Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(group homology). Showing records 1 – 22 of 22 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Virginia Tech

1. Mattox, Wade. Homology of Group Von Neumann Algebras.

Degree: PhD, Mathematics, 2012, Virginia Tech

 In this paper the following conjecture is studied: the group von Neumann algebra N(G) is a flat CG-module if and only if the group G… (more)

Subjects/Keywords: group theory; group von neumann algebra; homology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mattox, W. (2012). Homology of Group Von Neumann Algebras. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/28397

Chicago Manual of Style (16th Edition):

Mattox, Wade. “Homology of Group Von Neumann Algebras.” 2012. Doctoral Dissertation, Virginia Tech. Accessed December 15, 2019. http://hdl.handle.net/10919/28397.

MLA Handbook (7th Edition):

Mattox, Wade. “Homology of Group Von Neumann Algebras.” 2012. Web. 15 Dec 2019.

Vancouver:

Mattox W. Homology of Group Von Neumann Algebras. [Internet] [Doctoral dissertation]. Virginia Tech; 2012. [cited 2019 Dec 15]. Available from: http://hdl.handle.net/10919/28397.

Council of Science Editors:

Mattox W. Homology of Group Von Neumann Algebras. [Doctoral Dissertation]. Virginia Tech; 2012. Available from: http://hdl.handle.net/10919/28397


McGill University

2. Gildenhuys, D. (Dion). An embedding theorem for pro-p-groups, derivations of pro-p-groups and applications to fields and cohomology.

Degree: PhD, Department of Mathematics, 1966, McGill University

Subjects/Keywords: Group theory.; Homology theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gildenhuys, D. (. (1966). An embedding theorem for pro-p-groups, derivations of pro-p-groups and applications to fields and cohomology. (Doctoral Dissertation). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile73650.pdf

Chicago Manual of Style (16th Edition):

Gildenhuys, D (Dion). “An embedding theorem for pro-p-groups, derivations of pro-p-groups and applications to fields and cohomology.” 1966. Doctoral Dissertation, McGill University. Accessed December 15, 2019. http://digitool.library.mcgill.ca/thesisfile73650.pdf.

MLA Handbook (7th Edition):

Gildenhuys, D (Dion). “An embedding theorem for pro-p-groups, derivations of pro-p-groups and applications to fields and cohomology.” 1966. Web. 15 Dec 2019.

Vancouver:

Gildenhuys D(. An embedding theorem for pro-p-groups, derivations of pro-p-groups and applications to fields and cohomology. [Internet] [Doctoral dissertation]. McGill University; 1966. [cited 2019 Dec 15]. Available from: http://digitool.library.mcgill.ca/thesisfile73650.pdf.

Council of Science Editors:

Gildenhuys D(. An embedding theorem for pro-p-groups, derivations of pro-p-groups and applications to fields and cohomology. [Doctoral Dissertation]. McGill University; 1966. Available from: http://digitool.library.mcgill.ca/thesisfile73650.pdf


Duke University

3. Rose, David Emile Vatcher. Categorification of quantum sl_3 projectors and the sl_3 Reshetikhin-Turaev invariant of framed tangles .

Degree: 2012, Duke University

  Quantum sl_3 projectors are morphisms in Kuperberg's sl_3 spider, a diagrammatically defined category equivalent to the full pivotal subcategory of the category of (type… (more)

Subjects/Keywords: Mathematics; Categorification; Highest weight projector; Khovanov homology; Quantum Group; Spider

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rose, D. E. V. (2012). Categorification of quantum sl_3 projectors and the sl_3 Reshetikhin-Turaev invariant of framed tangles . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/5592

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rose, David Emile Vatcher. “Categorification of quantum sl_3 projectors and the sl_3 Reshetikhin-Turaev invariant of framed tangles .” 2012. Thesis, Duke University. Accessed December 15, 2019. http://hdl.handle.net/10161/5592.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rose, David Emile Vatcher. “Categorification of quantum sl_3 projectors and the sl_3 Reshetikhin-Turaev invariant of framed tangles .” 2012. Web. 15 Dec 2019.

Vancouver:

Rose DEV. Categorification of quantum sl_3 projectors and the sl_3 Reshetikhin-Turaev invariant of framed tangles . [Internet] [Thesis]. Duke University; 2012. [cited 2019 Dec 15]. Available from: http://hdl.handle.net/10161/5592.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rose DEV. Categorification of quantum sl_3 projectors and the sl_3 Reshetikhin-Turaev invariant of framed tangles . [Thesis]. Duke University; 2012. Available from: http://hdl.handle.net/10161/5592

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


McGill University

4. Ganong, Richard. Profinite groups.

Degree: MS, Department of Mathematics., 1970, McGill University

Subjects/Keywords: Group theory.; Homology theory.; Galois theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ganong, R. (1970). Profinite groups. (Masters Thesis). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile46654.pdf

Chicago Manual of Style (16th Edition):

Ganong, Richard. “Profinite groups.” 1970. Masters Thesis, McGill University. Accessed December 15, 2019. http://digitool.library.mcgill.ca/thesisfile46654.pdf.

