed July 23, 2019. http://hdl.handle.net/10393/20183.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hajji, Wadii. “Representation Theory of Compact Inverse Semigroups .” 2011. Web. 23 Jul 2019.

Vancouver:

Hajji W. Representation Theory of Compact Inverse Semigroups . [Internet] [Thesis]. University of Ottawa; 2011. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/10393/20183.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hajji W. Representation Theory of Compact Inverse Semigroups . [Thesis]. University of Ottawa; 2011. Available from: http://hdl.handle.net/10393/20183

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

10. Qiao, Yu. Analysis on Singular Spaces: Applications of Operator Algebras to Boundary Value Problems.

Degree: PhD, Mathematics, 2011, Penn State University

 This thesis explores the Method of Layer Potentials on domains with conical points. It is well-known that this method is used to solve boundary problems… (more)

Subjects/Keywords: Layer potentials; domains with conical points; Lie groupoids; Dirichlet Problem; C^*-algebras; Mellin transforem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Qiao, Y. (2011). Analysis on Singular Spaces: Applications of Operator Algebras to Boundary Value Problems. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/12056

Chicago Manual of Style (16th Edition):

Qiao, Yu. “Analysis on Singular Spaces: Applications of Operator Algebras to Boundary Value Problems.” 2011. Doctoral Dissertation, Penn State University. Accessed July 23, 2019. https://etda.libraries.psu.edu/catalog/12056.

MLA Handbook (7th Edition):

Qiao, Yu. “Analysis on Singular Spaces: Applications of Operator Algebras to Boundary Value Problems.” 2011. Web. 23 Jul 2019.

Vancouver:

Qiao Y. Analysis on Singular Spaces: Applications of Operator Algebras to Boundary Value Problems. [Internet] [Doctoral dissertation]. Penn State University; 2011. [cited 2019 Jul 23]. Available from: https://etda.libraries.psu.edu/catalog/12056.

Council of Science Editors:

Qiao Y. Analysis on Singular Spaces: Applications of Operator Algebras to Boundary Value Problems. [Doctoral Dissertation]. Penn State University; 2011. Available from: https://etda.libraries.psu.edu/catalog/12056


University of New South Wales

11. Hazlewood , Robert Matthew. Categorising the operator algebras of groupoids and higher-rank graphs.

Degree: Mathematics & Statistics, 2013, University of New South Wales

 This dissertation concerns the classification of groupoid and higher-rank graph C*-algebras and has two maincomponents. Firstly, for a groupoid it is shown that the notions… (more)

Subjects/Keywords: Groupoid C*-algebras; Operator algebras; C*-algebras; Groupoids; Graph algebras; Higher-rank graphs

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hazlewood , R. M. (2013). Categorising the operator algebras of groupoids and higher-rank graphs. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/52576 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:11249/SOURCE01?view=true

Chicago Manual of Style (16th Edition):

Hazlewood , Robert Matthew. “Categorising the operator algebras of groupoids and higher-rank graphs.” 2013. Doctoral Dissertation, University of New South Wales. Accessed July 23, 2019. http://handle.unsw.edu.au/1959.4/52576 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:11249/SOURCE01?view=true.

MLA Handbook (7th Edition):

Hazlewood , Robert Matthew. “Categorising the operator algebras of groupoids and higher-rank graphs.” 2013. Web. 23 Jul 2019.

Vancouver:

Hazlewood RM. Categorising the operator algebras of groupoids and higher-rank graphs. [Internet] [Doctoral dissertation]. University of New South Wales; 2013. [cited 2019 Jul 23]. Available from: http://handle.unsw.edu.au/1959.4/52576 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:11249/SOURCE01?view=true.

Council of Science Editors:

Hazlewood RM. Categorising the operator algebras of groupoids and higher-rank graphs. [Doctoral Dissertation]. University of New South Wales; 2013. Available from: http://handle.unsw.edu.au/1959.4/52576 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:11249/SOURCE01?view=true


Penn State University

12. Signori, Daniele. Poisson sigma models, reduction and nonlinear gauge theories.

Degree: PhD, Mathematics, 2009, Penn State University

 This dissertation comprises two main lines of research. Firstly, we study non-linear gauge theories for principal bundles, where the structure group is replaced by a… (more)

Subjects/Keywords: poisson sigma models; nonlinear gauge theories; homotopy algebras; AKSZ; BV; BFV; deformation quantization; principal groupoid bundle; groupoids; algebroids

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Signori, D. (2009). Poisson sigma models, reduction and nonlinear gauge theories. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/10341

Chicago Manual of Style (16th Edition):

Signori, Daniele. “Poisson sigma models, reduction and nonlinear gauge theories.” 2009. Doctoral Dissertation, Penn State University. Accessed July 23, 2019. https://etda.libraries.psu.edu/catalog/10341.

