Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(generalized cohomology)`

.
Showing records 1 – 7 of
7 total matches.

▼ Search Limiters

Harvard University

1. Xiong, Zhaoxi. Classification and Construction of Topological Phases of Quantum Matter.

Degree: PhD, 2019, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029722

►

We develop a theoretical framework for the classification and construction of symmetry protected topological (SPT) phases, which are a special class of zero-temperature phases of… (more)

Subjects/Keywords: Many-body systems; quantum phases; topological phases; symmetry protected topological phases; generalized cohomology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Xiong, Z. (2019). Classification and Construction of Topological Phases of Quantum Matter. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029722

Chicago Manual of Style (16^{th} Edition):

Xiong, Zhaoxi. “Classification and Construction of Topological Phases of Quantum Matter.” 2019. Doctoral Dissertation, Harvard University. Accessed September 19, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029722.

MLA Handbook (7^{th} Edition):

Xiong, Zhaoxi. “Classification and Construction of Topological Phases of Quantum Matter.” 2019. Web. 19 Sep 2020.

Vancouver:

Xiong Z. Classification and Construction of Topological Phases of Quantum Matter. [Internet] [Doctoral dissertation]. Harvard University; 2019. [cited 2020 Sep 19]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029722.

Council of Science Editors:

Xiong Z. Classification and Construction of Topological Phases of Quantum Matter. [Doctoral Dissertation]. Harvard University; 2019. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029722

2.
Simanyi, John.
The Poisson *Cohomology* of k-step Nilmanifolds.

Degree: Mathematics, 2018, University of California – Riverside

URL: http://www.escholarship.org/uc/item/8gn1k7qk

► Nilmanifolds that admit invariant abelian complex structures are a particular class of compact complex manifold. We can consider their deformations, which are tied to a…
(more)

Subjects/Keywords: Mathematics; deformations; generalized geometry; nilmanifold; poisson cohomology

…35
4 A Hodge-type Decomposition of Holomorphic Poisson *Cohomology*
49
4.1
A Natural… …in ernest in the last half century or so.
1.1
*Generalized* Geometry, Hamiltonians and… …manifold, whose first *cohomology* group with values in its sheaf of germs
of holomorphic vector… …deformations [20].
These deformations were certain elements of the first *cohomology* group… …fields. Kodaira and
1
Spencer showed further that all elements in the first *cohomology* class…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Simanyi, J. (2018). The Poisson Cohomology of k-step Nilmanifolds. (Thesis). University of California – Riverside. Retrieved from http://www.escholarship.org/uc/item/8gn1k7qk

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Simanyi, John. “The Poisson Cohomology of k-step Nilmanifolds.” 2018. Thesis, University of California – Riverside. Accessed September 19, 2020. http://www.escholarship.org/uc/item/8gn1k7qk.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Simanyi, John. “The Poisson Cohomology of k-step Nilmanifolds.” 2018. Web. 19 Sep 2020.

Vancouver:

Simanyi J. The Poisson Cohomology of k-step Nilmanifolds. [Internet] [Thesis]. University of California – Riverside; 2018. [cited 2020 Sep 19]. Available from: http://www.escholarship.org/uc/item/8gn1k7qk.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Simanyi J. The Poisson Cohomology of k-step Nilmanifolds. [Thesis]. University of California – Riverside; 2018. Available from: http://www.escholarship.org/uc/item/8gn1k7qk

Not specified: Masters Thesis or Doctoral Dissertation

University of Oxford

3.
Rubio, Roberto.
* Generalized* geometry of type Bn.

Degree: PhD, 2014, University of Oxford

URL: http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803

► *Generalized* geometry of type B_{n} is the study of geometric structures in T+T<sup>*</sup>+1, the sum of the tangent and cotangent bundles of a manifold and…
(more)

Subjects/Keywords: 516; Mathematics; 3-manifold; almost contact geometry; complex geometry; deformation theory; G2(2)-structure; generalized complex geometry; twisted cohomology; generalized geometry; Lie algebroid

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rubio, R. (2014). Generalized geometry of type Bn. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803

Chicago Manual of Style (16^{th} Edition):

Rubio, Roberto. “Generalized geometry of type Bn.” 2014. Doctoral Dissertation, University of Oxford. Accessed September 19, 2020. http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803.