MLA Handbook (7th Edition):

Ganong, Richard. “Profinite groups.” 1970. Web. 15 Dec 2019.

Vancouver:

Ganong R. Profinite groups. [Internet] [Masters thesis]. McGill University; 1970. [cited 2019 Dec 15]. Available from: http://digitool.library.mcgill.ca/thesisfile46654.pdf.

Council of Science Editors:

Ganong R. Profinite groups. [Masters Thesis]. McGill University; 1970. Available from: http://digitool.library.mcgill.ca/thesisfile46654.pdf

5. Peng, Guangzhong. Quantization of affine coadjoint orbits.

Degree: PhD, Mathematics, 2015, Penn State University

Using twisted equivariant K-homology, E. Meinrenken defined the quantization of a q-Hamiltonian space as the pushforward of the fundamental class by a Morita morphism and obtained an element in the Verlinde algebra. This dissertation explains a different way to obtain the quantization of a Hamiltonian loop group space.

Subjects/Keywords: K-homology; quantization; loop group

…in the K-homology worth a mention that the Spinc Dirac operator D group of M , / ∈ K0G… …in the K-homology / E for some complex group K0G (M ) arises from a twisted Spinc… …homology Let G be a compact connected Lie group. We recall that a Hamiltonian G-space (M, ωM… …C) → KKG (C(G, A−h G )). The K-homology group KKG (C(… …1.2.3. The equivariant twisted K-homology group is isomorphic to the Verlinde ring, ∨ −k KKG… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Peng, G. (2015). Quantization of affine coadjoint orbits. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/27431

Chicago Manual of Style (16th Edition):

Peng, Guangzhong. “Quantization of affine coadjoint orbits.” 2015. Doctoral Dissertation, Penn State University. Accessed December 15, 2019. https://etda.libraries.psu.edu/catalog/27431.

MLA Handbook (7th Edition):

Peng, Guangzhong. “Quantization of affine coadjoint orbits.” 2015. Web. 15 Dec 2019.

Vancouver:

Peng G. Quantization of affine coadjoint orbits. [Internet] [Doctoral dissertation]. Penn State University; 2015. [cited 2019 Dec 15]. Available from: https://etda.libraries.psu.edu/catalog/27431.

Council of Science Editors:

Peng G. Quantization of affine coadjoint orbits. [Doctoral Dissertation]. Penn State University; 2015. Available from: https://etda.libraries.psu.edu/catalog/27431

6. Hartmann Junior, Luiz Roberto. Homotopia simples e classificação dos espaços lenticulares.

Degree: Mestrado, Matemática, 2007, University of São Paulo

Fizemos uma apresentação detalhada, com um enfoque geométrico, da Teoria de Homotopia Simples e como aplicação, uma análise detalhada da classificação por homotopia e homotopia… (more)

Subjects/Keywords: Grupo de Whitehead; Homologia; Homology; Homotopia; Homotopia simples; Homotopy; Simple homotopy; Torção de Whitehead e espaços lenticulares.; Whitehead group; Whitehead torsion.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hartmann Junior, L. R. (2007). Homotopia simples e classificação dos espaços lenticulares. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03052007-104226/ ;

Chicago Manual of Style (16th Edition):

Hartmann Junior, Luiz Roberto. “Homotopia simples e classificação dos espaços lenticulares.” 2007. Masters Thesis, University of São Paulo. Accessed December 15, 2019. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03052007-104226/ ;.

MLA Handbook (7th Edition):

Hartmann Junior, Luiz Roberto. “Homotopia simples e classificação dos espaços lenticulares.” 2007. Web. 15 Dec 2019.

Vancouver:

Hartmann Junior LR. Homotopia simples e classificação dos espaços lenticulares. [Internet] [Masters thesis]. University of São Paulo; 2007. [cited 2019 Dec 15]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03052007-104226/ ;.