MLA Handbook (7th Edition):

Signori, Daniele. “Poisson sigma models, reduction and nonlinear gauge theories.” 2009. Web. 23 Jul 2019.

Vancouver:

Signori D. Poisson sigma models, reduction and nonlinear gauge theories. [Internet] [Doctoral dissertation]. Penn State University; 2009. [cited 2019 Jul 23]. Available from: https://etda.libraries.psu.edu/catalog/10341.

Council of Science Editors:

Signori D. Poisson sigma models, reduction and nonlinear gauge theories. [Doctoral Dissertation]. Penn State University; 2009. Available from: https://etda.libraries.psu.edu/catalog/10341

13. Mestre Fernandez da Silva, J.N. Differentiable stacks: stratifications, measures and deformations.

Degree: 2016, University Utrecht

 The core of this thesis arises as two studies on the differential geometry of Lie groupoids and of the singular (i .e., not smooth) spaces… (more)

Subjects/Keywords: Lie groupoids; differentiable stacks; stratifications; transverse measures; deformation theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mestre Fernandez da Silva, J. N. (2016). Differentiable stacks: stratifications, measures and deformations. (Doctoral Dissertation). University Utrecht. Retrieved from http://dspace.library.uu.nl/handle/1874/329028 ; URN:NBN:NL:UI:10-1874-329028 ; urn:isbn:978-90-393-6491-8 ; URN:NBN:NL:UI:10-1874-329028 ; http://dspace.library.uu.nl/handle/1874/329028

Chicago Manual of Style (16th Edition):

Mestre Fernandez da Silva, J N. “Differentiable stacks: stratifications, measures and deformations.” 2016. Doctoral Dissertation, University Utrecht. Accessed July 23, 2019. http://dspace.library.uu.nl/handle/1874/329028 ; URN:NBN:NL:UI:10-1874-329028 ; urn:isbn:978-90-393-6491-8 ; URN:NBN:NL:UI:10-1874-329028 ; http://dspace.library.uu.nl/handle/1874/329028.

MLA Handbook (7th Edition):

Mestre Fernandez da Silva, J N. “Differentiable stacks: stratifications, measures and deformations.” 2016. Web. 23 Jul 2019.

Vancouver:

Mestre Fernandez da Silva JN. Differentiable stacks: stratifications, measures and deformations. [Internet] [Doctoral dissertation]. University Utrecht; 2016. [cited 2019 Jul 23]. Available from: http://dspace.library.uu.nl/handle/1874/329028 ; URN:NBN:NL:UI:10-1874-329028 ; urn:isbn:978-90-393-6491-8 ; URN:NBN:NL:UI:10-1874-329028 ; http://dspace.library.uu.nl/handle/1874/329028.

Council of Science Editors:

Mestre Fernandez da Silva JN. Differentiable stacks: stratifications, measures and deformations. [Doctoral Dissertation]. University Utrecht; 2016. Available from: http://dspace.library.uu.nl/handle/1874/329028 ; URN:NBN:NL:UI:10-1874-329028 ; urn:isbn:978-90-393-6491-8 ; URN:NBN:NL:UI:10-1874-329028 ; http://dspace.library.uu.nl/handle/1874/329028


Virginia Commonwealth University

14. Grannan, Benjamin. Haar Measures for Groupoids.

Degree: MS, Mathematical Sciences, 2009, Virginia Commonwealth University

 The definition of a groupoid is presented as well as examples of common structures from which a groupoid can be formed. Haar measure existence and… (more)

Subjects/Keywords: Haar Measure; Groupoids; Physical Sciences and Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grannan, B. (2009). Haar Measures for Groupoids. (Thesis). Virginia Commonwealth University. Retrieved from https://scholarscompass.vcu.edu/etd/1738

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Grannan, Benjamin. “Haar Measures for Groupoids.” 2009. Thesis, Virginia Commonwealth University. Accessed July 23, 2019. https://scholarscompass.vcu.edu/etd/1738.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Grannan, Benjamin. “Haar Measures for Groupoids.” 2009. Web. 23 Jul 2019.

