Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(generalized complex geometry). Showing records 1 – 10 of 10 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Cambridge

1. Kirchhoff-Lukat, Charlotte Sophie. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.

Degree: PhD, 2018, University of Cambridge

 This thesis explores aspects of generalized geometry, a geometric framework introduced by Hitchin and Gualtieri in the early 2000s. In the first part, we introduce… (more)

Subjects/Keywords: differential geometry; generalized complex geometry; Poisson geometry; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kirchhoff-Lukat, C. S. (2018). Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570

Chicago Manual of Style (16th Edition):

Kirchhoff-Lukat, Charlotte Sophie. “Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.” 2018. Doctoral Dissertation, University of Cambridge. Accessed September 19, 2020. https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570.

MLA Handbook (7th Edition):

Kirchhoff-Lukat, Charlotte Sophie. “Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.” 2018. Web. 19 Sep 2020.

Vancouver:

Kirchhoff-Lukat CS. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. [Internet] [Doctoral dissertation]. University of Cambridge; 2018. [cited 2020 Sep 19]. Available from: https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570.

Council of Science Editors:

Kirchhoff-Lukat CS. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. [Doctoral Dissertation]. University of Cambridge; 2018. Available from: https://www.repository.cam.ac.uk/handle/1810/283007 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570


Universiteit Utrecht

2. Wang, K.J.L. Generalized complex geometry and blow-ups.

Degree: 2014, Universiteit Utrecht

 Blowing up is a well-known procedure to resolve singularities and create new spaces with certain kinds of geometric structures. Although the technique of blowing-up is… (more)

Subjects/Keywords: generalized complex geometry; blow-up; differential geometry; Morita equivalence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, K. J. L. (2014). Generalized complex geometry and blow-ups. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/296914

Chicago Manual of Style (16th Edition):

Wang, K J L. “Generalized complex geometry and blow-ups.” 2014. Masters Thesis, Universiteit Utrecht. Accessed September 19, 2020. http://dspace.library.uu.nl:8080/handle/1874/296914.

MLA Handbook (7th Edition):

Wang, K J L. “Generalized complex geometry and blow-ups.” 2014. Web. 19 Sep 2020.

Vancouver:

Wang KJL. Generalized complex geometry and blow-ups. [Internet] [Masters thesis]. Universiteit Utrecht; 2014. [cited 2020 Sep 19]. Available from: http://dspace.library.uu.nl:8080/handle/1874/296914.

Council of Science Editors:

Wang KJL. Generalized complex geometry and blow-ups. [Masters Thesis]. Universiteit Utrecht; 2014. Available from: http://dspace.library.uu.nl:8080/handle/1874/296914


University of Oxford

3. Rubio, Roberto. Generalized geometry of type Bn.

Degree: PhD, 2014, University of Oxford

Generalized geometry of type Bn is the study of geometric structures in T+T<sup>*</sup>+1, the sum of the tangent and cotangent bundles of a manifold and… (more)

Subjects/Keywords: 516; Mathematics; 3-manifold; almost contact geometry; complex geometry; deformation theory; G2(2)-structure; generalized complex geometry; twisted cohomology; generalized geometry; Lie algebroid

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rubio, R. (2014). Generalized geometry of type Bn. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803

Chicago Manual of Style (16th Edition):

Rubio, Roberto. “Generalized geometry of type Bn.” 2014. Doctoral Dissertation, University of Oxford. Accessed September 19, 2020. http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803.

MLA Handbook (7th Edition):

Rubio, Roberto. “Generalized geometry of type Bn.” 2014. Web. 19 Sep 2020.

Vancouver:

Rubio R. Generalized geometry of type Bn. [Internet] [Doctoral dissertation]. University of Oxford; 2014. [cited 2020 Sep 19]. Available from: http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803.

Council of Science Editors:

Rubio R. Generalized geometry of type Bn. [Doctoral Dissertation]. University of Oxford; 2014. Available from: http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803


University of Oxford

4. Gabella, Maxime. The AdS/CFT correspondence and generalized geometry.

Degree: PhD, 2011, University of Oxford

 The most general AdS5 imes Y solutions of type IIB string theory that are AdS/CFT dual to superconformal field theories in four dimensions can be… (more)

Subjects/Keywords: 530.1; Theoretical physics; Differential geometry; string theory; AdS/CFT correspondence; generalized complex geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gabella, M. (2011). The AdS/CFT correspondence and generalized geometry. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:6fd2037e-d0ec-4806-b4db-631eb3693071 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547475

Chicago Manual of Style (16th Edition):

Gabella, Maxime. “The AdS/CFT correspondence and generalized geometry.” 2011. Doctoral Dissertation, University of Oxford. Accessed September 19, 2020. http://ora.ox.ac.uk/objects/uuid:6fd2037e-d0ec-4806-b4db-631eb3693071 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547475.