Council of Science Editors:

Hartmann Junior LR. Homotopia simples e classificação dos espaços lenticulares. [Masters Thesis]. University of São Paulo; 2007. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03052007-104226/ ;

7. Chang, Chih-Chen. Simplicial Homology.

Degree: 1973, North Texas State University

 The purpose of this thesis is to construct the homology groups of a complex over an R-module. The thesis begins with hyperplanes in Euclidean n-space.… (more)

Subjects/Keywords: homology group; complex; R-module; hyperplanes; Euclidean n-space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chang, C. (1973). Simplicial Homology. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc131634/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chang, Chih-Chen. “Simplicial Homology.” 1973. Thesis, North Texas State University. Accessed December 15, 2019. https://digital.library.unt.edu/ark:/67531/metadc131634/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chang, Chih-Chen. “Simplicial Homology.” 1973. Web. 15 Dec 2019.

Vancouver:

Chang C. Simplicial Homology. [Internet] [Thesis]. North Texas State University; 1973. [cited 2019 Dec 15]. Available from: https://digital.library.unt.edu/ark:/67531/metadc131634/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chang C. Simplicial Homology. [Thesis]. North Texas State University; 1973. Available from: https://digital.library.unt.edu/ark:/67531/metadc131634/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Kyoto University

8. Sugimoto, Yoshihiro. Spectral spread and non-autonomous Hamiltonian diffeomorphisms .

Degree: 2019, Kyoto University

Subjects/Keywords: symplectic geometry; Floer homology; Hamiltonian diffeomorphism group; Hofer geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sugimoto, Y. (2019). Spectral spread and non-autonomous Hamiltonian diffeomorphisms . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/242579

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sugimoto, Yoshihiro. “Spectral spread and non-autonomous Hamiltonian diffeomorphisms .” 2019. Thesis, Kyoto University. Accessed December 15, 2019. http://hdl.handle.net/2433/242579.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sugimoto, Yoshihiro. “Spectral spread and non-autonomous Hamiltonian diffeomorphisms .” 2019. Web. 15 Dec 2019.

Vancouver:

Sugimoto Y. Spectral spread and non-autonomous Hamiltonian diffeomorphisms . [Internet] [Thesis]. Kyoto University; 2019. [cited 2019 Dec 15]. Available from: http://hdl.handle.net/2433/242579.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sugimoto Y. Spectral spread and non-autonomous Hamiltonian diffeomorphisms . [Thesis]. Kyoto University; 2019. Available from: http://hdl.handle.net/2433/242579

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Rice University

9. Kuzbary, Miriam. Link Concordance and Groups.

Degree: PhD, Natural Sciences, 2019, Rice University

 This work concerns the study of link concordance using groups, both extracting concordance data from group theoretic invariants and determining the properties of group structures… (more)

Subjects/Keywords: low dimensional topology; geometric topology; link concordance; knot concordance; group theory; nilpotent groups; Milnor's invariants; Heegaard Floer homology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kuzbary, M. (2019). Link Concordance and Groups. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/105956

Chicago Manual of Style (16th Edition):

Kuzbary, Miriam. “Link Concordance and Groups.” 2019. Doctoral Dissertation, Rice University. Accessed December 15, 2019. http://hdl.handle.net/1911/105956.

MLA Handbook (7th Edition):

Kuzbary, Miriam. “Link Concordance and Groups.” 2019. Web. 15 Dec 2019.

Vancouver:

Kuzbary M. Link Concordance and Groups. [Internet] [Doctoral dissertation]. Rice University; 2019. [cited 2019 Dec 15]. Available from: http://hdl.handle.net/1911/105956.

Council of Science Editors:

Kuzbary M. Link Concordance and Groups. [Doctoral Dissertation]. Rice University; 2019. Available from: http://hdl.handle.net/1911/105956

10. Penteado, Northon Canevari Leme. O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um.

Degree: Mestrado, Matemática, 2011, University of São Paulo

James W. Alexander, no artigo[1],mostra que se tivermos um mergulho PL f : \'S POT. 1́ \'S POT. 1 ́ \'S POT. 3\', então o… (more)

Subjects/Keywords: Cohomologia; Cohomology; Dualidades; Duality; Embedding of manifolds; Fundamental group; Grupo fundamental; h-cobordim; h-cobordismo; Homologia; Homology; Intersection number; Mergulho de variedades; Número interseção

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Penteado, N. C. L. (2011). O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22032011-090041/ ;

Chicago Manual of Style (16th Edition):

Penteado, Northon Canevari Leme. “O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um.” 2011. Masters Thesis, University of São Paulo. Accessed December 15, 2019. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22032011-090041/ ;.

MLA Handbook (7th Edition):

Penteado, Northon Canevari Leme. “O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um.” 2011. Web. 15 Dec 2019.

Vancouver:

Penteado NCL. O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um. [Internet] [Masters thesis]. University of São Paulo; 2011. [cited 2019 Dec 15]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22032011-090041/ ;.