Vancouver:

Grannan B. Haar Measures for Groupoids. [Internet] [Thesis]. Virginia Commonwealth University; 2009. [cited 2019 Jul 23]. Available from: https://scholarscompass.vcu.edu/etd/1738.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Grannan B. Haar Measures for Groupoids. [Thesis]. Virginia Commonwealth University; 2009. Available from: https://scholarscompass.vcu.edu/etd/1738

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


EPFL

15. Jotz, Madeleine. Dirac Group(oid)s and Their Homogeneous Spaces.

Degree: 2011, EPFL

 A theorem of Drinfel'd (Drinfel'd (1993)) classifies the Poisson homogeneous spaces of a Poisson Lie group (G,πG) via a special class of Lagrangian subalgebras of… (more)

Subjects/Keywords: Poisson Lie groups; homogeneous spaces; Dirac manifolds; Lie groupoids; Lie algebroids; Courant algebroids; Groupes de Poisson-Lie; espaces homogènes; variétés Dirac; groupoïdes de Lie; algébroïdes de Lie; algébroïdes de Courant

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jotz, M. (2011). Dirac Group(oid)s and Their Homogeneous Spaces. (Thesis). EPFL. Retrieved from http://infoscience.epfl.ch/record/165760

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jotz, Madeleine. “Dirac Group(oid)s and Their Homogeneous Spaces.” 2011. Thesis, EPFL. Accessed July 23, 2019. http://infoscience.epfl.ch/record/165760.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jotz, Madeleine. “Dirac Group(oid)s and Their Homogeneous Spaces.” 2011. Web. 23 Jul 2019.

Vancouver:

Jotz M. Dirac Group(oid)s and Their Homogeneous Spaces. [Internet] [Thesis]. EPFL; 2011. [cited 2019 Jul 23]. Available from: http://infoscience.epfl.ch/record/165760.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jotz M. Dirac Group(oid)s and Their Homogeneous Spaces. [Thesis]. EPFL; 2011. Available from: http://infoscience.epfl.ch/record/165760

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

16. Crespo, Jonathan. Monoidal equivalence of locally compact quantum groups and application to bivariant K-theory : Equivalence monoïdale de groupes quantiques localement compacts et application à la K-théorie bivariante.

Degree: Docteur es, Mathématiques Fondamentales, 2015, Université Blaise-Pascale, Clermont-Ferrand II

Les travaux présentés dans cette thèse concernent l'équivalence monoïdale de groupes quantiques localement compacts et ses applications. Nous généralisons au cas localement compact et régulier,… (more)

Subjects/Keywords: Groupes quantiques localement compacts; Équivalence monoïdale; Groupoïdes quantiques mesurés; Actions; K-théorie bivariante; Locally compact quantum groups; Monoidal equivalence; Measured quantum groupoids; Actions; Bivariant K-theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Crespo, J. (2015). Monoidal equivalence of locally compact quantum groups and application to bivariant K-theory : Equivalence monoïdale de groupes quantiques localement compacts et application à la K-théorie bivariante. (Doctoral Dissertation). Université Blaise-Pascale, Clermont-Ferrand II. Retrieved from http://www.theses.fr/2015CLF22621

Chicago Manual of Style (16th Edition):

Crespo, Jonathan. “Monoidal equivalence of locally compact quantum groups and application to bivariant K-theory : Equivalence monoïdale de groupes quantiques localement compacts et application à la K-théorie bivariante.” 2015. Doctoral Dissertation, Université Blaise-Pascale, Clermont-Ferrand II. Accessed July 23, 2019. http://www.theses.fr/2015CLF22621.

MLA Handbook (7th Edition):

Crespo, Jonathan. “Monoidal equivalence of locally compact quantum groups and application to bivariant K-theory : Equivalence monoïdale de groupes quantiques localement compacts et application à la K-théorie bivariante.” 2015. Web. 23 Jul 2019.

Vancouver:

Crespo J. Monoidal equivalence of locally compact quantum groups and application to bivariant K-theory : Equivalence monoïdale de groupes quantiques localement compacts et application à la K-théorie bivariante. [Internet] [Doctoral dissertation]. Université Blaise-Pascale, Clermont-Ferrand II; 2015. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2015CLF22621.