MLA Handbook (7th Edition):

Gabella, Maxime. “The AdS/CFT correspondence and generalized geometry.” 2011. Web. 19 Sep 2020.

Vancouver:

Gabella M. The AdS/CFT correspondence and generalized geometry. [Internet] [Doctoral dissertation]. University of Oxford; 2011. [cited 2020 Sep 19]. Available from: http://ora.ox.ac.uk/objects/uuid:6fd2037e-d0ec-4806-b4db-631eb3693071 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547475.

Council of Science Editors:

Gabella M. The AdS/CFT correspondence and generalized geometry. [Doctoral Dissertation]. University of Oxford; 2011. Available from: http://ora.ox.ac.uk/objects/uuid:6fd2037e-d0ec-4806-b4db-631eb3693071 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547475

5. van der Leer Duran, J.L. Blow-Ups in Generalized Complex Geometry.

Degree: 2016, University Utrecht

Generalized complex geometry is a theory that unifies complex geometry and symplectic geometry into one single framework. It was introduced by Hitchin and Gualtieri around… (more)

Subjects/Keywords: generalized complex geometry; generalized Kähler geometry; blow-ups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

van der Leer Duran, J. L. (2016). Blow-Ups in Generalized Complex Geometry. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/341390 ; URN:NBN:NL:UI:10-1874-341390 ; urn:isbn:978-90-393-6674-5 ; URN:NBN:NL:UI:10-1874-341390 ; https://dspace.library.uu.nl/handle/1874/341390

Chicago Manual of Style (16th Edition):

van der Leer Duran, J L. “Blow-Ups in Generalized Complex Geometry.” 2016. Doctoral Dissertation, University Utrecht. Accessed September 19, 2020. https://dspace.library.uu.nl/handle/1874/341390 ; URN:NBN:NL:UI:10-1874-341390 ; urn:isbn:978-90-393-6674-5 ; URN:NBN:NL:UI:10-1874-341390 ; https://dspace.library.uu.nl/handle/1874/341390.

MLA Handbook (7th Edition):

van der Leer Duran, J L. “Blow-Ups in Generalized Complex Geometry.” 2016. Web. 19 Sep 2020.

Vancouver:

van der Leer Duran JL. Blow-Ups in Generalized Complex Geometry. [Internet] [Doctoral dissertation]. University Utrecht; 2016. [cited 2020 Sep 19]. Available from: https://dspace.library.uu.nl/handle/1874/341390 ; URN:NBN:NL:UI:10-1874-341390 ; urn:isbn:978-90-393-6674-5 ; URN:NBN:NL:UI:10-1874-341390 ; https://dspace.library.uu.nl/handle/1874/341390.

Council of Science Editors:

van der Leer Duran JL. Blow-Ups in Generalized Complex Geometry. [Doctoral Dissertation]. University Utrecht; 2016. Available from: https://dspace.library.uu.nl/handle/1874/341390 ; URN:NBN:NL:UI:10-1874-341390 ; urn:isbn:978-90-393-6674-5 ; URN:NBN:NL:UI:10-1874-341390 ; https://dspace.library.uu.nl/handle/1874/341390


Universiteit Utrecht

6. Leer Duran, J.L. van der. Supersymmetric Sigma Models and Generalized Complex Geometry.

Degree: 2012, Universiteit Utrecht

 In this thesis we look at a physical model that consists of maps from a surface to a compact manifold M. After introducing the concept… (more)

Subjects/Keywords: supersymmetry; sigma models; B-field; flux; topological twist; generalized complex geometry; bi-hermitian structures; generalized Kähler structures

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leer Duran, J. L. v. d. (2012). Supersymmetric Sigma Models and Generalized Complex Geometry. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/253426

Chicago Manual of Style (16th Edition):

Leer Duran, J L van der. “Supersymmetric Sigma Models and Generalized Complex Geometry.” 2012. Masters Thesis, Universiteit Utrecht. Accessed September 19, 2020. http://dspace.library.uu.nl:8080/handle/1874/253426.