Council of Science Editors:

Penteado NCL. O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um. [Masters Thesis]. University of São Paulo; 2011. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22032011-090041/ ;


University of Manchester

11. Ward, David Charles. Topics in finite groups : homology groups, pi-product graphs, wreath products and cuspidal characters.

Degree: PhD, 2015, University of Manchester

Subjects/Keywords: Finite groups; Group theory; Homology; Presheaf; Pi-product graph; Wreath product; Cuspidal character

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ward, D. C. (2015). Topics in finite groups : homology groups, pi-product graphs, wreath products and cuspidal characters. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/topics-in-finite-groups-homology-groups-piproduct-graphs-wreath-products-and-cuspidal-characters(7e90d219-fba7-4ff0-9071-c624acab7aaf).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664558

Chicago Manual of Style (16th Edition):

Ward, David Charles. “Topics in finite groups : homology groups, pi-product graphs, wreath products and cuspidal characters.” 2015. Doctoral Dissertation, University of Manchester. Accessed December 15, 2019. https://www.research.manchester.ac.uk/portal/en/theses/topics-in-finite-groups-homology-groups-piproduct-graphs-wreath-products-and-cuspidal-characters(7e90d219-fba7-4ff0-9071-c624acab7aaf).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664558.

MLA Handbook (7th Edition):

Ward, David Charles. “Topics in finite groups : homology groups, pi-product graphs, wreath products and cuspidal characters.” 2015. Web. 15 Dec 2019.

Vancouver:

Ward DC. Topics in finite groups : homology groups, pi-product graphs, wreath products and cuspidal characters. [Internet] [Doctoral dissertation]. University of Manchester; 2015. [cited 2019 Dec 15]. Available from: https://www.research.manchester.ac.uk/portal/en/theses/topics-in-finite-groups-homology-groups-piproduct-graphs-wreath-products-and-cuspidal-characters(7e90d219-fba7-4ff0-9071-c624acab7aaf).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664558.

Council of Science Editors:

Ward DC. Topics in finite groups : homology groups, pi-product graphs, wreath products and cuspidal characters. [Doctoral Dissertation]. University of Manchester; 2015. Available from: https://www.research.manchester.ac.uk/portal/en/theses/topics-in-finite-groups-homology-groups-piproduct-graphs-wreath-products-and-cuspidal-characters(7e90d219-fba7-4ff0-9071-c624acab7aaf).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664558


Universitetet i Tromsø

12. Breivik, Markus Nordvoll. Group Cohomology and Extensions .

Degree: 2019, Universitetet i Tromsø

 The goal of this thesis is to classify all extensions where the kernel has order p^s and the cokernel has order p^t, p is a… (more)

Subjects/Keywords: VDP::Mathematics and natural science: 400::Mathematics: 410::Algebra/algebraic analysis: 414; VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Algebra/algebraisk analyse: 414; homological algebra; homology; cohomology; group cohomology; group extension; group extensions; integral group ring; short exact sequence; exact sequence; resolution; module; modules; p-groups; cocycle; cocycles; coboundary; coboundaries; resolutions; kernel; cokernel

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Breivik, M. N. (2019). Group Cohomology and Extensions . (Masters Thesis). Universitetet i Tromsø. Retrieved from http://hdl.handle.net/10037/16251

Chicago Manual of Style (16th Edition):

Breivik, Markus Nordvoll. “Group Cohomology and Extensions .” 2019. Masters Thesis, Universitetet i Tromsø. Accessed December 15, 2019. http://hdl.handle.net/10037/16251.

MLA Handbook (7th Edition):

Breivik, Markus Nordvoll. “Group Cohomology and Extensions .” 2019. Web. 15 Dec 2019.

Vancouver:

Breivik MN. Group Cohomology and Extensions . [Internet] [Masters thesis]. Universitetet i Tromsø 2019. [cited 2019 Dec 15]. Available from: http://hdl.handle.net/10037/16251.