MLA Handbook (7^{th} Edition):

Rubio, Roberto. “Generalized geometry of type Bn.” 2014. Web. 19 Sep 2020.

Vancouver:

Rubio R. Generalized geometry of type Bn. [Internet] [Doctoral dissertation]. University of Oxford; 2014. [cited 2020 Sep 19]. Available from: http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803.

Council of Science Editors:

Rubio R. Generalized geometry of type Bn. [Doctoral Dissertation]. University of Oxford; 2014. Available from: http://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669803

Université du Luxembourg

4. Cai, Xiongwei. Cohomologies and derived brackets of Leibniz algebras.

Degree: 2016, Université du Luxembourg

URL: http://orbilu.uni.lu/handle/10993/29353

► In this thesis, we work on the structure of Leibniz algebras and develop *cohomology* theories for them. The motivation comes from: • Roytenberg, Stienon-Xu and…
(more)

Subjects/Keywords: Leibniz algebra; Courant-Dorfman algebra; standard cohomology; naive cohomology; crossed product; derived bracket; equivariant cohomology; generalized action; Physical, chemical, mathematical & earth Sciences :: Mathematics [G03]; Physique, chimie, mathématiques & sciences de la terre :: Mathématiques [G03]

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cai, X. (2016). Cohomologies and derived brackets of Leibniz algebras. (Doctoral Dissertation). Université du Luxembourg. Retrieved from http://orbilu.uni.lu/handle/10993/29353

Chicago Manual of Style (16^{th} Edition):

Cai, Xiongwei. “Cohomologies and derived brackets of Leibniz algebras.” 2016. Doctoral Dissertation, Université du Luxembourg. Accessed September 19, 2020. http://orbilu.uni.lu/handle/10993/29353.

MLA Handbook (7^{th} Edition):

Cai, Xiongwei. “Cohomologies and derived brackets of Leibniz algebras.” 2016. Web. 19 Sep 2020.

Vancouver:

Cai X. Cohomologies and derived brackets of Leibniz algebras. [Internet] [Doctoral dissertation]. Université du Luxembourg; 2016. [cited 2020 Sep 19]. Available from: http://orbilu.uni.lu/handle/10993/29353.

Council of Science Editors:

Cai X. Cohomologies and derived brackets of Leibniz algebras. [Doctoral Dissertation]. Université du Luxembourg; 2016. Available from: http://orbilu.uni.lu/handle/10993/29353

5. Neyra, Norbil Leodan Cordova. Grau de aplicações G-equivariantes entre variedades generalizadas.

Degree: PhD, Matemática, 2014, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12082014-153507/ ;

►

Neste trabalho estenderemos os resultados obtidos por Hara [34] e J. Jaworowski [38] substituindo as G-variedades por G-variedades generalizadas sobre Z. Além disso, provamos uma… (more)

Subjects/Keywords: Aplicações equivariantes; Borel-Moore homology; Cohomologia de feixes; Degree theory; Equivariant maps; Generalized manifolds; Homologia de Borel-Moore; Sheaf cohomology; Teoria do grau; Variedades generalizadas

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Neyra, N. L. C. (2014). Grau de aplicações G-equivariantes entre variedades generalizadas. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12082014-153507/ ;

Chicago Manual of Style (16^{th} Edition):

Neyra, Norbil Leodan Cordova. “Grau de aplicações G-equivariantes entre variedades generalizadas.” 2014. Doctoral Dissertation, University of São Paulo. Accessed September 19, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12082014-153507/ ;.

MLA Handbook (7^{th} Edition):

Neyra, Norbil Leodan Cordova. “Grau de aplicações G-equivariantes entre variedades generalizadas.” 2014. Web. 19 Sep 2020.