Council of Science Editors:

Crespo J. Monoidal equivalence of locally compact quantum groups and application to bivariant K-theory : Equivalence monoïdale de groupes quantiques localement compacts et application à la K-théorie bivariante. [Doctoral Dissertation]. Université Blaise-Pascale, Clermont-Ferrand II; 2015. Available from: http://www.theses.fr/2015CLF22621


University of Ottawa

17. Cordeiro, Luiz Gustavo. Soficity and Other Dynamical Aspects of Groupoids and Inverse Semigroups .

Degree: 2018, University of Ottawa

 This thesis is divided into four chapters. In the first one, all the pre-requisite theory of semigroups and groupoids is introduced, as well as a… (more)

Subjects/Keywords: groupoids; inverse semigroups; sofic; measured; topological; dynamical systems; partial actions; Boolean; Stone duality; non-commutative; Loomis-Sikorski; Full group; Crossed products; recovery theorems; Banach-Stone

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cordeiro, L. G. (2018). Soficity and Other Dynamical Aspects of Groupoids and Inverse Semigroups . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/38022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cordeiro, Luiz Gustavo. “Soficity and Other Dynamical Aspects of Groupoids and Inverse Semigroups .” 2018. Thesis, University of Ottawa. Accessed July 23, 2019. http://hdl.handle.net/10393/38022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cordeiro, Luiz Gustavo. “Soficity and Other Dynamical Aspects of Groupoids and Inverse Semigroups .” 2018. Web. 23 Jul 2019.

Vancouver:

Cordeiro LG. Soficity and Other Dynamical Aspects of Groupoids and Inverse Semigroups . [Internet] [Thesis]. University of Ottawa; 2018. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/10393/38022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cordeiro LG. Soficity and Other Dynamical Aspects of Groupoids and Inverse Semigroups . [Thesis]. University of Ottawa; 2018. Available from: http://hdl.handle.net/10393/38022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

18. Yudilevich, O. Lie Pseudogroups à la Cartan from a Modern Perspective.

Degree: 2016, University Utrecht

 In 1904-05, the mathematician Élie Cartan published two pioneer papers in which he introduced a structure theory for Lie pseudogroups. Lie pseudogroups are mathematical objects… (more)

Subjects/Keywords: Mathematics; differential geometry; Lie pseudogroups; structure equations; jets; lie groupoids

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yudilevich, O. (2016). Lie Pseudogroups à la Cartan from a Modern Perspective. (Doctoral Dissertation). University Utrecht. Retrieved from http://dspace.library.uu.nl/handle/1874/339516 ; URN:NBN:NL:UI:10-1874-339516 ; urn:isbn:978-90-393-6611-0 ; URN:NBN:NL:UI:10-1874-339516 ; http://dspace.library.uu.nl/handle/1874/339516

Chicago Manual of Style (16th Edition):

Yudilevich, O. “Lie Pseudogroups à la Cartan from a Modern Perspective.” 2016. Doctoral Dissertation, University Utrecht. Accessed July 23, 2019. http://dspace.library.uu.nl/handle/1874/339516 ; URN:NBN:NL:UI:10-1874-339516 ; urn:isbn:978-90-393-6611-0 ; URN:NBN:NL:UI:10-1874-339516 ; http://dspace.library.uu.nl/handle/1874/339516.

MLA Handbook (7th Edition):

Yudilevich, O. “Lie Pseudogroups à la Cartan from a Modern Perspective.” 2016. Web. 23 Jul 2019.

Vancouver:

Yudilevich O. Lie Pseudogroups à la Cartan from a Modern Perspective. [Internet] [Doctoral dissertation]. University Utrecht; 2016. [cited 2019 Jul 23]. Available from: http://dspace.library.uu.nl/handle/1874/339516 ; URN:NBN:NL:UI:10-1874-339516 ; urn:isbn:978-90-393-6611-0 ; URN:NBN:NL:UI:10-1874-339516 ; http://dspace.library.uu.nl/handle/1874/339516.