Council of Science Editors:

Breivik MN. Group Cohomology and Extensions . [Masters Thesis]. Universitetet i Tromsø 2019. Available from: http://hdl.handle.net/10037/16251

13. Maazen, Hendrik. Homology stability for the general linear group.

Degree: 1979, University Utrecht

 This thesis studies the homology stability problem for general linear groups over Euclidean rings and over subrings of the field of rational numbers. Affine linear… (more)

Subjects/Keywords: group homology; homology of poset; poset Link; join poset; spectral sequence; geometric realization; Euclidean ring; high acyclicity; Cohen-Macaulay; Nakaoka stability; Tits building; system of coefficients functor

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maazen, H. (1979). Homology stability for the general linear group. (Doctoral Dissertation). University Utrecht. Retrieved from http://dspace.library.uu.nl/handle/1874/237657 ; URN:NBN:NL:UI:10-1874-237657 ; URN:NBN:NL:UI:10-1874-237657 ; http://dspace.library.uu.nl/handle/1874/237657

Chicago Manual of Style (16th Edition):

Maazen, Hendrik. “Homology stability for the general linear group.” 1979. Doctoral Dissertation, University Utrecht. Accessed December 15, 2019. http://dspace.library.uu.nl/handle/1874/237657 ; URN:NBN:NL:UI:10-1874-237657 ; URN:NBN:NL:UI:10-1874-237657 ; http://dspace.library.uu.nl/handle/1874/237657.

MLA Handbook (7th Edition):

Maazen, Hendrik. “Homology stability for the general linear group.” 1979. Web. 15 Dec 2019.

Vancouver:

Maazen H. Homology stability for the general linear group. [Internet] [Doctoral dissertation]. University Utrecht; 1979. [cited 2019 Dec 15]. Available from: http://dspace.library.uu.nl/handle/1874/237657 ; URN:NBN:NL:UI:10-1874-237657 ; URN:NBN:NL:UI:10-1874-237657 ; http://dspace.library.uu.nl/handle/1874/237657.

Council of Science Editors:

Maazen H. Homology stability for the general linear group. [Doctoral Dissertation]. University Utrecht; 1979. Available from: http://dspace.library.uu.nl/handle/1874/237657 ; URN:NBN:NL:UI:10-1874-237657 ; URN:NBN:NL:UI:10-1874-237657 ; http://dspace.library.uu.nl/handle/1874/237657

14. Παναγόπουλος, Δημήτριος. Ομάδες που ικανοποιούν την εικασία του Bass.

Degree: 2009, National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ)

Subjects/Keywords: Κ-ΘΕΩΡΙΑ; Εικασία Bass; Κυκλική ομολογία; Δράσεις ομάδων; K - Theory; Bass' conjecture; Cyclic homology; Group actions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Παναγόπουλος, . . (2009). Ομάδες που ικανοποιούν την εικασία του Bass. (Thesis). National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Retrieved from http://hdl.handle.net/10442/hedi/18953

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Παναγόπουλος, Δημήτριος. “Ομάδες που ικανοποιούν την εικασία του Bass.” 2009. Thesis, National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Accessed December 15, 2019. http://hdl.handle.net/10442/hedi/18953.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Παναγόπουλος, Δημήτριος. “Ομάδες που ικανοποιούν την εικασία του Bass.” 2009. Web. 15 Dec 2019.

Vancouver:

Παναγόπουλος . Ομάδες που ικανοποιούν την εικασία του Bass. [Internet] [Thesis]. National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); 2009. [cited 2019 Dec 15]. Available from: http://hdl.handle.net/10442/hedi/18953.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Παναγόπουλος . Ομάδες που ικανοποιούν την εικασία του Bass. [Thesis]. National and Kapodistrian University of Athens; Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ); 2009. Available from: http://hdl.handle.net/10442/hedi/18953

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

15. Ward, David Charles. Topics in Finite Groups: Homology Groups, Pi-Product Graphs, Wreath Products and Cuspidal Characters.

Degree: 2015, University of Manchester

See thesis Advisors/Committee Members: WALKER, LOUISE LA, Rowley, Peter, Walker, Louise.

Subjects/Keywords: Finite groups; Group theory; Homology; Presheaf; Pi-product graph; Wreath product; Cuspidal character

…the zero-homology group of a universal panel-irreducible presheaf defined on the simplicial… …them. With such an approach, the homology groups are modules for the given group. Moreover… …group, its subgroups and the pariah sporadic simple groups. . . . . . . . . . 142 6.3 The p… …236 14 TOPICS IN FINITE GROUPS: HOMOLOGY GROUPS, π-PRODUCT GRAPHS, WREATH PRODUCTS AND… …consider four topics relating to finite groups; homology of presheaves of abelian groups, π… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ward, D. C. (2015). Topics in Finite Groups: Homology Groups, Pi-Product Graphs, Wreath Products and Cuspidal Characters. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:269822

Chicago Manual of Style (16th Edition):

Ward, David Charles. “Topics in Finite Groups: Homology Groups, Pi-Product Graphs, Wreath Products and Cuspidal Characters.” 2015. Doctoral Dissertation, University of Manchester. Accessed December 15, 2019. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:269822.