MLA Handbook (7th Edition):

Leer Duran, J L van der. “Supersymmetric Sigma Models and Generalized Complex Geometry.” 2012. Web. 19 Sep 2020.

Vancouver:

Leer Duran JLvd. Supersymmetric Sigma Models and Generalized Complex Geometry. [Internet] [Masters thesis]. Universiteit Utrecht; 2012. [cited 2020 Sep 19]. Available from: http://dspace.library.uu.nl:8080/handle/1874/253426.

Council of Science Editors:

Leer Duran JLvd. Supersymmetric Sigma Models and Generalized Complex Geometry. [Masters Thesis]. Universiteit Utrecht; 2012. Available from: http://dspace.library.uu.nl:8080/handle/1874/253426

7. Klaasse, R.L. Geometric structures and Lie algebroids.

Degree: 2017, University Utrecht

 In this thesis we study geometric structures from Poisson and generalized complex geometry with mild singular behavior using Lie algebroids. The process of lifting such… (more)

Subjects/Keywords: Poisson geometry; generalized complex geometry; Lie algebroids; Lefschetz fibrations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Klaasse, R. L. (2017). Geometric structures and Lie algebroids. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/354030 ; URN:NBN:NL:UI:10-1874-354030 ; urn:isbn:978-90-393-6813-8 ; URN:NBN:NL:UI:10-1874-354030 ; https://dspace.library.uu.nl/handle/1874/354030

Chicago Manual of Style (16th Edition):

Klaasse, R L. “Geometric structures and Lie algebroids.” 2017. Doctoral Dissertation, University Utrecht. Accessed September 19, 2020. https://dspace.library.uu.nl/handle/1874/354030 ; URN:NBN:NL:UI:10-1874-354030 ; urn:isbn:978-90-393-6813-8 ; URN:NBN:NL:UI:10-1874-354030 ; https://dspace.library.uu.nl/handle/1874/354030.

MLA Handbook (7th Edition):

Klaasse, R L. “Geometric structures and Lie algebroids.” 2017. Web. 19 Sep 2020.

Vancouver:

Klaasse RL. Geometric structures and Lie algebroids. [Internet] [Doctoral dissertation]. University Utrecht; 2017. [cited 2020 Sep 19]. Available from: https://dspace.library.uu.nl/handle/1874/354030 ; URN:NBN:NL:UI:10-1874-354030 ; urn:isbn:978-90-393-6813-8 ; URN:NBN:NL:UI:10-1874-354030 ; https://dspace.library.uu.nl/handle/1874/354030.

Council of Science Editors:

Klaasse RL. Geometric structures and Lie algebroids. [Doctoral Dissertation]. University Utrecht; 2017. Available from: https://dspace.library.uu.nl/handle/1874/354030 ; URN:NBN:NL:UI:10-1874-354030 ; urn:isbn:978-90-393-6813-8 ; URN:NBN:NL:UI:10-1874-354030 ; https://dspace.library.uu.nl/handle/1874/354030


Universidade Estadual de Campinas

8. Varea, Carlos Augusto Bassani, 1991-. Estruturas complexas generalizadas invariantes em variedades flag: Invariant generalized complex structures on flag manifolds.

Degree: 2020, Universidade Estadual de Campinas

 Abstract: Generalized complex geometry is a geometrical structure which contains complex and symplectic geometry as special cases. In this thesis, we explore the invariant generalized(more)

Subjects/Keywords: Variedades bandeira; Geometria complexa generalizada; Espaços homogêneos; Lie, Grupos de; Flag manifolds; Generalized complex geometry; Homogeneous spaces; Lie groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Varea, Carlos Augusto Bassani, 1. (2020). Estruturas complexas generalizadas invariantes em variedades flag: Invariant generalized complex structures on flag manifolds. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/343515

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Varea, Carlos Augusto Bassani, 1991-. “Estruturas complexas generalizadas invariantes em variedades flag: Invariant generalized complex structures on flag manifolds.” 2020. Thesis, Universidade Estadual de Campinas. Accessed September 19, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/343515.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Varea, Carlos Augusto Bassani, 1991-. “Estruturas complexas generalizadas invariantes em variedades flag: Invariant generalized complex structures on flag manifolds.” 2020. Web. 19 Sep 2020.