Council of Science Editors:

Yudilevich O. Lie Pseudogroups à la Cartan from a Modern Perspective. [Doctoral Dissertation]. University Utrecht; 2016. Available from: http://dspace.library.uu.nl/handle/1874/339516 ; URN:NBN:NL:UI:10-1874-339516 ; urn:isbn:978-90-393-6611-0 ; URN:NBN:NL:UI:10-1874-339516 ; http://dspace.library.uu.nl/handle/1874/339516

19. Bordg, Anthony. Modèles de l'univalence dans le cadre équivariant : On lifting univalence to the equivariant setting.

Degree: Docteur es, Mathématiques, 2015, Nice

Cette thèse de doctorat a pour sujet les modèles de la théorie homotopique des types avec l'Axiome d'Univalence introduit par Vladimir Voevodsky. L'auteur prend pour… (more)

Subjects/Keywords: Fondations univalentes; Théorie homotopique des types; Axiome d'univalence; Catégories de modèles; Théorie de l'homotopie; Théorie des catégories; Préfaisceaux; Groupoïdes; Univers; Univalent foundations; Homotopy type theory; Univalence axiom; Quillen model categories; Homotopy theory; Category theory; Presheaves; Groupoids; Universe

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bordg, A. (2015). Modèles de l'univalence dans le cadre équivariant : On lifting univalence to the equivariant setting. (Doctoral Dissertation). Nice. Retrieved from http://www.theses.fr/2015NICE4083

Chicago Manual of Style (16th Edition):

Bordg, Anthony. “Modèles de l'univalence dans le cadre équivariant : On lifting univalence to the equivariant setting.” 2015. Doctoral Dissertation, Nice. Accessed July 23, 2019. http://www.theses.fr/2015NICE4083.

MLA Handbook (7th Edition):

Bordg, Anthony. “Modèles de l'univalence dans le cadre équivariant : On lifting univalence to the equivariant setting.” 2015. Web. 23 Jul 2019.

Vancouver:

Bordg A. Modèles de l'univalence dans le cadre équivariant : On lifting univalence to the equivariant setting. [Internet] [Doctoral dissertation]. Nice; 2015. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2015NICE4083.

Council of Science Editors:

Bordg A. Modèles de l'univalence dans le cadre équivariant : On lifting univalence to the equivariant setting. [Doctoral Dissertation]. Nice; 2015. Available from: http://www.theses.fr/2015NICE4083

20. Νικολόπουλος, Απόστολος. Γεωμετρία των ομαδοειδών και αλγεβροειδών lie.

Degree: 2000, National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ)

Subjects/Keywords: Ομαδοειδή; Αλγεβροειδή; Συνοχές; Καθολικές συνοχές; Μορφισμοί ολονομίας; Groupoids; Algebroids; Connections; Universal connections; Holonomy morphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Νικολόπουλος, . . (2000). Γεωμετρία των ομαδοειδών και αλγεβροειδών lie. (Thesis). National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Retrieved from http://hdl.handle.net/10442/hedi/20162

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Νικολόπουλος, Απόστολος. “Γεωμετρία των ομαδοειδών και αλγεβροειδών lie.” 2000. Thesis, National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Accessed July 23, 2019. http://hdl.handle.net/10442/hedi/20162.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Νικολόπουλος, Απόστολος. “Γεωμετρία των ομαδοειδών και αλγεβροειδών lie.” 2000. Web. 23 Jul 2019.

Vancouver:

Νικολόπουλος . Γεωμετρία των ομαδοειδών και αλγεβροειδών lie. [Internet] [Thesis]. National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); 2000. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/10442/hedi/20162.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Νικολόπουλος . Γεωμετρία των ομαδοειδών και αλγεβροειδών lie. [Thesis]. National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); 2000. Available from: http://hdl.handle.net/10442/hedi/20162

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universiteit Utrecht

21. Crainic, M. Cyclic cohomology and characteristic classes for foliations.

Degree: 2000, Universiteit Utrecht

 This thesis deals with the cohomology theories and the theory of characteristic classes for leaf spaces of foliations, as well as with the interaction between… (more)

Subjects/Keywords: Wiskunde en Informatica; non-commutative geometry; cyclic cohomology; groupoids; characteristic classes; Hopf algebras; index theory; Weil complex

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Crainic, M. (2000). Cyclic cohomology and characteristic classes for foliations. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/849

Chicago Manual of Style (16th Edition):

Crainic, M. “Cyclic cohomology and characteristic classes for foliations.” 2000. Doctoral Dissertation, Universiteit Utrecht. Accessed July 23, 2019. http://dspace.library.uu.nl:8080/handle/1874/849.