MLA Handbook (7th Edition):

Ward, David Charles. “Topics in Finite Groups: Homology Groups, Pi-Product Graphs, Wreath Products and Cuspidal Characters.” 2015. Web. 15 Dec 2019.

Vancouver:

Ward DC. Topics in Finite Groups: Homology Groups, Pi-Product Graphs, Wreath Products and Cuspidal Characters. [Internet] [Doctoral dissertation]. University of Manchester; 2015. [cited 2019 Dec 15]. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:269822.

Council of Science Editors:

Ward DC. Topics in Finite Groups: Homology Groups, Pi-Product Graphs, Wreath Products and Cuspidal Characters. [Doctoral Dissertation]. University of Manchester; 2015. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:269822

16. Delcroix-Oger, Bérénice. Hyperarbres et Partitions semi-pointées : aspects combinatoires, algébriques et homologiques : Hypertrees and semi-pointed Partitions : combinatorial, algebraic and homological Aspects.

Degree: Docteur es, Mathématiques, 2014, Université Claude Bernard – Lyon I

Cette thèse est consacrée à l’étude combinatoire, algébrique et homologique des hyperarbres et des partitions semi-pointées. Nous étudions plus précisément des structures algébriques et homologiques… (more)

Subjects/Keywords: Hyperarbre; Poset; Espèce; Homologie; Partition; Action du groupe symétrique; Algèbre de Hopf d’incidence; Cohen-Macaulay; Hypertree; Poset; Species; Homology; Partition; Action of the symmetric group; Incidence Hopf algebra; Cohen-Macaulayness; 514.2

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Delcroix-Oger, B. (2014). Hyperarbres et Partitions semi-pointées : aspects combinatoires, algébriques et homologiques : Hypertrees and semi-pointed Partitions : combinatorial, algebraic and homological Aspects. (Doctoral Dissertation). Université Claude Bernard – Lyon I. Retrieved from http://www.theses.fr/2014LYO10243

Chicago Manual of Style (16th Edition):

Delcroix-Oger, Bérénice. “Hyperarbres et Partitions semi-pointées : aspects combinatoires, algébriques et homologiques : Hypertrees and semi-pointed Partitions : combinatorial, algebraic and homological Aspects.” 2014. Doctoral Dissertation, Université Claude Bernard – Lyon I. Accessed December 15, 2019. http://www.theses.fr/2014LYO10243.

MLA Handbook (7th Edition):

Delcroix-Oger, Bérénice. “Hyperarbres et Partitions semi-pointées : aspects combinatoires, algébriques et homologiques : Hypertrees and semi-pointed Partitions : combinatorial, algebraic and homological Aspects.” 2014. Web. 15 Dec 2019.

Vancouver:

Delcroix-Oger B. Hyperarbres et Partitions semi-pointées : aspects combinatoires, algébriques et homologiques : Hypertrees and semi-pointed Partitions : combinatorial, algebraic and homological Aspects. [Internet] [Doctoral dissertation]. Université Claude Bernard – Lyon I; 2014. [cited 2019 Dec 15]. Available from: http://www.theses.fr/2014LYO10243.

Council of Science Editors:

Delcroix-Oger B. Hyperarbres et Partitions semi-pointées : aspects combinatoires, algébriques et homologiques : Hypertrees and semi-pointed Partitions : combinatorial, algebraic and homological Aspects. [Doctoral Dissertation]. Université Claude Bernard – Lyon I; 2014. Available from: http://www.theses.fr/2014LYO10243

17. Vera Arboleda, Anderson Arley. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.

Degree: Docteur es, Mathématiques, 2019, Université de Strasbourg

Soit Σ une surface compacte connexe orientée avec une seule composante du bord. Notons par M le groupe d'homéotopie de Σ. En considérant l'action de… (more)

Subjects/Keywords: Variétés de dimension trois; Cobordismes d’homologie; Groupe d’homéotopie; Homomorphismes de Johnson; Homomorphismes de Johnson-Levine; Homomorphismes de Johnson alternatifs; Invariant LMO; Foncteur LMO; 3-manifolds; Homology cobordisms; Mapping class group; Johnson homomorphisms; Johnson-Levine homomorphisms; Alternative Johnson homomorphisms; LMO invariant; LMO functor; 512.6; 514.2

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vera Arboleda, A. A. (2019). Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2019STRAD009

Chicago Manual of Style (16th Edition):

Vera Arboleda, Anderson Arley. “Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.” 2019. Doctoral Dissertation, Université de Strasbourg. Accessed December 15, 2019. http://www.theses.fr/2019STRAD009.

MLA Handbook (7th Edition):

Vera Arboleda, Anderson Arley. “Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.” 2019. Web. 15 Dec 2019.