Vancouver:

Neyra NLC. Grau de aplicações G-equivariantes entre variedades generalizadas. [Internet] [Doctoral dissertation]. University of São Paulo; 2014. [cited 2020 Sep 19]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12082014-153507/ ;.

Council of Science Editors:

Neyra NLC. Grau de aplicações G-equivariantes entre variedades generalizadas. [Doctoral Dissertation]. University of São Paulo; 2014. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12082014-153507/ ;

6. Nuiten, J.J. Cohomological quantization of local prequantum boundary field theory.

Degree: 2013, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/282756

► We discuss how local prequantum field theories with boundaries can be described in terms of n-fold correspondence diagrams in the infinity-topos of smooth stacks equipped…
(more)

Subjects/Keywords: quantum field theory; quantization; generalized cohomology; K-theory

…*generalized* *cohomology* of the homotopy type of a quotient stack
M//G does not always agree with the… …procedure, we should look for a concrete *generalized* *cohomology* theory of
smooth stacks which is… …gives only a first example of the quantization
by pull-pushing in *generalized* *cohomology*… …we can pull in
R-*cohomology* along the left map, and push along the right map to produce a… …single map in the
category of R-modules. As in ordinary *cohomology*, the pushforward step…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nuiten, J. J. (2013). Cohomological quantization of local prequantum boundary field theory. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/282756

Chicago Manual of Style (16^{th} Edition):

Nuiten, J J. “Cohomological quantization of local prequantum boundary field theory.” 2013. Masters Thesis, Universiteit Utrecht. Accessed September 19, 2020. http://dspace.library.uu.nl:8080/handle/1874/282756.

MLA Handbook (7^{th} Edition):

Nuiten, J J. “Cohomological quantization of local prequantum boundary field theory.” 2013. Web. 19 Sep 2020.

Vancouver:

Nuiten JJ. Cohomological quantization of local prequantum boundary field theory. [Internet] [Masters thesis]. Universiteit Utrecht; 2013. [cited 2020 Sep 19]. Available from: http://dspace.library.uu.nl:8080/handle/1874/282756.

Council of Science Editors:

Nuiten JJ. Cohomological quantization of local prequantum boundary field theory. [Masters Thesis]. Universiteit Utrecht; 2013. Available from: http://dspace.library.uu.nl:8080/handle/1874/282756

7.
Stapleton, Nathaniel J.
Transchromatic *generalized* character maps.

Degree: PhD, 0439, 2011, University of Illinois – Urbana-Champaign

URL: http://hdl.handle.net/2142/26269

► In "*Generalized* Group Characters and Complex Oriented *Cohomology* Theories", Hopkins, Kuhn, and Ravenel discovered a *generalized* character theory that proved useful in studying *cohomology* rings…
(more)

Subjects/Keywords: Algebraic Topology; Stable Homotopy Theory; Generalized Cohomology Theory; p-Divisible Group; Barsotti-Tate Group; Morava E-theory

…theory we mean a *generalized* *cohomology* theory on the category of finite spaces (spaces… …Kuhn, and Ravenel build, for each Morava E-theory, an equivariant *cohomology* theory that… …and Fix(X) =
be used to make a height t *cohomology* theory. Let Gp = hom(Zn−t… …becomes an isomorphism of equivariant *cohomology*
theories.
This map is intimately related to the… …the second chapter we construct the transchromatic *generalized* character maps and study…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Stapleton, N. J. (2011). Transchromatic generalized character maps. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/26269

Chicago Manual of Style (16^{th} Edition):

Stapleton, Nathaniel J. “Transchromatic generalized character maps.” 2011. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed September 19, 2020. http://hdl.handle.net/2142/26269.

MLA Handbook (7^{th} Edition):

Stapleton, Nathaniel J. “Transchromatic generalized character maps.” 2011. Web. 19 Sep 2020.

Vancouver:

Stapleton NJ. Transchromatic generalized character maps. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2011. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/2142/26269.

Council of Science Editors:

Stapleton NJ. Transchromatic generalized character maps. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2011. Available from: http://hdl.handle.net/2142/26269