Vancouver:

Varea, Carlos Augusto Bassani 1. Estruturas complexas generalizadas invariantes em variedades flag: Invariant generalized complex structures on flag manifolds. [Internet] [Thesis]. Universidade Estadual de Campinas; 2020. [cited 2020 Sep 19]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/343515.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Varea, Carlos Augusto Bassani 1. Estruturas complexas generalizadas invariantes em variedades flag: Invariant generalized complex structures on flag manifolds. [Thesis]. Universidade Estadual de Campinas; 2020. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/343515

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

9. Alves, Leonardo Soriani, 1991-. T-duality and mirror symmetry on nilmanifolds : T-dualidade e simetria do espelho em nilvariedades: T-dualidade e simetria do espelho em nilvariedades.

Degree: 2019, Universidade Estadual de Campinas

 Abstract: We study a version of T-duality on nilmanifolds through a Lie theoretic point of view: we build the duality on the nilpotent Lie algebras… (more)

Subjects/Keywords: Lie, Grupos de; Geometria complexa generalizada; Dualidade (Matemática); Lie groups; Generalized complex geometry; Duality (Mathematics)

Generalized complex geometry . . . . . . . . . . . . . . . . . . . . . . 11 Topological T-duality… …from generalized complex geometry, which has complex and symplectic geometry as special cases… …specific kind of submanifold called brane. Generalized complex geometry has a notion of brane… …x5D; and [22]. 11 1 Preliminaries 1.1 Generalized complex geometry Generalized… …BRANES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Generalized complex… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alves, Leonardo Soriani, 1. (2019). T-duality and mirror symmetry on nilmanifolds : T-dualidade e simetria do espelho em nilvariedades: T-dualidade e simetria do espelho em nilvariedades. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/334591

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Alves, Leonardo Soriani, 1991-. “T-duality and mirror symmetry on nilmanifolds : T-dualidade e simetria do espelho em nilvariedades: T-dualidade e simetria do espelho em nilvariedades.” 2019. Thesis, Universidade Estadual de Campinas. Accessed September 19, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/334591.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Alves, Leonardo Soriani, 1991-. “T-duality and mirror symmetry on nilmanifolds : T-dualidade e simetria do espelho em nilvariedades: T-dualidade e simetria do espelho em nilvariedades.” 2019. Web. 19 Sep 2020.

Vancouver:

Alves, Leonardo Soriani 1. T-duality and mirror symmetry on nilmanifolds : T-dualidade e simetria do espelho em nilvariedades: T-dualidade e simetria do espelho em nilvariedades. [Internet] [Thesis]. Universidade Estadual de Campinas; 2019. [cited 2020 Sep 19]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/334591.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Alves, Leonardo Soriani 1. T-duality and mirror symmetry on nilmanifolds : T-dualidade e simetria do espelho em nilvariedades: T-dualidade e simetria do espelho em nilvariedades. [Thesis]. Universidade Estadual de Campinas; 2019. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/334591

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

10. Tari, Kévin. Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties.

Degree: Docteur es, Mathématiques, 2015, Poitiers

Dans ce travail, nous classifions les automorphismes non-symplectiques des variétés équivalentes par déformations à des variétés de Kummer généralisées de dimension 4, ayant une action… (more)

Subjects/Keywords: Géométrie algébrique complexe; Variétés symplectiques holomorphes; Variétés de Kummer généralisées; Schémas de Hilbert de points sur les surfaces K3; Automorphismes; Automorphismes naturels; Théorème de Torelli; Surfaces abéliennes; Théorie des réseaux; Isométries; Complex algebraic geometry; Holomorphic symplectic varieties; Generalized Kummer varieties; Hilbert schemes of points on K3 surfaces; Automorphisms; Natural automorphisms; Torelli thoerem; Abelian surfaces; Lattice theory; Isometries; 516.35

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tari, K. (2015). Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties. (Doctoral Dissertation). Poitiers. Retrieved from http://www.theses.fr/2015POIT2301

Chicago Manual of Style (16th Edition):

Tari, Kévin. “Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties.” 2015. Doctoral Dissertation, Poitiers. Accessed September 19, 2020. http://www.theses.fr/2015POIT2301.

MLA Handbook (7th Edition):

Tari, Kévin. “Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties.” 2015. Web. 19 Sep 2020.

Vancouver:

Tari K. Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties. [Internet] [Doctoral dissertation]. Poitiers; 2015. [cited 2020 Sep 19]. Available from: http://www.theses.fr/2015POIT2301.

Council of Science Editors:

Tari K. Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties. [Doctoral Dissertation]. Poitiers; 2015. Available from: http://www.theses.fr/2015POIT2301

.