Vancouver:

Vera Arboleda AA. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2019. [cited 2019 Dec 15]. Available from: http://www.theses.fr/2019STRAD009.

Council of Science Editors:

Vera Arboleda AA. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. [Doctoral Dissertation]. Université de Strasbourg; 2019. Available from: http://www.theses.fr/2019STRAD009


Universiteit Utrecht

18. Maazen, Hendrik. Homology stability for the general linear group.

Degree: 1979, Universiteit Utrecht

 This thesis studies the homology stability problem for general linear groups over Euclidean rings and over subrings of the field of rational numbers. Affine linear… (more)

Subjects/Keywords: Wiskunde; group homology; homology of poset; poset Link; join poset; spectral sequence; geometric realization; Euclidean ring; high acyclicity; Cohen-Macaulay; Nakaoka stability; Tits building; system of coefficients functor

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maazen, H. (1979). Homology stability for the general linear group. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/237657

Chicago Manual of Style (16th Edition):

Maazen, Hendrik. “Homology stability for the general linear group.” 1979. Doctoral Dissertation, Universiteit Utrecht. Accessed December 15, 2019. http://dspace.library.uu.nl:8080/handle/1874/237657.

MLA Handbook (7th Edition):

Maazen, Hendrik. “Homology stability for the general linear group.” 1979. Web. 15 Dec 2019.

Vancouver:

Maazen H. Homology stability for the general linear group. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 1979. [cited 2019 Dec 15]. Available from: http://dspace.library.uu.nl:8080/handle/1874/237657.

Council of Science Editors:

Maazen H. Homology stability for the general linear group. [Doctoral Dissertation]. Universiteit Utrecht; 1979. Available from: http://dspace.library.uu.nl:8080/handle/1874/237657


University of Florida

19. McWaters, Marcus Mott, 1939-. Cohomology for normal spaces.

Degree: 1966, University of Florida

Subjects/Keywords: Axioms; Category theory; Graduates; Homomorphisms; Integers; Isomorphism; Mathematical theorems; Mathematics; Topological theorems; Topology; Generalized spaces; Group theory; Homology theory; Physics thesis Ph. D

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McWaters, Marcus Mott, 1. (1966). Cohomology for normal spaces. (Thesis). University of Florida. Retrieved from http://ufdc.ufl.edu/UF00097868

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

McWaters, Marcus Mott, 1939-. “Cohomology for normal spaces.” 1966. Thesis, University of Florida. Accessed December 15, 2019. http://ufdc.ufl.edu/UF00097868.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

McWaters, Marcus Mott, 1939-. “Cohomology for normal spaces.” 1966. Web. 15 Dec 2019.

Vancouver:

McWaters, Marcus Mott 1. Cohomology for normal spaces. [Internet] [Thesis]. University of Florida; 1966. [cited 2019 Dec 15]. Available from: http://ufdc.ufl.edu/UF00097868.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McWaters, Marcus Mott 1. Cohomology for normal spaces. [Thesis]. University of Florida; 1966. Available from: http://ufdc.ufl.edu/UF00097868

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

20. Jung, JiYoon. ANALYTIC AND TOPOLOGICAL COMBINATORICS OF PARTITION POSETS AND PERMUTATIONS.

Degree: 2012, University of Kentucky

 In this dissertation we first study partition posets and their topology. For each composition c we show that the order complex of the poset of… (more)

Subjects/Keywords: Partition Lattice; Simplicial Complex; Homology; Homotopy; Discrete Morse Theory; Group Action; Specht Module; Pattern Avoidance; Asymptotics; Spectral Method; Applied Mathematics; Mathematics

…2.10 The group action on the top homology . . . . . 2.11 Concluding remarks… …Furthermore, the action of the symmetric group on the top homology is isomorphic to the Specht… …homology group of the complex ∆. The elements of ker(∂n ) are called n-cycles, the… …1.4 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Homology… …1.8 Discrete Morse Theory . . . . . . . . . . . . . . . . . . . 1.9 The symmetric group… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jung, J. (2012). ANALYTIC AND TOPOLOGICAL COMBINATORICS OF PARTITION POSETS AND PERMUTATIONS. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/6

Chicago Manual of Style (16th Edition):

Jung, JiYoon. “ANALYTIC AND TOPOLOGICAL COMBINATORICS OF PARTITION POSETS AND PERMUTATIONS.” 2012. Doctoral Dissertation, University of Kentucky. Accessed December 15, 2019. https://uknowledge.uky.edu/math_etds/6.