MLA Handbook (7th Edition):

Crainic, M. “Cyclic cohomology and characteristic classes for foliations.” 2000. Web. 23 Jul 2019.

Vancouver:

Crainic M. Cyclic cohomology and characteristic classes for foliations. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2000. [cited 2019 Jul 23]. Available from: http://dspace.library.uu.nl:8080/handle/1874/849.

Council of Science Editors:

Crainic M. Cyclic cohomology and characteristic classes for foliations. [Doctoral Dissertation]. Universiteit Utrecht; 2000. Available from: http://dspace.library.uu.nl:8080/handle/1874/849

22. Crainic, M. Cyclic cohomology and characteristic classes for foliations.

Degree: 2000, University Utrecht

 This thesis deals with the cohomology theories and the theory of characteristic classes for leaf spaces of foliations, as well as with the interaction between… (more)

Subjects/Keywords: non-commutative geometry; cyclic cohomology; groupoids; characteristic classes; Hopf algebras; index theory; Weil complex

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Crainic, M. (2000). Cyclic cohomology and characteristic classes for foliations. (Doctoral Dissertation). University Utrecht. Retrieved from http://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; http://dspace.library.uu.nl/handle/1874/849

Chicago Manual of Style (16th Edition):

Crainic, M. “Cyclic cohomology and characteristic classes for foliations.” 2000. Doctoral Dissertation, University Utrecht. Accessed July 23, 2019. http://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; http://dspace.library.uu.nl/handle/1874/849.

MLA Handbook (7th Edition):

Crainic, M. “Cyclic cohomology and characteristic classes for foliations.” 2000. Web. 23 Jul 2019.

Vancouver:

Crainic M. Cyclic cohomology and characteristic classes for foliations. [Internet] [Doctoral dissertation]. University Utrecht; 2000. [cited 2019 Jul 23]. Available from: http://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; http://dspace.library.uu.nl/handle/1874/849.

Council of Science Editors:

Crainic M. Cyclic cohomology and characteristic classes for foliations. [Doctoral Dissertation]. University Utrecht; 2000. Available from: http://dspace.library.uu.nl/handle/1874/849 ; URN:NBN:NL:UI:10-1874-849 ; URN:NBN:NL:UI:10-1874-849 ; http://dspace.library.uu.nl/handle/1874/849

23. Ανδρουλιδάκης, Ιάκωβος. Extensions, cohomology and classification for Lie algebroids and Lie groupoids.

Degree: 2001, Institutes outside Greece; Ιδρύματα Εξωτερικού

Subjects/Keywords: Ομαδοειδή Lie; Αλγεβροειδή Lie; Πρωτεύουσες δέσμες; Δομές PBG; Συνοχές; Συνομολογία; Ισομεταβλητότητα; Σταυρωτά πρότυπα; Lie groupoids; Lie algebroids; Principal bundles; PBG structures; Connections; Cohomology; Isometablicity; Crossed modules

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ανδρουλιδάκης, . . (2001). Extensions, cohomology and classification for Lie algebroids and Lie groupoids. (Thesis). Institutes outside Greece; Ιδρύματα Εξωτερικού. Retrieved from http://hdl.handle.net/10442/hedi/22839

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ανδρουλιδάκης, Ιάκωβος. “Extensions, cohomology and classification for Lie algebroids and Lie groupoids.” 2001. Thesis, Institutes outside Greece; Ιδρύματα Εξωτερικού. Accessed July 23, 2019. http://hdl.handle.net/10442/hedi/22839.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ανδρουλιδάκης, Ιάκωβος. “Extensions, cohomology and classification for Lie algebroids and Lie groupoids.” 2001. Web. 23 Jul 2019.

Vancouver:

Ανδρουλιδάκης . Extensions, cohomology and classification for Lie algebroids and Lie groupoids. [Internet] [Thesis]. Institutes outside Greece; Ιδρύματα Εξωτερικού; 2001. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/10442/hedi/22839.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ανδρουλιδάκης . Extensions, cohomology and classification for Lie algebroids and Lie groupoids. [Thesis]. Institutes outside Greece; Ιδρύματα Εξωτερικού; 2001. Available from: http://hdl.handle.net/10442/hedi/22839

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.