MLA Handbook (7th Edition):

Jung, JiYoon. “ANALYTIC AND TOPOLOGICAL COMBINATORICS OF PARTITION POSETS AND PERMUTATIONS.” 2012. Web. 15 Dec 2019.

Vancouver:

Jung J. ANALYTIC AND TOPOLOGICAL COMBINATORICS OF PARTITION POSETS AND PERMUTATIONS. [Internet] [Doctoral dissertation]. University of Kentucky; 2012. [cited 2019 Dec 15]. Available from: https://uknowledge.uky.edu/math_etds/6.

Council of Science Editors:

Jung J. ANALYTIC AND TOPOLOGICAL COMBINATORICS OF PARTITION POSETS AND PERMUTATIONS. [Doctoral Dissertation]. University of Kentucky; 2012. Available from: https://uknowledge.uky.edu/math_etds/6

21. Abram, William C. Equivariant Complex Cobordism.

Degree: PhD, Mathematics, 2013, University of Michigan

 We begin with a development of equivariant stable homotopy theory relevant to our work, including a new result on shift desuspension of suspension spectra. We… (more)

Subjects/Keywords: Equivariant Cobordism; Equivariant Formal Group Laws; Equivariant Spectra; RO(G)-Graded (Co)Homology; Isotropy Separation Spectral Sequence; Geometric Fixed Points; Mathematics; Science

…Theory [23]. Let G be a compact Lie group. A G-universe is a countably infinite… …representation of G. Recall that the regular representation of a group G is the representation afforded… …the representation V . 14 1.3 Homology and Cohomology Just as in the nonequivariant… …spectra, where such cohomology theories are graded on the free abelian group RO(G)… …hGSU, we can now define E-homology and E-cohomology by Ea Y = [S a , Y ∧ E]G and E… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Abram, W. C. (2013). Equivariant Complex Cobordism. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/99796

Chicago Manual of Style (16th Edition):

Abram, William C. “Equivariant Complex Cobordism.” 2013. Doctoral Dissertation, University of Michigan. Accessed December 15, 2019. http://hdl.handle.net/2027.42/99796.

MLA Handbook (7th Edition):

Abram, William C. “Equivariant Complex Cobordism.” 2013. Web. 15 Dec 2019.

Vancouver:

Abram WC. Equivariant Complex Cobordism. [Internet] [Doctoral dissertation]. University of Michigan; 2013. [cited 2019 Dec 15]. Available from: http://hdl.handle.net/2027.42/99796.

Council of Science Editors:

Abram WC. Equivariant Complex Cobordism. [Doctoral Dissertation]. University of Michigan; 2013. Available from: http://hdl.handle.net/2027.42/99796

22. Quintero Ospina , Rodolfo Alexander. Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria .

Degree: 2013, Universidad de los Andes

 La conjetura de Martin Kneser, y posteriormente, la prueba de la misma por László Lovász, fueron acaso los mayores incentivos para prestar seria atención a… (more)

Subjects/Keywords: Kneser; conjetura; complejo simplicial; Borsuk; Ulam; Lovázs; grafo; índice; producto borrado; join borrado; función equivariante; encajamiento; topología; combinatoria; homología; grupo fundamental; espacio recubridor; levantamiento; hiperplano; politopo; convexo; coloramiento; conjecture; simplicial complex; deleted join; equivariant function; index; graph; embedding; topology; combinatorics; homology; fundamental group; lift; polytope; convex; coloring; hyperplane; covering space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Quintero Ospina , R. A. (2013). Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria . (Thesis). Universidad de los Andes. Retrieved from http://documentodegrado.uniandes.edu.co/documentos/200916259_fecha_2014_01_23_hora_19_16_35_parte_1.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Quintero Ospina , Rodolfo Alexander. “Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria .” 2013. Thesis, Universidad de los Andes. Accessed December 15, 2019. http://documentodegrado.uniandes.edu.co/documentos/200916259_fecha_2014_01_23_hora_19_16_35_parte_1.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Quintero Ospina , Rodolfo Alexander. “Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria .” 2013. Web. 15 Dec 2019.

Vancouver:

Quintero Ospina RA. Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria . [Internet] [Thesis]. Universidad de los Andes; 2013. [cited 2019 Dec 15]. Available from: http://documentodegrado.uniandes.edu.co/documentos/200916259_fecha_2014_01_23_hora_19_16_35_parte_1.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Quintero Ospina RA. Conjetura de Kneser y aplicaciones de la topología algebraica a combinatoria . [Thesis]. Universidad de los Andes; 2013. Available from: http://documentodegrado.uniandes.edu.co/documentos/200916259_fecha_2014_01_23_hora_19_16_35_parte_1.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.